Der Arduino Uno R4 wird vom 32-bit-ARM-Cortex-M4-Prozessor Renesas RA4M1 angetrieben, der eine deutliche Steigerung der Verarbeitungsleistung, des Speichers und der Funktionalität bietet. Die WiFi-Version wird zusätzlich zum RA4M1 mit einem ESP32-S3 WiFi-Modul geliefert, was die kreativen Möglichkeiten für Maker und Ingenieure erweitert. Der Uno R4 Minima ist eine kostengünstige Option für diejenigen, die die zusätzliche Funktionen nicht benötigen.
Der Arduino Uno R4 läuft mit 48 MHz, was eine dreifache Steigerung gegenüber dem beliebten Uno R3 bedeutet. Außerdem wurde der SRAM von 2 kB auf 32 kB und der Flash-Speicher von 32 kB auf 256 kB erweitert, um komplexere Projekte zu unterstützen. Als Reaktion auf das Feedback der Community ist der USB-Anschluss jetzt USB-C, und die maximale Versorgungsspannung wurde auf 24 V angehoben und das thermische Design verbessert. Das Board verfügt über einen CAN-Bus und einen SPI-Port, so dass Anwender den Verdrahtungsaufwand reduzieren und durch den Anschluss mehrerer Shields parallele Aufgaben durchführen können. Ein 12-bit-Analog-DAC ist ebenfalls auf dem Board vorhanden.
Der Arduino Uno R4 ist in 2 Versionen (Minima und WiFi) erhältlich und bietet die folgenden neuen Funktionen im Vergleich zum Uno R3:
Arduino Uno R4 Minima
Arduino Uno R4 WiFi
USB-C-Anschluss
USB-C-Anschluss
RA4M1 von Renesas (Cortex-M4)
RA4M1 von Renesas (Cortex-M4)
HID-Gerät (emuliert eine Maus oder eine Tastatur)
HID-Gerät (emuliert eine Maus oder eine Tastatur)
Verbesserte Stromversorgung (bis zu 24 V über VIN)
Verbesserte Stromversorgung (bis zu 24 V über VIN)
CAN-Bus
CAN-Bus
DAC (12-bit)
DAC (12-bit)
Op amp
Op amp
WiFi/Bluetooth LE
Vollständig adressierbare LED-Matrix (12x8)
Qwiic I²C-Anschluss
RTC (mit Unterstützung für eine Pufferbatterie)
Diagnose von Laufzeitfehlern
Modellvergleich
Uno R3
Uno R4 Minima
Uno R4 WiFi
Mikrocontroller
Microchip ATmega328P (8-bit AVR RISC)
Renesas RA4M1 (32-bit ARM Cortex-M4)
Renesas RA4M1 (32-bit ARM Cortex-M4)
Betriebsspannung
5 V
5 V
5 V
Eingangsspannung
6-20 V
6-24 V
6-24 V
Digitale I/O-Pins
14
14
14
PWM Digitale I/O-Pins
6
6
6
Analoge Eingangs-Pins
6
6
6
Gleichstrom pro I/O-Pin
20 mA
8 mA
8 mA
Taktgeschwindigkeit
16 MHz
48 Mhz
48 Mhz
Flash-Speicher
32 KB
256 KB
256 KB
SRAM
2 KB
32 KB
32 KB
USB
USB-B
USB-C
USB-C
DAC (12-bit)
–
1
1
SPI
1
2
2
I²C
1
2
2
CAN
–
1
1
Op amp
–
1
1
SWD
–
1
1
RTC
–
–
1
Qwiic I²C-Anschluss
–
–
1
LED-Matrix
–
–
12x8 (96 rote LEDs)
LED_BUILTIN
13
13
13
Abmessungen
68,6 x 53,4 mm
68,9 x 53,4 mm
68,9 x 53,4 mm
Downloads
Datasheet
Schematics
Der Arduino Nano ESP32 ist ein Nano-Formfaktor-Board, das auf dem ESP32-S3 (eingebettet im NORA-W106-10B von u-blox) basiert. Es ist das erste Arduino-Board, das vollständig auf einem ESP32 basiert. Es bietet Wi-Fi, Bluetooth LE, Debugging über natives USB in der Arduino-IDE sowie einen geringen Stromverbrauch.
Der Nano ESP32 ist kompatibel mit der Arduino IoT Cloud und unterstützt MicroPython. Es ist ein ideales Board für den Einstieg in die IoT-Entwicklung.
Features
Geringer Platzbedarf: Dieses Board wurde unter Berücksichtigung des bekannten Nano-Formfaktors entwickelt und ist aufgrund seiner kompakten Größe perfekt für die Einbettung in eigenständige Projekte geeignet.
Wi-Fi und Bluetooth: Nutzen Sie die Leistung des im IoT-Bereich bekannten ESP32-S3-Mikrocontrollers mit vollständiger Arduino-Unterstützung für drahtlose und Bluetooth-Konnektivität.
Arduino- und MicroPython-Unterstützung: Wechseln Sie mit ein paar einfachen Schritten nahtlos zwischen Arduino- und MicroPython-Programmierung.
Arduino IoT Cloud-kompatibel: Erstellen Sie schnell und einfach IoT-Projekte mit nur wenigen Codezeilen. Das Setup kümmert sich um die Sicherheit und ermöglicht Ihnen die Überwachung und Steuerung Ihres Projekts von überall aus mit der Arduino IoT Cloud-App.
HID-Unterstützung: Simulieren Sie HID-Geräte wie Tastaturen oder Mäuse über USB und eröffnen Sie so neue Möglichkeiten für die Interaktion mit Ihrem Computer.
Technische Daten
Mikrocontroller
u-blox NORA-W106 (ESP32-S3)
USB-Anschluss
USB-C
Pins
Eingebaute LED-Pins
13
Eingebaute RGB-LED-Pins
14-16
Digitale I/O-Pins
14
Analoge Eingangs-Pins
8
PWM-Pins
5
Externe Interrupts
Alle digitalen Pins
Konnektivität
Wi-Fi
u-blox NORA-W106 (ESP32-S3)
Bluetooth
u-blox NORA-W106 (ESP32-S3)
Kommunikation
UART
2x
I²C
1x, A4 (SDA), A5 (SCL)
SPI
D11 (COPI), D12 (CIPO), D13 (SCK). Verwendung eines beliebigen GPIO für Chip Select (CS)
Stromversorgung
I/O-Spannung
3,3 V
Eingangsspannung (nominal)
6-21 V
Quellstrom pro I/O-Pin
40 mA
Sinkstrom pro I/O-Pin
28 mA
Taktrate
Prozessor
Bis zu 240 MHz
Speicher
ROM
384 kB
SRAM
512 kB
Externer Flash
128 Mbit (16 MB)
Abmessungen
18 x 45 mm
Downloads
Datasheet
Schematics
Der Arduino Pro Mini ist ein Mikrocontroller-Board auf Basis des ATmega328P.
