Der Raspberry Pi Pico ist eine großartige Lösung für die Steuerung von Servos. Mit der Hardware-PIO kann der Pico die Servos per Hardware steuern, ohne die Verwendung von Zeiten/Interrupts und die Nutzung der MCU zu begrenzen.
Die Ansteuerung der sechs Servos in diesem Roboterarm beansprucht nur sehr wenig MCU-Kapazität, so dass die MCU problemlos mit anderen Aufgaben betraut werden kann. Dieser 6 DOF-Roboterarm ist ein praktisches Werkzeug zum Lehren und Lernen von Robotik und Pico-Nutzung. Es gibt fünf MG996 (vier werden in der Baugruppe und einer als Reserve benötigt) und drei 25-kg-Servos (zwei werden in der Baugruppe und einer als Reserve benötigt). Beachten Sie, dass der Winkel der Servos von 0° bis 180° reicht. Alle Servos müssen vor dem Zusammenbau auf 90° voreingestellt werden (mit logisch hohem Tastverhältnis von 1,5 ms), um Schäden an den Servos während der Bewegung zu vermeiden.
Dieses Produkt enthält alle notwendigen Teile, um einen Roboterarm auf Basis von Pico und Micropython zu erstellen.
Lieferumfang
1 x Raspberry Pi Pico
1 x Raspberry Pi Pico Servo-Treiber
1 x Satz "6 DOF Roboterarm"
1 x 5 V/5 A Stromversorgung
2 x Ersatz-Servo
Downloads
GitHub
Wiki
Anleitung
Zusammenbau Video
Der ESP32-WROOM-32 misst nur 25,2 x 18 mm und enthält den ESP32-SoC, den Flash-Speicher, präzise diskrete Komponenten und eine PCB-Antenne, um eine hervorragende HF-Leistung in Anwendungen mit begrenztem Platzangebot zu bieten.
ESP32-WROOM-32 ist ein leistungsstarkes, generisches Wi-Fi + BT + BLE-MCU-Modul, das auf eine Vielzahl von Anwendungen abzielt, von Sensornetzwerken mit geringem Stromverbrauch bis hin zu anspruchsvollsten Aufgaben wie Sprachkodierung, Musik-Streaming und MP3-Dekodierung.
Das Herzstück dieses Moduls ist der ESP32-D0WDQ6-Chip. Der eingebettete Chip ist skalierbar und anpassungsfähig. Es gibt zwei CPU-Kerne, die einzeln angesteuert werden können, und die Taktfrequenz ist von 80 MHz bis 240 MHz einstellbar. Der Benutzer kann die CPU auch ausschalten und den stromsparenden Coprozessor nutzen, um die Peripheriegeräte ständig auf Änderungen oder Überschreitungen von Schwellenwerten zu überwachen. ESP32 integriert eine Vielzahl von Peripheriegeräten, die von kapazitiven Berührungssensoren, Hall-Sensoren, SD-Kartenschnittstelle, Ethernet, Hochgeschwindigkeits-SPI, UART, I²S und I²C reichen.
Die Integration von Bluetooth, Bluetooth LE und Wi-Fi sorgt dafür, dass ein breites Anwendungsspektrum angesprochen werden kann und das Modul zukunftssicher ist. Die Verwendung von Wi-Fi ermöglicht eine große physische Reichweite und eine direkte Verbindung zum Internet über einen Wi-Fi-Router, während die Verwendung von Bluetooth es dem Benutzer ermöglicht, bequem eine Verbindung zum Telefon herzustellen oder Niedrigenergie-Beacons zur Erkennung auszusenden.
Der Ruhestrom des ESP32-Chips beträgt weniger als 5 µA und eignet sich daher für batteriebetriebene und tragbare Elektronikanwendungen. ESP32 unterstützt eine Datenrate von bis zu 150 Mbit/s und eine Ausgangsleistung von 20,5 dBm an der Antenne, um die größtmögliche physikalische Reichweite zu gewährleisten. Daher bietet der Chip branchenführende Spezifikationen und die beste Leistung für elektronische Integration, Reichweite, Stromverbrauch und Konnektivität.
Downloads
Datasheet
Der Pico Cube ist ein 4x4x4 LED-Würfel-HAT für den Raspberry Pi Pico mit einer Betriebsspannung von 5 VDC. Der Pico Cube, ein monochromatisches Blau mit 64 LEDs, ist eine unterhaltsame Möglichkeit, Programmieren zu lernen. Er wurde entwickelt, um Glühbetrieb mit geringem Energieverbrauch, robuster Optik und einfacher Installation auszuführen, so dass Menschen/Kinder/Benutzer die Effekte von LED-Leuchten mit einem unterschiedlichen Farbmuster durch die Kombination von Software und Hardware, d.h. Raspberry Pi Pico, kennenlernen können.
Funktionen
Standard 40 Pins Raspberry Pi Pico Header
Kommunikation über GPIO
64 hochintensive monochromatische LEDs
Einzeln ansteuerbare LEDs
Zugriff auf jede Schicht
Technische Daten
Betriebsspannung: 5 V
Farbe: Blau
Kommunikation: GPIO
LEDs: 64
Im Lieferumfang enthalten
1x Pico Cube Base PCB
4x Layer PCB
8x Pillar PCB
2x Male Berg (1 x 20)
2x Female Berg (1 x 20)
70 LEDs
Hinweis: Der Raspberry Pi Pico ist nicht im Lieferumfang enthalten.