Es hat 14 digitale Eingangs-/Ausgangs-Pins (von denen 6 als PWM-Ausgänge verwendet werden können), 6 analoge Eingänge, einen On-Board-Resonator, eine Reset-Taste und Löcher für die Montage von Stiftleisten. Eine sechspolige Stiftleiste kann mit einem FTDI-Kabel oder einem Sparkfun-Breakout-Board verbunden werden, um die Platine über USB mit Strom zu versorgen und mit ihr zu kommunizieren.
Der Arduino Pro Mini ist für die semi-permanente Installation in Objekten oder Ausstellungen gedacht. Die Platine wird ohne vormontierte Stiftleisten geliefert, was die Verwendung verschiedener Arten von Steckern oder das direkte Anlöten von Drähten ermöglicht. Das Pin-Layout ist mit dem Arduino Mini kompatibel.
Der Arduino Pro Mini wurde von SparkFun Electronics entwickelt und wird von ihr hergestellt.
Spezifikationen
Microcontroller
ATmega328P
Board Stromversorgung
5-12 V
Schaltung Betriebsspannung
5 V
Digitale E/A-Pins
14
PWM Pins
6
UART
1
SPI
1
I²C
1
Analogeingangs-Pins
6
Externe Interrupts
2
DC-Strom pro I/O-Pin
40 mA
Flash Memory
32 KB, davon 2 KB vom Bootloader verwendet
SRAM
2 KB
EEPROM
1 KB
Taktgeschwindigkeit
16 MHz
Dimensionen
18 x 33.3 mm (0.7 x 1.3")
Downloads
Eagle files
Schematics
Arduino Uno ist ein Open-Source-Mikrocontroller-Board basierend auf einem ATmega328P. Es hat 14 digitale Ein-/Ausgangs-Pins (von denen 6 als PWM-Ausgänge verwendet werden können), 6 analoge Eingänge, einen 16-MHz-Keramik-Resonator (CSTCE16M0V53-R0), einen USB-Anschluss, eine Stromversorgungsbuchse, einen ICSP-Header und einen Reset-Taster. Es enthält alles, was für den Betrieb des Mikrocontrollers benötigt wird; schließen Sie es einfach mit einem USB-Kabel an einen Computer an oder versorgen Sie es mit einem AC-zu-DC-Adapter oder einer Batterie, um loszulegen. Sie können mit Ihrem Uno basteln, ohne sich allzu große Sorgen machen zu müssen, etwas falsch zu machen. Im schlimmsten Fall können Sie den Chip für ein paar Dollar austauschen und noch einmal von vorne anfangen.
"Uno" bedeutet auf Italienisch "eins" und wurde gewählt, um die Veröffentlichung der Arduino-Software (IDE) 1.0 zu markieren. Das Uno-Board und die Version 1.0 der Arduino Software (IDE) waren die Referenzversionen von Arduino, die nun zu neueren Versionen weiterentwickelt wurden. Das Uno-Board ist das erste in einer Reihe von USB-Arduino-Boards und das Referenzmodell für die Arduino-Plattform; eine umfangreiche Liste aktueller, vergangener oder veralteter Boards finden Sie im Arduino-Index der Boards.
Technische Daten
Mikrocontroller
ATmega328P
Betriebsspannung
5 V
Eingangsspannung (empfohlen)
7-12 V
Eingangsspannung (maximal)
6-20 V
Digitale I/O-Pins
14 (davon 6 mit PWM-Ausgang)
Digitale I/O-Pins mit PWM
6
Analoge Eingänge
6
DC-Strom pro I/O-Pin
20 mA
DC-Strom für 3,3 V Pin
50 mA
Flashspeicher
32 KB (ATmega328P), davon 0,5 KB vom Bootloader belegt
SRAM
2 KB (ATmega328P)
EEPROM
1 KB (ATmega328P)
Taktgeschwindigkeit
16 MHz
LED_BUILTIN
13
Abmessungen
68,6 x 53,4 mm
Gewicht
25 g
Wenn Sie schnell und einfach in die Welt der Programmierung einsteigen wollen, ist JOY-iT Mega 2560 R3 das richtige Board für Sie. Dank den zahlreichen Tutorials und Anleitungen für diesen Mikrocontroller können Sie ohne Komplikationen mit der Programmierung beginnen.
Der ATmega2560 bietet mit seinen 54 digitalen Ein- und Ausgängen und 16 analogen Eingängen genügend Leistung für Ihre Projekte und Ideen.Um mit der Programmierung Ihres JOY-iT Mega 2560 R3 zu beginnen, müssen Sie die Entwicklungsumgebung und natürlich die Treiber auf Ihrem Computer installieren.
Die Arduino IDE eignet sich am besten für den Einsatz mit dem Mega 2560. Diese IDE ist vollständig kompatibel mit diesem Board und bietet Ihnen alle Treiber, die Sie für einen schnellen Start benötigen.
Mikrocontroller
ATmega2560
Taktfrequenz
16 MHz
Betriebsspannung
5 V/DC
Digitale Ein-/Ausgang-Pins
54 (of which 15 with PWM)
Analoge Eingang-Pins
16
Analoge Ausgang-Pins
15
Flash Speicher
256 KB
EEPROM
4 KB
SRAM
8 KB
Die Anleitung für JOY-it Mega2560R3 ist hier erhältlich.
Das Uno-Board ist der richtige Mikrocontroller für die, die schnell und unkompliziert in die Programmierwelt einsteigen wollen. Sein ATmega328-Mikrocontroller bietet Ihnen genügend Leistung für Ihre Ideen und Projekte.
Das Uno-Board hat einen USB-Typ-B-Anschluss, damit Sie diesen schnell und einfach mit Programmen versorgen können - natürlich über die bekannte Programmierumgebung Arduino IDE. Stecksystem und Schaltung lassen sich sowohl über den USB-Anschluss als auch alternativ über den eigenen Stromanschluss versorgen.
Bitte beachten, damit der Uno von der Arduino IDE erkannt wird, muss vorher der Schnittstellentreiber CH341 installiert werden.
Mikrocontroller
ATmega 328
Taktfrequenz
16 MHz
Betriebsspannung
5 V
Empfohlene Eingangsspannung
5-10 V
Digitale I/O Pins
14
mit PWM
6
USB
1x
SPI
1x
I2C
1x
ICSP
1x
Flash-Speicher
32 KB
EEPROM
1x
Datenblatt
Bedienungsanleitung
Der Arduino Nano RP2040 Connect ist ein RP2040-basiertes Arduino-Board, das mit Wi-Fi (802.11b/g/n) und Bluetooth 4.2 ausgestattet ist.
Neben der drahtlosen Konnektivität verfügt es über ein Mikrofon für Sound und Sprachaktivierung und einen 6-achsigen intelligenten Bewegungssensor mit KI-Fähigkeiten. Über 22 GPIO-Ports lassen z. B. Relais, Motoren und LEDs steuern sowie Schalter und andere Sensoren auslesen.
Programmspeicher ist mit 16 MB Flash-Speicher reichlich vorhanden, mehr als genug Platz, um viele Webseiten oder andere Daten zu speichern.
Technische Daten
Mikrocontroller
Raspberry Pi RP2040
USB-Anschluss
Micro USB
Pins
Built-in LED-Pins
13
Digitale I/O-Pins
20
Analoge Input-Pins
8
PWM-Pins
20 (Except A6, A7)
Externe Interrupts
20 (Except A6, A7)
Konnektivität
Wi-Fi
Nina W102 uBlox Modul
Bluetooth
Nina W102 uBlox Modul
Sicheres Element
ATECC608A-MAHDA-T Crypto IC
Sensoren
IMU
LSM6DSOXTR (6-achsig)
Mikrofon
MP34DT05
Kommunikation
UART
Yes
I²C
Yes
SPI
Yes
Stromversorgung
Schaltungsbestriebsspannung
3,3 V
Eingangsspannung (VIN)
5-21 V
DC-Strom pro I/O-Pin
4 mA
Taktgeschwindigkeit
Prozessor
133 MHz
Speicher
AT25SF128A-MHB-T
16 MB Flash IC
Nina W102 uBlox Modul
448 KB ROM, 520 KB SRAM, 16 MB Flash
Länge
45 x 18 mm
Gewicht
6 g
Downloads
Schaltplan
Pinout
Datenblatt
Der Arduino Uno R4 wird vom 32-bit-ARM-Cortex-M4-Prozessor Renesas RA4M1 angetrieben, der eine deutliche Steigerung der Verarbeitungsleistung, des Speichers und der Funktionalität bietet. Die WiFi-Version wird zusätzlich zum RA4M1 mit einem ESP32-S3 WiFi-Modul geliefert, was die kreativen Möglichkeiten für Maker und Ingenieure erweitert. Der Uno R4 Minima ist eine kostengünstige Option für diejenigen, die die zusätzliche Funktionen nicht benötigen.
Der Arduino Uno R4 läuft mit 48 MHz, was eine dreifache Steigerung gegenüber dem beliebten Uno R3 bedeutet. Außerdem wurde der SRAM von 2 kB auf 32 kB und der Flash-Speicher von 32 kB auf 256 kB erweitert, um komplexere Projekte zu unterstützen. Als Reaktion auf das Feedback der Community ist der USB-Anschluss jetzt USB-C, und die maximale Versorgungsspannung wurde auf 24 V angehoben und das thermische Design verbessert. Das Board verfügt über einen CAN-Bus und einen SPI-Port, so dass Anwender den Verdrahtungsaufwand reduzieren und durch den Anschluss mehrerer Shields parallele Aufgaben durchführen können. Ein 12-bit-Analog-DAC ist ebenfalls auf dem Board vorhanden.
Der Arduino Uno R4 ist in 2 Versionen (Minima und WiFi) erhältlich und bietet die folgenden neuen Funktionen im Vergleich zum Uno R3:
Arduino Uno R4 Minima
Arduino Uno R4 WiFi
USB-C-Anschluss
USB-C-Anschluss
RA4M1 von Renesas (Cortex-M4)
RA4M1 von Renesas (Cortex-M4)
HID-Gerät (emuliert eine Maus oder eine Tastatur)
HID-Gerät (emuliert eine Maus oder eine Tastatur)
Verbesserte Stromversorgung (bis zu 24 V über VIN)
Verbesserte Stromversorgung (bis zu 24 V über VIN)
CAN-Bus
CAN-Bus
DAC (12-bit)
DAC (12-bit)
Op amp
Op amp
WiFi/Bluetooth LE
Vollständig adressierbare LED-Matrix (12x8)
Qwiic I²C-Anschluss
RTC (mit Unterstützung für eine Pufferbatterie)
Diagnose von Laufzeitfehlern
Modellvergleich
Uno R3
Uno R4 Minima
Uno R4 WiFi
Mikrocontroller
Microchip ATmega328P (8-bit AVR RISC)
Renesas RA4M1 (32-bit ARM Cortex-M4)
Renesas RA4M1 (32-bit ARM Cortex-M4)
Betriebsspannung
5 V
5 V
5 V
Eingangsspannung
6-20 V
6-24 V
6-24 V
Digitale I/O-Pins
14
14
14
PWM Digitale I/O-Pins
6
6
6
Analoge Eingangs-Pins
6
6
6
Gleichstrom pro I/O-Pin
20 mA
8 mA
8 mA
Taktgeschwindigkeit
16 MHz
48 Mhz
48 Mhz
Flash-Speicher
32 KB
256 KB
256 KB
SRAM
2 KB
32 KB
32 KB
USB
USB-B
USB-C
USB-C
DAC (12-bit)
–
1
1
SPI
1
2
2
I²C
1
2
2
CAN
–
1
1
Op amp
–
1
1
SWD
–
1
1
RTC
–
–
1
Qwiic I²C-Anschluss
–
–
1
LED-Matrix
–
–
12x8 (96 rote LEDs)
LED_BUILTIN
13
13
13
Abmessungen
68,6 x 53,4 mm
68,9 x 53,4 mm
68,9 x 53,4 mm
Downloads
Datasheet
Schematics
Das Arduino Giga R1 WiFi bringt die Leistung des STM32H7 in den gleichen Formfaktor wie die beliebten Mega und Due und ist das erste Mega-Board mit integrierter Wi-Fi- und Bluetooth-Konnektivität.
Das Board bietet 76 digitale Ein-/Ausgänge (12 mit PWM-Fähigkeit), 14 analoge Eingänge und 2 analoge Ausgänge (DAC), die alle über Stiftleisten leicht zugänglich sind. Der STM32-Mikroprozessor mit Dual-Core Cortex-M7 und Cortex-M4 ermöglicht Ihnen zusammen mit dem integrierten Speicher und der Audiobuchse maschinelles Lernen und Signalverarbeitung.