Downloads
GitHub
Wiki
Dieses Board ermöglicht es dem Raspberry Pi Pico (angeschlossen über die Stiftleiste), zwei Motoren gleichzeitig mit voller Vorwärts-, Rückwärts- und Stoppsteuerung anzutreiben, was es ideal für Pico-gesteuerte Buggy-Projekte macht. Alternativ kann die Platine auch zum Betrieb eines Schrittmotors verwendet werden. Die Platine ist mit dem Motortreiber-IC DRV8833 ausgestattet, der über einen integrierten Kurzschluss-, Überstrom- und Wärmeschutz verfügt.
Die Platine hat 4 externe Anschlüsse für GPIO-Pins und eine 3-V- und GND-Versorgung vom Pico. Dies ermöglicht zusätzliche IO-Optionen für Ihre Buggy-Bauten, die vom Pico gelesen oder gesteuert werden können. Außerdem gibt es einen Ein/Aus-Schalter und eine Power-Status-LED, so dass Sie auf einen Blick sehen können, ob das Board eingeschaltet ist, und Ihre Batterien schonen können, wenn Ihr Projekt nicht in Gebrauch ist.
Um die Motortreiberplatine verwenden zu können, muss der Pico über eine verlötete Stiftleiste verfügen und fest in den Stecker eingesteckt werden. Die Platine erzeugt eine geregelte Stromversorgung, die in den 40-poligen Stecker eingespeist wird, um den Pico mit Strom zu versorgen, so dass dieser nicht direkt mit Strom versorgt werden muss. Die Motortreiberplatine wird entweder über Schraubklemmen oder einen Servostecker versorgt.
Kitronik hat ein Micro-Python Modul und Beispielcode entwickelt, um die Verwendung des Motor Driver Boards mit dem Pico zu unterstützen. Dieser Code ist im GitHub Repo verfügbar.
Merkmale
Ein kompaktes und dennoch funktionsreiches Board, das als Herzstück Ihrer Raspberry Pi Pico Roboter-Buggy-Projekte entwickelt wurde.
Die Platine kann 2 Motoren gleichzeitig mit voller Vorwärts-, Rückwärts- und Stoppsteuerung antreiben.
Sie enthält den Motortreiber-IC DRV8833, der über einen integrierten Kurzschluss-, Überstrom- und Überhitzungsschutz verfügt.
Darüber hinaus verfügt die Platine über einen Ein/Aus-Schalter und eine Power-Status-LED.
Die Stromversorgung der Platine erfolgt über einen Klemmenleistenanschluss.
Die 3V- und GND-Pins sind ebenfalls herausgebrochen, so dass externe Geräte mit Strom versorgt werden können.
Programmieren Sie es mit MicroPython über einen Editor wie den Thonny-Editor.
Abmessungen: 63 mm (L) x 35 mm (B) x 11,6 mm (H)
Download
Datenblatt
Das Pico-GPS-L76B ist ein GNSS-Modul, das für Raspberry Pi Pico entwickelt wurde und mehrere Satellitensysteme unterstützt, einschließlich GPS, BDS und QZSS. Es bietet Vorteile wie schnelle Positionierung, hohe Genauigkeit und geringen Stromverbrauch usw. In Kombination mit dem Raspberry Pi Pico ist die globale Navigationsfunktion einfach zu verwenden.