Mikrocontroller (STM32H747XI)
Mit diesem Dual-Core-32-Bit-Mikrocontroller können Sie zwei Gehirne miteinander kommunizieren lassen (einen Cortex-M7 mit 480 MHz und einen Cortex-M4 mit 240 MHz). Sie können sogar Micropython auf dem einen und Arduino auf dem anderen ausführen.
Drahtlose Kommunikation (Murata 1DX)
Egal, ob Sie Wi-Fi oder Bluetooth bevorzugen, der Giga R1 WiFi hat alles, was Sie brauchen. Sie können sich sogar schnell mit der Arduino IoT Cloud erbinden und Ihr Projekt aus der Ferne verfolgen. Und wenn Sie sich Sorgen um die Sicherheit der Kommunikation machen, hat der ATECC608A alles unter Kontrolle.
Hardware-Anschlüsse und Kommunikation
In Anlehnung an den Arduino Mega und den Arduino Due verfügt der Giga R1 WiFi über 4x UARTs (Hardware Serial Ports), 3x I²C-Ports (1 mehr als bei den Vorgängern), 2x SPI-Ports (1 mehr als bei den Vorgängern), 1x FDCAN.
GPIOs und zusätzliche Pins
Aufgrund des gleichen Formfaktor wie Mega und Due ist es sehr einfach, Ihre benutzerdefinierten Shields an das Giga R1 WiFi anzupassen (denken Sie daran, dass dieses Board mit 3,3 V arbeitet!). Außerdem wurden wurden zusätzliche Header, so dass die Gesamtzahl der GPIO-Pins jetzt 76 beträgt, und zwei neue Pins hinzugefügt: ein VRTC, an das man eine Batterie anschließen kann, um das RTC laufen zu lassen, während das Board ausgeschaltet ist, und einen OFF-Pin, mit dem man das Board abschalten kann.
Anschlüsse
Das Giga R1 WiFi verfügt über zusätzliche Anschlüsse, die die Erstellung Ihres Projekts ohne zusätzliche Hardware erleichtern. Dieses Board hat:
USB-A-Anschluss, geeignet zum Hosten von USB-Sticks, anderen Massenspeichergeräten und HID-Geräten wie Tastatur oder Maus.
3,5-mm-Eingangs-/Ausgangsbuchse verbunden mit DAC0, DAC1 und A7.
USB-C zur Stromversorgung und Programmierung des Boards sowie zur Simulation eines HID-Geräts wie Maus oder Tastatur.
Jtag-Anschluss, 2x5 1,27 mm.
20-poliger Arducam-Kameraanschluss.
Unterstützung für höhere Spannung: Im Vergleich zu seinen Vorgängern, die bis zu 12 V unterstützen, kann das Giga R1 WiFi einen Bereich von 6 bis 24 V verarbeiten.
Technische Daten
Mikrocontroller
STM32H747XI Dual Cortex-M7+M4 32-bit low power ARM MCU (Datasheet)
Funkmodul
Murata 1DX Dual WiFi 802.11b/g/n 65 Mbps und Bluetooth (Datasheet)
Sicheres Element
ATECC608A-MAHDA-T (Datasheet)
USB
USB-C
Programmierung Anschluss / HID
USB-A
Host (Freigabe mit PA_15)
Pins
Digitale I/O-Pins
76
Analoge Eingangspins
12
DAC
2 (DAC0/DAC1)
PWM pins
12
Misc
VRT & OFF Pin
Kommunikation
UART
4x
I²C
3x
SPI
2x
CAN
Ja (erfordert einen externen Transceiver)
Anschlüsse
Kamera
I²C + D54-D67
Display
D1N, D0N, D1P, D0P, CKN, CKP + D68-D75
Audio Jack
DAC0, DAC1, A7
Stromversorgung
Betriebsspannung
3,3 V
Eingangsspannung (VIN)
6-24 V
DC-Strom pro I/O-Pin
8 mA
Taktrate
Cortex-M7
480 MHz
Cortex-M4
240 MHz
Speicher
STM32H747XI
2 MB Flash, 1 MB RAM
Abmessungen
53 x 101 mm
Downloads
Datasheet
Schematics
Pinout
Der Arduino Nano ist eine kleine, vollständige und Breadboard-freundliche Platine, die auf dem ATmega328 (Arduino Nano 3.x) basiert. Er hat mehr oder weniger die gleiche Funktionalität wie der Arduino Duemilanove, aber in einem anderen Gehäuse. Es fehlt nur eine DC-Strombuchse und arbeitet mit einem Mini-B-USB-Kabel anstelle eines Standardkabels.
Technische Daten
Mikrocontroller
ATmega328
Betriebsspannung (Logikpegel)
5 V
Eingangsspannung (empfohlen)
7-12 V
Eingangsspannung (Grenzwerte)
6-20 V
Digitale E/A-Pins
14 (davon 6 mit PWM-Ausgang)
Analogeingangs-Pins
8
DC-Strom pro I/O-Pin
40 mA
Flash-Speicher
16 KB (ATmega168) oder 32 KB (ATmega328), davon 2 KB für den Bootloader
SRAM
1 KB (ATmega168) oder 2 KB (ATmega328)
EEPROM
512 bytes (ATmega168) oder 1 KB (ATmega328)
Taktfrequenz
16 MHz
Abmessungen
18 x 45 mm
Stromversorgung
Der Arduino Nano kann über den Mini-B-USB-Anschluss, eine ungeregelte externe 6-20-V-Stromversorgung (Pin 30) oder eine geregelte externe 5-V-Stromversorgung (Pin 27) mit Strom versorgt werden. Die Stromquelle wird automatisch auf die höchste Spannungsquelle eingestellt.
Speicher
Der ATmega168 verfügt über 16 KB Flash-Speicher zum Speichern von Code (davon 2 KB für den Bootloader), 1 KB SRAM und 512 Byte EEPROM
Der ATmega328 verfügt über 32 KB Flash-Speicher zum Speichern von Code (2 KB werden auch für den Bootloader verwendet), 2 KB SRAM und 1 KB EEPROM.
Input und Output
Jeder der 14 digitalen Pins des Nano kann mit den Funktionen pinMode(), digitalWrite(), und digitalRead() als Eingang oder Ausgang verwendet werden.
Jeder Pin kann maximal 40 mA liefern oder empfangen und hat einen internen Pull-up-Widerstand (standardmäßig ausgeschaltet) von 20-50 kOhm.
Kommunikation
Der Arduino Nano verfügt über eine Reihe von Möglichkeiten zur Kommunikation mit einem Computer, einem anderen Arduino oder anderen Mikrocontrollern.
Der ATmega168 und ATmega328 bieten eine serielle UART-TTL-Kommunikation (5 V), die an den digitalen Pins 0 (RX) und 1 (TX) verfügbar ist. Ein FTDI FT232RL auf dem Board leitet diese serielle Kommunikation über USB weiter, und die FTDI-Treiber (in der Arduino-Software enthalten) stellen der Software auf dem Computer einen virtuellen Com-Port zur Verfügung.
Die Arduino-Software enthält einen seriellen Monitor, mit dem einfache Textdaten zum und vom Arduino-Board gesendet werden können. Die RX- und TX-LEDs auf dem Board blinken, wenn Daten über den FTDI-Chip und die USB-Verbindung zum Computer übertragen werden (jedoch nicht bei serieller Kommunikation über die Pins 0 und 1).
Eine SoftwareSerial-Bibliothek ermöglicht die serielle Kommunikation über jeden der digitalen Pins des Nano.
Programmierung
Der Arduino Nano kann mit der Arduino-Software (Download) programmiert werden.
Der ATmega168 oder ATmega328 auf dem Arduino Nano verfügt über einen Bootloader, mit dem Sie neuen Code ohne ein externes Hardware-Programmiergerät hochladen können. Er kommuniziert mit dem ursprünglichen STK500-Protokoll (Referenz, C-Header-Dateien).
Sie können den Bootloader auch umgehen und den Mikrocontroller über den ICSP-Header (In-Circuit Serial Programming) programmieren, indem Sie Arduino ISP oder ein ähnliches Programm verwenden; Einzelheiten finden Sie in dieser Anleitung.
Automatischer (Software-)Reset
Anstatt den Reset-Knopf vor einem Upload physisch zu betätigen, ist der Arduino Nano so konzipiert, dass er durch eine auf einem angeschlossenen Computer laufende Software zurückgesetzt werden kann.
Eine der Hardware-Flusskontrollleitungen (DTR) desFT232RL ist über einen 100 nF-Kondensator mit der Reset-Leitung des ATmega168 oder ATmega328 verbunden. Wenn diese Leitung aktiviert wird (low), fällt die Reset-Leitung lange genug ab, um den Chip zurückzusetzen.
Die Arduino-Software nutzt diese Fähigkeit, um das Hochladen von Code durch einfaches Drücken der Upload-Taste in der Arduino-Umgebung zu ermöglichen. Dies bedeutet, dass der Bootloader ein kürzeres Timeout haben kann, da das Absenken von DTR gut mit dem Beginn des Uploads koordiniert werden kann.
Der Arduino Nano ESP32 (mit und ohne Header) ist ein Nano-Formfaktor-Board, das auf dem ESP32-S3 (eingebettet im NORA-W106-10B von u-blox) basiert. Es ist das erste Arduino-Board, das vollständig auf einem ESP32 basiert. Es bietet Wi-Fi, Bluetooth LE, Debugging über natives USB in der Arduino-IDE sowie einen geringen Stromverbrauch.
Der Nano ESP32 ist kompatibel mit der Arduino IoT Cloud und unterstützt MicroPython. Es ist ein ideales Board für den Einstieg in die IoT-Entwicklung.
Features
Geringer Platzbedarf: Dieses Board wurde unter Berücksichtigung des bekannten Nano-Formfaktors entwickelt und ist aufgrund seiner kompakten Größe perfekt für die Einbettung in eigenständige Projekte geeignet.
Wi-Fi und Bluetooth: Nutzen Sie die Leistung des im IoT-Bereich bekannten ESP32-S3-Mikrocontrollers mit vollständiger Arduino-Unterstützung für drahtlose und Bluetooth-Konnektivität.
Arduino- und MicroPython-Unterstützung: Wechseln Sie mit ein paar einfachen Schritten nahtlos zwischen Arduino- und MicroPython-Programmierung.
Arduino IoT Cloud-kompatibel: Erstellen Sie schnell und einfach IoT-Projekte mit nur wenigen Codezeilen. Das Setup kümmert sich um die Sicherheit und ermöglicht Ihnen die Überwachung und Steuerung Ihres Projekts von überall aus mit der Arduino IoT Cloud-App.
HID-Unterstützung: Simulieren Sie HID-Geräte wie Tastaturen oder Mäuse über USB und eröffnen Sie so neue Möglichkeiten für die Interaktion mit Ihrem Computer.
Technische Daten
Mikrocontroller
u-blox NORA-W106 (ESP32-S3)
USB-Anschluss
USB-C
Pins
Eingebaute LED-Pins
13
Eingebaute RGB-LED-Pins
14-16
Digitale I/O-Pins
14
Analoge Eingangs-Pins
8
PWM-Pins
5
Externe Interrupts
Alle digitalen Pins
Konnektivität
Wi-Fi
u-blox NORA-W106 (ESP32-S3)
Bluetooth
u-blox NORA-W106 (ESP32-S3)
Kommunikation
UART
2x
I²C
1x, A4 (SDA), A5 (SCL)
SPI
D11 (COPI), D12 (CIPO), D13 (SCK). Verwendung eines beliebigen GPIO für Chip Select (CS)
Stromversorgung
I/O-Spannung
3,3 V
Eingangsspannung (nominal)
6-21 V
Quellstrom pro I/O-Pin
40 mA
Sinkstrom pro I/O-Pin
28 mA
Taktrate
Prozessor
Bis zu 240 MHz
Speicher
ROM
384 kB
SRAM
512 kB
Externer Flash
128 Mbit (16 MB)
Abmessungen
18 x 45 mm
Downloads
Datasheet
Schematics
Der Arduino Nano ist ein kompletter Arduino-kompatibler Einplatinencomputer, der direkt in eine 32-polige Stecksockel, Steckbrett oder eine entsprechende Trägerplatine gesteckt werden kann. Es ist sehr kompakt, hat jedoch die komplette Arduino-Funktionalität.
Über die Micro-USB-Buchse kann man die Platine und Schaltung mit Strom versorgen und neue Programme bequem auf den Controller übertragen.