Merkmale
Standard-Raspberry-Pi-Pico-Header, unterstützt Platinen der Raspberry-Pi-Pico-Serie
Unterstützung mehrerer Satellitensysteme: GPS, BDS und QZSS
EINFACH, Self-Track-Vorhersagetechnologie, hilft bei der schnellen Positionierung
AlwaysLocate, intelligenter Controller mit periodischem Modus zum Energiesparen
Unterstützt D-GPS, SBAS (WAAS/EGNOS/MSAS/GAGAN)
Baudrate der UART-Kommunikation: 4800–115200 Bit/s (standardmäßig 9600 Bit/s)
Integrierter Batteriehalter, unterstützt die wiederaufladbare ML1220-Zelle, zur Aufbewahrung von Ephemerideninformationen und Warmstarts
4x LEDs zur Anzeige des Modulbetriebszustandes
Kommt mit Entwicklungsressourcen und Handbuch (Raspberry Pi Pico C/C++ und MicroPython-Beispiele)
Spezifikationen
GNSS
Frequenzband: GPS L1 (1575,42 MHz) BD2 B1 (1561,098 MHz)
Kanäle: 33 Tracking-Kanäle, 99 Erfassungskanäle, 210 PRN-Kanäle
C/A-Code
SBAS: WAAS, EGNOS, MSAS, GAGAN
Genauigkeit der horizontalen Position (autonome Positionierung)
<2,5 Mio. CEP
Zeit bis zur ersten Fehlerbehebung bei -130 dBm (EASY aktiviert)
Kaltstarts: <15s
Warmstarts: <5s
Heißstarts: <1s
Empfindlichkeit
Erfassung: -148 dBm
Tracking: -163 dBm
Wiedererfassung: -160 dBm
Dynamische Leistung
Höhe (maximal): 18000 m
Geschwindigkeit (maximal): 515 m/s
Beschleunigung (maximal): 4g
Andere
Kommunikationsinterface
UART
Baudrate
4800–115200 Bit/s (9600 Bit/s standardmäßig)
Aktualisierungsrate
1 Hz (Standard), 10 Hz (maximal)
Protokolle
NMEA 0183, PMTK
Versorgungsspannung
5 V
Betriebsstrom
13mA
Gesamtstromverbrauch
< 40 mA bei 5 V (kontinuierlicher Modus)
Betriebstemperatur
-40℃ ~ 85℃
Maße
52×21mm
Inbegriffen
1x Pico-GPS-L76B
1x GPS-Antenne
Der FNIRSI HS-02A ist eine verbesserte Version des HS-01 Lötkolbens mit besserer Griffigkeit und kürzerer Spitze für mehr Komfort und Präzision bei der Verwendung. Es verfügt über ein größeres 0,96" IPS-HD-Farbdisplay, das eine bessere Sichtbarkeit von Einstellungen und Status ermöglicht. Mit einer Ausgangsleistung von 100 W heizt sich der HS-02A schnell auf und erreicht die Betriebstemperatur in etwa 2 Sekunden. Die Temperatur ist in einem Bereich von 100-450°C einstellbar, um unterschiedlichen Lötanforderungen gerecht zu werden.
Features
Temperatur: 100-450 °C
Präzise Temperatureinstellung und -kontrolle
Schnelles Aufheizen
CNC-Metallgehäuse
Anpassungskraft
100 W hohe Leistung
Protokolle: PD, QC
Technische Daten
Temperaturbereich
100-450°C
Betriebsspannung
9-20 V
Display
0,96" IPS-HD-Farbbildschirm
Stromversorgung
USB-C
Schnellladeprotokolle
PD / QC
Leistung
100 W (maximal)
Abmessungen
180 x 20 mm
Gewicht
61 g
Lieferumfang
1x FNRISI HS-02A Smart-Lötkolben
6x Lötkolbenspitzen (HS02A-KU, HS02A-K, HS02A-JS, HS02A-I, HS02A-C2, HS02A-B)
1x 100 W USB-C Netzteil (EU)
1x DC-zu-USB-C Stromkabel
1x USC-C Ladekabel
1x Mini-Lötkolbenständer
1x Manual
Downloads
Manual
Firmware V1.7
ESP32-S3-GEEK ist ein Geek-Entwicklungsboard mit integriertem USB-A-Anschluss, 1,14-Zoll-LCD-Bildschirm, TF-Kartensteckplatz und anderen Peripheriegeräten. Es unterstützt 2,4 GHz WLAN und BLE 5, mit integriertem 16 MB Flash & 2 MB PSRAM, bietet I²C Port, UART Port und GPIO Header für mehr Möglichkeiten für Ihr Projekt.
Features
Verwendet den ESP32-S3R2-Chip mit dem Xtensa 32-Bit-LX7-Dual-Core-Prozessor, der mit 240 MHz laufen kann
Eingebauter 512 KB SRAM, 384 KB ROM, 2 MB On-Chip-PSRAM und integrierter 16 MB Flash-Speicher
Onboard 1,14" IPS-LCD-Display mit 240 x 135 Pixeln und 65.000 Farben
Integrierte drahtlose 2,4-GHz-WLAN- und BluetoothLE-Kommunikation
WiFi unterstützt Infrastructure BSS in den Modi Station, SoftAP und Station + SoftAP
WiFi unterstützt den 1T1R-Modus mit einer Datenrate von bis zu 150 Mbps
Bluetooth unterstützt den Hochleistungsmodus (20 dBm)
Interner Koexistenzmechanismus zwischen Wi-Fi und Bluetooth zur gemeinsamen Nutzung derselben Antenne
Onboard 3-Pin UART-Port, 3-Pin GPIO-Header und 4-Pin I²C-Port
Ausgestattet mit Kunststoffgehäuse und Kabeln
Stellt Online-Open-Source-Demos und -Ressourcen bereit, die das Lernen und die Entwicklung erleichtern
Abmessungen: 61,0 x 24,5 x 9,0 mm
Downloads
Wiki
There are many so-called 'Arduino compatible' platforms on the market. The ESP8266 – in the form of the WeMos D1 Mini Pro – is one that really stands out. This device includes WiFi Internet access and the option of a flash file system using up to 16 MB of external flash memory. Furthermore, there are ample in/output pins (though only one analogue input), PWM, I²C, and one-wire. Needless to say, you are easily able to construct many small IoT devices!
This book contains the following builds:
A colourful smart home accessory
refrigerator controller
230 V power monitor
door lock monitor
and some further spin-off devices.
All builds are documented together with relevant background information for further study. For your convenience, there is a small PCB for most of the designs; you can also use a perf board. You don’t need to be an expert but the minimum recommended essentials include basic experience with a PC, software, and hardware, including the ability to surf the Internet and assemble PCBs.
And of course: A handle was kept on development costs. All custom software for the IoT devices and PCB layouts are available for free download from at Elektor.com.
The Naturebytes Wildlife Cam Case is the perfect weatherproof housing to take your Raspberry Pi, camera and sensors outdoors.
It is compatible with all Raspberry Pi models, it has an IR Lens to optimise motion detection, a camera strap so you can set up your ideal wildlife shots or you can take advantage of the electronics mount, with space for additional sensors, power solutions and upgrades….and it looks awesome!
Features
Weatherproof (certified IP55)
Electronics mount compatible with Raspberry Pi models (including all model A+, B, B, B+ and Zero models)
Fresnel IR lens to optimise motion detection
Clip and hinge opening for easy access to the Pi’s ports and internal components
Nylon camera attachment strap for securing outside
Can be secured with a padlock
Fasteners and spacers for attaching electronics
Rear cable access
Rear attachments for modular upgrades
No soldering required
Downloads
Assembly Guides
Das Raspberry Pi Pico Wireless Pack wird an der Rückseite Ihres Pico angebracht und verwendet einen ESP32-Chip, damit Ihr Pico eine Verbindung zu drahtlosen 2,4-GHz-Netzwerken herstellen und Daten übertragen kann. Es gibt einen microSD-Kartensteckplatz für den Fall, dass Sie viele Daten lokal speichern möchten, sowie eine RGB-LED (für Statusaktualisierungen) und eine Taste (nützlich zum Beispiel zum Aktivieren/Deaktivieren von WLAN).
Das Raspberry Pi Pico Wireless Pack eignet sich hervorragend für die schnelle Anpassung eines vorhandenen Pico-Projekts an drahtlose Funktionen und eignet sich hervorragend zum Senden von Sensordaten an Hausautomationssysteme oder Dashboards, zum Hosten einer Webseite aus einer Streichholzschachtel oder zur Interaktion Ihres Pico mit Online-APIs .
Merkmale
ESP32-WROOM-32E-Modul für drahtlose Konnektivität (verbunden über SPI) ( Datenblatt )
1x taktiler Knopf
RGB-LED
Micro-SD-Kartensteckplatz
Vorgelötete Buchsenleisten zum Anbringen Ihres Raspberry Pi Pico
Komplett montiert
Kein Löten erforderlich (solange Ihr Pico über Stiftleisten verfügt)
Kompatibel mit Raspberry Pi Pico
Abmessungen: ca. 53 x 25 x 11 mm (L x B x H, einschließlich Header und Komponenten)
C++- und MicroPython-Bibliotheken
Dank seiner I2C-Fähigkeiten spart dieser PWM-HAT die GPIO-Pins des Raspberry Pi, so dass Sie diese für andere Zwecke nutzen können. Der Servo pHAT fügt außerdem einen seriellen Anschluss hinzu, der es Ihnen ermöglicht, einen Raspberry Pi anzusteuern, ohne ihn an einen Monitor und eine Tastatur anschließen zu müssen. Wir haben einen Qwiic-Anschluss für den einfachen Anschluss an den I2C-Bus mit dem Qwiic-System und eine 4-polige Stiftleiste für den Anschluss an den Sphero RVR vorgesehen.
Die Stromversorgung des SparkFun Servo pHAT kann über einen USB-C-Anschluss erfolgen. Dies versorgt entweder nur die Servomotoren oder die Servomotoren und den Raspberry Pi, der mit dem HAT verbunden ist. Wir sind auf USB-C umgestiegen, damit Sie mehr Strom an Ihre Servos bringen können als je zuvor. Über diesen USB-C-Anschluss kann auch der Pi über eine serielle Verbindung angeschlossen werden, um zu vermeiden, dass Sie einen Monitor und eine Tastatur für die Einrichtung des Pi verwenden müssen. Um nur die Servo-Stromschiene mit Strom zu versorgen (und nicht die 5-V-Stromschiene des Pi), müssen Sie eine kleine Leiterbahn auf dem Isolationsjumper schneiden. Dadurch können Sie schwerere Lasten, die von mehreren oder größeren Servos kommen, ansteuern. Wir haben sogar Stromschutzschaltungen in das Design eingebaut, um Schäden an den Stromquellen zu vermeiden.
Jeder der 16 Servomotor-Stiftleisten dieses pHATs wurde auf die Standard-3-Pin-Servo-Pinbelegung (Masse, 5V, Signal) aufgeteilt, um den Anschluss Ihrer Servomotoren zu erleichtern. Der Servo pHAT hat die gleiche Größe und den gleichen Formfaktor wie ein Raspberry Pi Zero und Zero W, kann aber auch mit einem normalen Raspberry Pi betrieben werden.