Technische Daten
Pinleisten zur direkten Nutzung auf dem Steckbrett
Optimal für den Aufbau von Prototypen
Programmierbar über kostenlose Arduino IDE
Anschluss über Mini-USB-Buchse
Chipsatz CH340G
Schnittstellen: I²C, UART, SPI
Flash: 32 KB; SRAM: 2 KB; EEPROM: 1 KB
Abmessungen (L x B): 45 x 18 mm
Mikrocontroller
ATmega328P-AU
Betriebsspannung
5 V
Flash-Speicher
32 KB (2 KB für Bootloader verwendet)
SRAM
2 KB
EEPROM
1 KB
Digitale Pins
22 (6 mit PWM)
Analoge Pins
8
DC Strom pro I/O Pin
40 mA
Eingangsspannung
7-12 V
Downloads
Datenblatt
Bedienungsanleitung
Merkmale
Piezo-Summer: Fungiert als einfacher Audioausgang
Micro-USB-Anschluss
Programmierbare Taste
12 x LED: Bietet visuelle Ausgabe an Bord
Spezifikationen
Mikrocontroller
ATmega328P
Programmier-IDE
Arduino IDE
Betriebsspannung
5 V
Digitale E/A
20
PWM
6
Analoger Eingang
6 (10 Bit)
UART
1
SPI
1
I2C
1
Externer Interrupt
2
Flash-Speicher
32 KB
SRAM
2 KB
EEPROM / Daten-Flash
1 KB
Taktfrequenz
16 MHz
Gleichstrom-E/A-Pin
20 mA
Stromversorgung
Nur USB
Gleichstrom für 5 V
USB-Quelle
Gleichstrom für 3,3 V
500 mA
USB-zu-Seriell-Chip
CH340G
Programmierbare LED
12 an Digital Pin 2 bis 13
Programmierbarer Druckknopf
1 am digitalen Pin 2
Piezo-Summer
1 am digitalen Pin 8
Arduino gegen Maker Uno
Der Arduino Nano Every ist eine Weiterentwicklung des traditionellen Arduino Nano Boards, verfügt aber über einen viel leistungsfähigeren Prozessor, den ATMega4809. Damit können Sie größere Programme als mit dem Arduino Uno erstellen (er hat 50% mehr Programmspeicher), und mit viel mehr Variablen (der RAM ist 200% größer).
Ein verbesserter Arduino Nano
Wenn Sie in der Vergangenheit den Arduino Nano in Ihren Projekten verwendet haben, ist der Nano Every ein Pin-äquivalenter Ersatz. Die Hauptunterschiede sind ein besserer Prozessor und ein Micro-USB-Anschluss.
Das Board gibt es in zwei Varianten: mit oder ohne Header, so dass man den Nano Every in jede Art von Erfindung einbetten kann, einschließlich Wearables. Die Platine ist mit mosaikartigen Anschlüssen und ohne Komponenten auf der B-Seite ausgestattet. Diese Eigenschaften ermöglichen es Ihnen, die Platine direkt auf Ihr eigenes Design zu löten und die Höhe Ihres gesamten Prototyps zu minimieren.
Oh, und haben wir schon den verbesserten Preis erwähnt? Dank eines überarbeiteten Herstellungsprozesses kostet der Arduino Nano Every nur noch einen Bruchteil des ursprünglichen Nano ... worauf warten Sie noch? Upgrade jetzt!
Mikrokontroller
ATMega4809
Betriebsspannung
5 V
Eingangsspannung
7 V - 21 V
Analoge Eingangs-Pins
8
Analoge Ausgangs-Pins
Only through PWM
Externe Interrupts
all digital pins
DC Strom pro I/O Pin
20 mA
DC Strom für 3.3 V Pin
50 mA
Flash-Speicher
48 KB
SRAM
6 KB
EEPROM
256 Byte
Taktgeschwindigkeit
20 MHz
LED_Builtin
13
UART
1
SPI
1
I2C
1
PWM Pins
5
USB
Verwendet den ATSAMD11D14A
Länge
45 mm
Breite
18 mm
Gewicht
5 g
Das RedBoard Artemis verfügt über die verbesserte Stromaufbereitung und USB-zu-Seriell, die wir im Laufe der Jahre bei unserer RedBoard-Produktlinie verfeinert haben. Ein moderner USB-C-Anschluss macht die Programmierung einfach. Ein Qwiic-Anschluss macht I²C einfach.
Das RedBoard Artemis ist voll kompatibel mit dem Arduino-Kern von SparkFun und kann einfach unter der Arduino IDE programmiert werden. Wir haben den JTAG-Anschluss für fortgeschrittene Anwender freigelegt, die lieber die Leistung und Geschwindigkeit professioneller Tools nutzen möchten.
Wir haben ein digitales MEMS-Mikrofon für Leute hinzugefügt, die mit TensorFlow und maschinellem Lernen mit Always-On-Sprachbefehlen experimentieren wollen. Wir haben sogar einen praktischen Jumper hinzugefügt, um den Stromverbrauch für Tests mit geringem Stromverbrauch zu messen.
Mit 1MB Flash und 384k RAM haben Sie viel Platz für Ihre Skizzen. Das integrierte Artemis-Modul läuft mit 48MHz, wobei ein 96MHz-Turbo-Modus zur Verfügung steht, und Bluetooth gibt es auch noch dazu!
Merkmale
Arduino Uno R3 Footprint
1M Flash / 384k RAM
48MHz / 96MHz Turbo verfügbar
24 GPIO - alle interruptfähig
21 PWM-Kanäle
Eingebauter BLE-Funk
10 ADC-Kanäle mit 14-Bit-Präzision
2 UARTs
6 I²C-Busse
4 SPI-Busse
PDM-Schnittstelle
I²S-Schnittstelle
Qwiic-Anschluss
Der Arduino Uno unterscheidet sich von allen vorangegangenen Boards dadurch, dass er nicht den FTDI USB-zu-Seriell-Treiberchip verwendet.
Zusätzliche Funktionen der R3-Version sind:
Atmega16U2 statt 8U2 als USB-zu-Seriell-Wandler.
1.0 Pinout: SDA- und SCL-Pins für TWI-Kommunikation in der Nähe des AREF-Pins und zwei weitere neue Pins in der Nähe des RESET-Pins, der IOREF, der es den Shields ermöglicht, sich an die vom Board gelieferte Spannung anzupassen und der zweite ist ein nicht angeschlossener Pin, der für zukünftige Zwecke reserviert ist.
stärkere RESET-Schaltung.
Mikrocontroller
ATmega328P
Betriebsspannung
5 V
Eingangsspannung
7 V - 12 V
Digitale E/A-Pins
14
PWM Pins
6
Analoge Eingangsstifte
8
DC Strom pro I/O Pin
20 mA
DC Strom für 3,3 V Pin
50 mA
Flash-Speicher
32 KB (ATmega328P) davon 0,5 KB vom Bootloader genutzt
SRAM
2 KB
EEPROM
1 KB
Clock Speed
16 MHz
LED_Builtin
13
Länge
68,6 mm
Breite
53,4 mm
Gewicht
25 g
Dieses JOY-iT Mikrocontrollerboard eröffnet Ihnen die Welt des Programmierens und bietet ihnen die gleiche Rechenleistung des Meganbsp;2560, aber mit einer geringeren Fläche (Footprint). Es hat zudem viel mehr Anschlüsse als vergleichbare Boards (Arduino Uno). Er wird mit der Arduino-IDE betrieben und die Stromversorgung kann entweder über den USB-Anschluss oder die VIN-Pins erfolgen. Das ermöglicht Ihnen eine sichere Nutzung mit vielen anderen Geräten (z. B. Desktop-PC). Daher ist der Mega 2560nbsp;Pro hochintegrierbar.