Merkmale
16 PWM-Kanäle, steuerbar über I2C
Qwiic-Anschluss
4-polige RVR-Stiftleiste zum Anschluss an Sphero RVR
USB-C-Anschluss
40-polige GPIO-Stiftleiste für den Anschluss an Raspberry Pi
CH340C USB Seriell SOIC16
Aktualisierte Logikpegelumwandlungsschaltungen
Stromversorgungs-Schutzschaltungen
Über 50 Schaltungen und Projekte
Sirene im US-Stil
Zwei Drehgeber an einem Analogeingang
Wie man mit dem Arduino einen 230-V-AC-Dimmer baut
Zehnfache LED-Stromquelle
Vier Schalter an einem Pin erkennen
Ein/Aus-Schalter mit Akku-Füllstandskontrolle
Handdesinfektionsmittel-Spender selbstgebaut
Eine einfache elektronische Orgel
Ultra-einfacher Stereo-Verstärker
Sound Activated Switch für Verstärker
Balanced/Unbalanced-Wandler
Externer Netzfilter
Tastenfreie Torsteuerung
DI-Box für ein Smartphone
Spaß mit Lauflichtern
Ein-Knopf-Thyristor-Steuerung
Quasi-analoger Belichtungstimer für die Dunkelkammer
Schaltungen von der Hackster.io-Community
Analoger Bräunungstimer
Noch eine Ein-Draht-LCD-Schnittstelle
Einfacher PWM-Generator mit ATtiny13
Zweites Leben für Batterien
Touch-Schalter für LED-Leuchten
Tester für LEDs und DIP-Schalter
Funktionstester für IR-Fernbedienungen
Leistungshalbleiter-Tester
SPI für WS2812(B)-LEDs
Messen von Leistungsinduktivitäten
Ein DIY-Doppelnetzteil
DIY-Testvorrichtung für das LCR-Meter
Arduino-Amperemeter
Zwei-Finger-Orgel
Rauscharmer ADC-Kalibrator
DC/DC-Aufwärtswandler
Zwei Potentiometer an einem digitalen Eingang
Akustischer Näherungssensor
Batterieloser Heizkörper-Sensor
Wanzen und drahtlose Kameras aufgespürt
Timer für die Innenbeleuchtung im Auto
Kerzensimulator
Digitaler Küchentimer
Milliohmmeter
Verzögerungstimer für Heißwasserbereiter
Einfaches Ladegerät für zwei Zellen des Typs 18650
Winzige Frequenzreferenz
Sparsamer IR-Schalter
Recyceln Sie Ihren Auto-Handylad!
Mikrofon-Vorverstärker für Arduino
EMI-Filter im Selbstbau
Elektronischer Würfel – ganz ohne MCU
Finger-Kondensator
Der selbstladende LED-Blitzer
Außerdem in dieser Ausgabe
KiCad 6 – Fünf interessante neue Funktionen
Flashback – Der Elektor-Computer SC/MP
Interview – Mit Elektrizität Kunst machen
Meine erste Platine – Crash-Einstieg in KiCad
Mit intelligenter Software-Hardware minimieren
Infografik – Fakten und Zahlen
Neue ICs von Analog Devices
Flashback – DER Elektor-Metalldetektor
Hexadoku – Sudoku für Elektroniker
Dieses Schaltungs-Sonderheft enthält mehr als 90 kleine Schaltungen, Tipps und Tricks. Der Inhalt wurde aus veröffentlichten Elektor-Büchern und -Zeitschriften der letzten 10 Jahre ausgewählt. Bei der Auswahl der Artikel wurde darauf geachtet, dass die Schaltungen mit Standardkomponenten nachbaubar sind.
Komponenten mit Bezeichnungen wie LM358, BC547, 2N3055, NE555 und die beliebten Plattformen Arduino und Raspberry Pi sind das A und O der Hobby-Elektronik, von denen man viel lernen kann.
Aus dem Inhalt:
Drehgeber und Motordrehzahlanzeige mit Raspberry Pi Zero W
Eisenloser Kopfhörerverstärker mit 4x EL504
10-Volt-Referenzspannungsquelle
Fotodiode misst Gammastrahlung
Rechteckgenerator 125 Hz bis 4 MHz
GPS-Außenantenne
Diebstahlschutz über OBD
4-A-Solarlader
Joule Robbin' Hood
Motorregelung mit MCP3002 ADC und Raspberry Pi
Der auf Thermodirekttechnologie basierende Niimbot D110 Etikettendrucker ermöglicht das Drucken ohne Tinte, Toner oder Farbbänder, was ihn im Vergleich zu herkömmlichen Druckern zu einer kostengünstigen Lösung macht. Durch seine kompakte Größe und sein geringes Gewicht lässt er sich leicht transportieren und passt problemlos in jede Tasche.
Dank der Bluetooth-Konnektivität und dem eingebautem 1500-mAh-Akku können Sie mit diesem kabellosen Mini-Drucker aus einer Entfernung von bis zu 10 Metern drucken und sind somit auch unterwegs flexibel, egal ob Sie von Ihrem Smartphone oder Tablet aus drucken.
Die "Niimbot"-App (verfügbar für iOS und Android) bietet eine Vielzahl von kostenlosen Vorlagen für die individuelle Gestaltung der Etiketten.
Technische Daten
Modell
D110_M (verbesserte Version 2024)
Material
ABS
Auflösung
203 DPI
Druckgeschwindigkeit
30-60 mm/s
Druckbreite
12-15 mm
Drucktechnologie
Thermisch
Betriebstemperatur
5°C ~ 45°C
Batteriekapazität
1500 mAh
Ladeschnittstelle
USB-C
Ladezeit
2 Stunden
Verbindung
Bluetooth 4.0
Drahtlose Entfernung
10 m
Abmessungen
98 x 76 x 30 mm
Gewicht
149 g
Lieferumfang
1x Niimbot D110 Etikettendrucker
1x Etikettenrolle (12 x 40 mm)
1x USB-Kabel
1x Manual
Downloads
iOS App
Android App
Understanding and Using Them Effectively
What happens in electronics is invisible to the naked eye. The instrument that allows to accurately visualize electrical signals, the one through which the effects of electronics become apparent to us, is the oscilloscope.
Alas, when one first ventures into electronics, it is often without an oscilloscope. And one is left fumbling, both physically and mentally. Observing an electrical signal on a screen for the first time is a revelation. Nobody wishes to forgo that marvel again. There is no turning back.
In electronics, if one wishes to progress with both enjoyment and understanding, an oscilloscope is essential. This marks the beginning of a period of questioning: how to choose one? And no sooner is that question answered than a whole string of others arises, which can be summed up in just one: how does one use the oscilloscope in such a way that what it displays truly reflects the reality of the signals?
Rémy Mallard is a passionate communicator with a gift for making complex technical subjects understandable and engaging. In this book, he provides clear answers to essential questions about using an oscilloscope and offers a wealth of guidance to help readers explore and understand the electrical signals behind electronic systems. With his accessible style and practical insights, this book is a valuable tool for anyone eager to deepen their understanding of electronics.
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!
Sind Sie noch kein Mitglied? Hier klicken!
Projekt-Update: Energiemessgerät mit ESP32 Nächste Schritte beim Prototyping
Balkonkraftwerke optimieren Überlegungen, Wissenswertes und Kalkulationen
Für Balkonkraftwerke: ESP32 mit OpenDTU Daten kleiner Wechselrichter per µC auslesen
Variables lineares Stromversorgungs-Ensemble 0...50 V / 0...2 A + Doppelsymmetrische Versorgung
Energiespeicherung heute und morgen Ein Interview mit Simon Engelke
2024: Eine Odyssee in die KI Weiter, immer weiter...
Bluetooth LE auf dem STM32 Auf dem Weg zum fernabgelesenen Messgerät
Intelligentes Kücheninventarsystem Mehr als eine Küchenwaage
MAUI: Programmieren für PC, Tablet und Smartphone Das neue Framework in Theorie und Praxis
ChatMagLev Der KI-Weg der Levitation
Einfacher PV-Energieregler für Inselanlagen Bauen Sie ein voll funktionsfähiges PV-Energiemanagement-System
Kaltkathodenröhre Bemerkenswerte Bauteile
Aus dem Leben gegriffen Nostalgie
Aller Anfang ... ... muss nicht schwer sein: Vom FET zum Opamp
CAN-Bus-Tutorial für den Arduino UNO R4 Zwei UNO R4 nehmen den Bus!
Infografik: Strom und Energie
Umfangreiche Unterstützung bei Design und Entwicklung Arrow Ingenieurdienstleistungen
Leistungsdichte vs. Wirkungsgrad
Aluminium-Elektrolytkondensatoren Störpotential in der Audiotechnik?
USB-Tester FNB58 von Fnirsi
Pixel Pump Das Pick-and-Place Tool Vereinfachung der manuellen SMD-Bestückung
HomeLab-Führungen Vor nicht allzu langer Zeit in einem weit entfernten Land...
„In der Welt der Ethik in der Elektronik können auch kleine Schritte eine große Wirkung haben.“
Ethik in der Elektronik Die OECD-Leitsätze und das deutsche Lieferkettengesetz
Intelligentes Ni-MH-Ladegerät/Entladegerät Das Leserprojekt „Chadèche“ in Kürze
Projekt 2.0 Korrekturen, Updates und Leserbriefe
Das Arduino Student Kit ist ein hands-on, Schritt-für-Schritt Fernlernwerkzeug für Schüler ab 11 Jahren: Lerne die Grundlagen der Elektronik, Programmierung und Codierung von Zuhause aus. Keine Vorkenntnisse oder Erfahrungen sind nötig, da das Kit dich durch alle Schritte führt. Lehrkräfte können ihre Klassen mit Hilfe der Kits auch von Fernunterricht aus unterrichten und Eltern können das Kit als homeschooling Werkzeug verwenden, damit ihr Kind in eigenem Tempo lernen kann. Jeder wird durch geführte Lektionen und offene Experimente Selbstvertrauen in der Programmierung und Elektronik gewinnen.
Lerne die Grundlagen der Programmierung, Codierung und Elektronik, einschließlich Strom, Spannung und digitaler Logik. Keine Vorkenntnisse oder Erfahrungen sind nötig, da das Kit dich durch alle Schritte führt.