Features
Microcontroller
ATmega2560 - 16AU
Speicherplatz
Flash 256 KB, SRAM 8 KB, EEPRom 4 KB
Pinanzahl:Digital I/OPWM OutputAnalog Input
541516
Kompatibel mit
Arduino, Desktop PCs, etc.
Besonderheiten
USB-Port oder Power Pins zur Stromversorgung
Anschlusswandler
MicroUSB zu USB-UART
Abmessungen
55 x 38 mm
Lieferumfang
JOY-iT Mega 2560 Pro mit Pins
Weitere Spezifikationen
Eingangspannung
7 - 9 Volt über Vin, 5 Volt über mUSB
Logik Level
5 Volt
Ausgangsspannung
800 mA
Sapnnungsregulator
LDO (bis zu 12 Voltspitzen)
Frequenz
16 MHz (zum Datenaustausch sind 12 MHz möglich)
Downloads
Handbuch
Wie immer bei Arduino ist jedes Element der Plattform – Hardware, Software und Dokumentation – kostenlos verfügbar und Open Source. Das bedeutet, dass Sie genau lernen können, wie es hergestellt wird, und sein Design als Ausgangspunkt für Ihre eigenen Schaltkreise verwenden können. Hunderttausende Arduino-Boards beflügeln bereits täglich die Kreativität der Menschen auf der ganzen Welt.
Das Arduino Ethernet Shield 2 ermöglicht einem Arduino Board die Verbindung mit dem Internet. Es basiert auf dem Wiznet W5500 Ethernet-Chip. Der Wiznet W5500 bietet einen Netzwerk-(IP-)Stack, der sowohl TCP als auch UDP unterstützt. Es unterstützt bis zu acht gleichzeitige Socket-Verbindungen. Verwenden Sie die Ethernet-Bibliothek, um Skizzen zu schreiben, die über das Shield eine Verbindung mit dem Internet herstellen. Das Ethernet Shield 2 wird über lange Wire-Wrap-Header, die durch das Shield verlaufen, mit einem Arduino Board verbunden. Dadurch bleibt das Pin-Layout intakt und ein weiteres Shield kann darauf gestapelt werden.
Die neueste Revision der Platine stellt die 1.0-Pinbelegung auf Rev. 3 der Arduino UNO-Platine bereit. Das Ethernet Shield 2 verfügt über einen Standard-RJ-45-Anschluss mit integriertem Leitungstransformator und aktiviertem Power over Ethernet.
Es gibt einen integrierten Micro-SD-Kartensteckplatz, in dem Dateien für die Bereitstellung über das Netzwerk gespeichert werden können. Er ist mit Arduino Uno und Mega kompatibel (unter Verwendung der Ethernet-Bibliothek). Der integrierte Micro-SD-Kartenleser ist über die SD-Bibliothek zugänglich. Beim Arbeiten mit dieser Bibliothek befindet sich SS auf Pin 4. Die ursprüngliche Version des Shield enthielt einen SD-Kartensteckplatz in voller Größe; dieser wird nicht unterstützt.
Das Shield enthält außerdem einen Reset-Controller, um sicherzustellen, dass das W5500-Ethernet-Modul beim Einschalten ordnungsgemäß zurückgesetzt wird. Frühere Versionen des Shield waren nicht mit dem Mega kompatibel und mussten nach dem Einschalten manuell zurückgesetzt werden.
Arduino feiert das Uno-Board mit einer miniaturisierten Limited Edition
Das beliebteste Entwicklungsboard der Welt ist mini geworden. Alles in dieser Version des Arduino Uno ist einzigartig. Schwarz und Gold, Verarbeitung, elegantes Design und Verpackung, alles auf höchstem Niveau. Ein kleines Juwel, um die Arduino-Community und das, was wir all die Jahre zusammen getan haben, zu feiern.
Jeder Artikel ist einzigartig und auf der Leiterplatte nummeriert und enthält einen handsignierten Brief der Gründer. Es ist eine limitierte Auflage, also greifen Sie zu, solange der Vorrat reicht!
Für treue Arduino Uno Fans
Arduino Uno Mini Limited Edition ist ein Sammlerstück für treue Arduino-Fans: Bastler, Studenten, Maker, Neugestalter, Träumer, Hoffnungsträger, Fans, Ingenieure, Designer, Fragesteller, Konditoren, Problemlöser, Puzzler, Spieler, Debattierer, Entwickler, Unternehmer, Architekten, Zukunftsgestalter, Musiker, Wissenschaftler... 10 Millionen Projekte basierend auf (offiziellen) Uno-Boards, die zu dieser unglaublichen Geschichte beigetragen haben.
Technische Daten
Das Arduino Uno Mini (Limited Edition) ist ein Mikrocontroller-Board, das auf dem ATmega328P basiert. Es verfügt über 14 digitale Ein-/Ausgänge (6 davon können als PWM-Ausgänge verwendet werden), 6 analoge Eingänge, einen 16 MHz-Keramikresonator, einen USB-C-Anschluss und eine Reset-Taste. Es enthält alles, was zur Unterstützung des Mikrocontrollers benötigt wird. Schließen Sie es einfach mit einem USB-Kabel an einen Computer an, verwenden Sie ein Netzteil oder schließen Sie einen Akku an, um loszulegen.
Mikrocontroller
ATmega328P
USB-Anschluss
USB-C
Eingebaute LED-Pins
13
Digitale I/O-Pins
14
Analoge Eingangs-Pins
6
PWM-Pins
6
UART
Ja
I²C
Ja
SPI
Ja
Schaltungsbetriebsspannung
5 V
Eingangsspannung (Limit)
6-12 V
Batterieanschluss
Nein
Gleichstrom pro I/O-Pin
20 mA
Gleichstrom für 3,3 V Pin
50 mA
Hauptprozessor
ATmega328P (16 MHz)
USB-serieller Prozessor
ATmega16U2 (16 MHz)
Speicher ATmega328P
2 KB SRAM, 32 KB Flash, 1 KB EEPROM
Gewicht
8,05 g
Abmessungen
26,70 x 34,20 mm
Downloads
Datasheet
Fügen Sie dieses Board einem Gerät hinzu und Sie können es mit einem WiFi-Netzwerk verbinden, indem Sie seinen sicheren ECC608 Krypto-Chip-Beschleuniger verwenden. Der Arduino Uno WiFi ist funktionell der gleiche wie der Arduino Uno Rev3, aber mit dem Zusatz von WiFi / Bluetooth und einigen anderen Verbesserungen. Es enthält den brandneuen ATmega4809 8-Bit-Mikrocontroller von Microchip und hat eine Onboard-IMU (Inertial Measurement Unit) LSM6DS3TR.