Du bekommst alle notwendigen Hardware- und Softwarekomponenten für eine Person, sodass es ideal für Fernunterricht, homeschooling und Selbstlernen ist. Es gibt Schritt-für-Schritt Lektionen, Übungen und für ein vollständiges und gründliches Erlebnis gibt es auch zusätzliche Inhalte wie Erfindungshighlights, Konzepte und interessante Fakten über Elektronik, Technologie und Programmierung.
Lektionen und Projekte können je nach individuellen Fähigkeiten angepasst werden, sodass Schüler von Zuhause aus auf ihrem eigenen Niveau lernen können. Das Kit kann auch in verschiedene Fächer wie Physik, Chemie und sogar Geschichte integriert werden. Tatsächlich gibt es genug Inhalt für ein gesamtes Semester.
Wie Lehrkräfte das Kit für den Fernunterricht verwenden können
Die Online-Plattform enthält alle Inhalte, die man für den Fernunterricht benötigt: exklusive Lerninhalte, Tipps für den Fernunterricht, neun 90-minütige Lektionen und zwei offene Projekte. Jede Lektion baut auf der vorherigen auf und bietet eine weitere Gelegenheit, um die bereits gelernten Fähigkeiten und Konzepte anzuwenden. Schüler erhalten auch ein Logbuch, das sie bei der Arbeit an den Lektionen ausfüllen.
Der Anfang jeder Lektion bietet eine Übersicht, geschätzte Fertigstellungszeiten und Lernziele. Während jeder Lektion gibt es Tipps und Informationen, die das Lernerlebnis erleichtern werden. Wichtige Antworten und Erweiterungsideen werden ebenfalls bereitgestellt.
Wie das Kit Eltern hilft, ihre Kinder zu Hause zu unterrichten
Dies ist Ihr praktisches, schrittweises Fernlernwerkzeug, mit dem Ihr Kind die Grundlagen der Programmierung, des Codierens und der Elektronik zu Hause lernen kann. Als Eltern benötigen Sie keine Vorkenntnisse oder Erfahrungen, da Sie schrittweise angeleitet werden. Das Kit ist direkt in den Lehrplan eingebunden, so dass Sie sicher sein können, dass Ihre Kinder das lernen, was sie sollten, und es bietet die Möglichkeit, dass sie selbstbewusst in Programmierung und Elektronik werden. Sie helfen ihnen auch dabei, wichtige Fähigkeiten wie kritisches Denken und Problemlösung zu erlernen.
Selbstlernen mit dem Arduino Student Kit
Schüler können dieses Kit nutzen, um sich die Grundlagen der Elektronik, Programmierung und Codierung selbst beizubringen. Da alle Lektionen schrittweise Anweisungen folgen, ist es einfach für sie, sich durchzuarbeiten und selbstständig zu lernen. Sie können in ihrem eigenen Tempo arbeiten, Spaß an allen realen Projekten haben und ihr Selbstvertrauen dabei steigern. Sie benötigen keine Vorwissen, da alles klar erklärt wird, die Codierung vorgeschrieben ist und es ein Vokabular von Konzepten gibt, auf das sie sich beziehen können.
Das Arduino Student Kit wird mit mehreren Teilen und Komponenten geliefert, die während des Kurses zum Bau von Schaltungen verwendet werden.
Im Kit enthalten
Zugangscode zu exklusivem Online-Inhalt, einschließlich Lernanleitungen, schrittweisen Lektionen und zusätzlichem Material wie Ressourcen, Erfindungsschwerpunkten und einem digitalen Logbuch mit Lösungen.
1x Arduino Uno
1x USB-Kabel
1x Board-Montagebasis
1x Multimeter
1x 9 V Batterieclip
1x 9 V Batterie
20x LEDs (5x rot, 5x grün, 5x gelb und 5x blau)
5x Widerstände 560 Ω
5x Widerstände 220 Ω
1x Breadboard 400 Punkte
1x Widerstand 1 kΩ
1x Widerstand 10 kΩ
1x kleiner Servomotor
2x Potentiometer 10 kΩ
2x Knopf-Potentiometer
2x Kondensatoren 100 uF Solid-Core-Jumper-Drähte
5x Drucktasten
1x Fototransistor
2x Widerstände 4,7 kΩ
1x Jumper-Draht schwarz
1x Jumper-Draht rot
1x Temperatursensor
1x Piezo
1x Jumper-Draht weiblich zu männlich rot
1x Jumper-Draht weiblich zu männlich schwarz
3x Muttern und Bolzen
Ist dein Haus von Geistern heimgesucht? Oder bist du vielmehr überzeugt, dass dein Haus von Geistern heimgesucht wird, aber du konntest es nie beweisen, weil du nie eine Kamera hattest, die mit deinem Raspberry Pi Zero kompatibel war und dennoch klein genug war, dass die Geister sie nicht bemerken würden?
Zum Glück ist die Spionagekamera für den Raspberry Pi Zero kleiner als ein Daumennagel und hat eine ausreichend hohe Auflösung, um Personen, Geister oder wonach auch immer du suchst, zu erkennen. Sie hat etwa die Größe einer Handykamera – das Modul ist nur 8,6 x 8,6 mm groß – und hat nur ein 2-Zoll-Kabel, sodass du eine extra kompakte und unauffällige Spionagekamera erstellen kannst. Sie verfügt über einen Fokalwinkel von 160 Grad für einen sehr breiten/verzerrten Fischaugeneffekt, der sich hervorragend für Sicherheitssysteme oder die Überwachung eines großen Bereichs im Wohnzimmer oder auf der Straße eignet.
Wie das Raspberry Pi Kameramodul wird sie über den kleinen Steckverbinder am Rand des Boards, der dem "PWR in"-Anschluss am nächsten liegt, mit deinem Raspberry Pi Zero v1.3 oder Zero W verbunden. Diese Schnittstelle verwendet die dedizierte CSI-Schnittstelle, die speziell für die Verbindung von Kameras entwickelt wurde. Der CSI-Bus ist in der Lage, extrem hohe Datenraten zu übertragen, und er transportiert ausschließlich Pixeldaten.
Die Kamera ist über den CSI-Bus mit dem BCM2835-Prozessor auf dem Raspberry Pi verbunden, einer Verbindung mit höherer Bandbreite, die Pixeldaten von der Kamera zum Prozessor überträgt. Dieser Bus verläuft entlang des Flachbandkabels, das das Kameramodul mit dem Pi verbindet. Die Flachbandkabel sind mit sowohl dem RPi Zero v1.3 als auch dem RPi Zero W kompatibel.
Der Sensor selbst hat eine natürliche Auflösung von 5 Megapixeln und verfügt über ein festes Fokusobjektiv. Er hat ähnliche Spezifikationen wie die originale RPi-Kamera, ist aber nicht so hochauflösend wie die neue RPi-Kamera v2!
Technische Daten
Kameramodulabmessungen: 8,6 x 8,6 mm
Linsendurchmesser: 10 mm
Gesamtlänge: 60 mm
Fokalwinkel der Linse: 160 Grad
Gewicht: 1,9 g
Merkmale
Piezo-Summer: Fungiert als einfacher Audioausgang
Micro-USB-Anschluss
Programmierbare Taste
12 x LED: Bietet visuelle Ausgabe an Bord
Spezifikationen
Mikrocontroller
ATmega328P
Programmier-IDE
Arduino IDE
Betriebsspannung
5 V
Digitale E/A
20
PWM
6
Analoger Eingang
6 (10 Bit)
UART
1
SPI
1
I2C
1
Externer Interrupt
2
Flash-Speicher
32 KB
SRAM
2 KB
EEPROM / Daten-Flash
1 KB
Taktfrequenz
16 MHz
Gleichstrom-E/A-Pin
20 mA
Stromversorgung
Nur USB
Gleichstrom für 5 V
USB-Quelle
Gleichstrom für 3,3 V
500 mA
USB-zu-Seriell-Chip
CH340G
Programmierbare LED
12 an Digital Pin 2 bis 13
Programmierbarer Druckknopf
1 am digitalen Pin 2
Piezo-Summer
1 am digitalen Pin 8
Arduino gegen Maker Uno
Die Raspberry Pi SSD bietet herausragende Leistung für I/O-intensive Anwendungen auf dem Raspberry Pi 5 und anderen Geräten, einschließlich superschneller Startzeiten beim Booten von der SSD.
Es handelt sich um eine zuverlässige, reaktionsschnelle und leistungsstarke PCIe Gen 3-konforme SSD, die eine schnelle Datenübertragung ermöglicht und auch mit einer Kapazität von 512 GB erhältlich ist.
Features
40k IOPS (4 kB zufällige Lesevorgänge)
70k IOPS (4 kB zufällige Schreibvorgänge)
Downloads
Datasheet
The author, Johan Basse Bergqvist, is an engineer, a musician, and an audiophile with a knack for building projects that produce the desired results. The combination of these skills leads to a uniquely valuable perspective on audio design that is routinely reflected in the book and passed on to the readers.
Several design projects are provided, 40 in total. The designs are explained, and the unique features or methods he uses are described in further detail. Each design includes detailed schematics and a complete parts list. Many of the projects also include layout documentation in the form of CAD photos of the PCB layouts. The range of projects is very diverse and includes something that will appeal to everyone. Stereo amplifiers, guitar and bass amplifiers, preamplifiers for phono, and microphones are all covered. Several variants for each type are included, and the power amplifier designs range from a few watts to several hundred watts, which meet almost any power level you might tackle.
Space, the final frontier, will become more and more popular. The space industry is continually growing and new products and services will be required. Innovation is needed for the development of this industry. Today it is no longer possible to follow all the events in field of space. The space market is growing and activities are increasing, especially the market for small-satellites.
This book wants to help close the gap and encourage electronic engineers to enter into the fascinating field of space electronics. One of the main difficulties is finding people with knowledge of space electronics design. Nowadays companies have to invest a lot of time and resources to instruct electronic engineers with no experience of space. Only a brief and basic introduction of this topic is typically achieved at university in space engineering lectures. Professionals with practical experience and the necessary theoretical knowledge are scarce. Companies from the space sector are searching for staff with knowledge of space electronics.
This book will bring space closer aspiring to the space electronic hobbyists.