Das Wi-Fi-Modul ist ein eigenständiges SoC mit integriertem TCP/IP-Protokollstack, das den Zugang zu einem Wi-Fi-Netzwerk ermöglicht oder als Access Point fungiert.
Das Arduino UNO WiFi Rev.2 hat 14 digitale Ein-/Ausgangs-Pins (5, die als PWM-Ausgänge verwendet werden können, 6 analoge Eingänge), einen USB-Anschluss, eine Stromversorgungsbuchse, einen ICSP-Header und einen Reset-Knopf. Er enthält alles, was zur Unterstützung des Mikrocontrollers benötigt wird. Schließen Sie ihn einfach mit einem USB-Kabel an einen Computer an oder versorgen Sie ihn mit einem Netzadapter oder einer Batterie, um loszulegen.
Technische Daten
Betriebsspannung
5 V
Eingangsspannung
7 V - 12 V
Digitale E/A
14
Analoge Eingangs-Pins
6
Analoge Eingangsstifte
6
DC Strom pro I/O Pin
20 mA
DC Strom für 3.3 V Pin
50 mA
Flash-Speicher
48 KB
SRAM
6.144 Bytes
EEPROM
256 Bytes
Taktfrequenz
16 MHz
Funkmodul
u-blox NINA-W102
Sicherheitselement
ATECC608A
Inertialmessgerät
LSM6DS3TR
LED_Builtin
25
Länge
101.52 mm
Breite
53.3 mm
Gewicht
37 g
Das RedBoard Artemis Nano ist eine minimale, aber praktische Implementierung des Artemis-Moduls. Eine leichte, 0,8 mm dicke Platine, mit integrierter LiPo-Akku-Ladung und einem Qwiic-Anschluss, dieses Board ist einfach in winzige Projekte zu implementieren. Eine doppelte Reihe von Masseanschlüssen macht es einfach, viele Taster, LEDs und alles, was einen eigenen GND-Anschluss benötigt, hinzuzufügen. Gleichzeitig ist die Platine Breadboard-kompatibel, wenn Sie die inneren Pin-Reihen verlöten.
Ein moderner USB-C-Anschluss macht die Programmierung einfach. Der Nano ist voll kompatibel mit dem Arduino-Kern von SparkFun und kann einfach unter der Arduino-IDE programmiert werden. Wir haben auch den JTAG-Anschluss für fortgeschrittene Anwender freigelegt, die lieber die Leistung und Geschwindigkeit professioneller Tools nutzen möchten. Wenn Sie auf der Suche nach einem einfachen, kostengünstigen Board sind, um Ihren in die Jahre gekommenen Arduino Uno oder Arduino Nano zu ersetzen, dann suchen Sie nicht weiter. Wir haben sogar ein digitales MEMS-Mikrofon für Leute hinzugefügt, die mit TensorFlow und maschinellem Lernen mit immerwährenden Sprachbefehlen experimentieren wollen.
Mit 1MB Flash und 384k RAM haben Sie viel Platz für Ihre Skizzen. Das Artemis-Modul läuft mit 48MHz, wobei ein 96MHz-Turbomodus zur Verfügung steht, und ist zudem mit Bluetooth ausgestattet!
Merkmale
17 GPIO - alle interruptfähig
8 ADC-Kanäle mit 14 Bit Genauigkeit
17 PWM-Kanäle
2 UARTs
4 I²C-Busse
2 SPI-Busse
PDM-Digital-Mikrofon
Qwiic-Anschluss
Das SparkFun RedBoard Qwiic ist eine Arduino-kompatible Platine, die Funktionen verschiedener Arduinos mit dem Qwiic Connect System kombiniert.
Merkmale
ATmega328-Mikrocontroller mit Optiboot-Bootloader
Kompatibel mit R3 Shield
CH340C Seriell-USB-Konverter
Spannungspegel-Jumper von 3,3 V bis 5 V
A4 / A5 Brücken
Spannungsregler AP2112
ISP-Header
Eingangsspannung: 7 V - 15 V
1 Qwiic-Anschluss
16 MHz Taktfrequenz
32 k Flash-Speicher
Komplette SMD-Konstruktion
Verbesserter Reset-Knopf
Das Elektor Arduino Nano MCCAB Trainingsboard enthält alle Bauteile (inkl. Arduino Nano), die für die Übungen des "Mikrocontroller-Praxiskurs für Arduino-Einsteiger" benötigt werden wie Leuchtdioden, Schalter, Taster, akustische Signalgeber usw. Auch externe Sensoren, Motoren oder Baugruppen können mit diesem Mikrocontroller-Übungssystem abgefragt oder gesteuert werden.
Technische Daten (Arduino Nano Trainingsboard MCCAB)
Stromversorgung
Über die USB-Verbindung des zur Erstellung der Programme sowieso angeschlossenen PCs oder ein externes Netzteil (nicht im Lieferumfang enthalten)
Betriebsspannung
+5 Vcc
Eingangsspannung
Alle Eingänge
0 V bis +5 V
VX1 und VX2
+8 V bis +12 V (nur bei Verwendung eines externen Netzteils)
Mikrocontrollermodul
Arduino Nano
Hardwareperipherie
LCD
2x16 Zeichen
Potenziometer P1 & P2
JP3: Auswahl der Betriebsspannung von P1 & P2
Verteiler
SV4: Verteiler für die BetriebsspannungenSV5, SV6: Verteiler für die Ein-/Ausgänge des Mikrocontrollers
Schalter und Taster
RESET-Taster auf dem Arduino Nano-Modul6x Tastschalter K1 … K66x Schiebeschalter S1 … S6JP2: Verbindung der Schalter mit den Eingängen des Mikrocontrollers
Summer
Piezo-Summer Buzzer1 mit Steckbrücke auf JP6
Leuchtanzeigen
LED L auf dem Arduino Nano-Modul, verbunden mit GPIO D1311x LED: Zustandsanzeige für die Ein-/AusgängeJP6: Verbindung der LEDs LD10 … LD20 mit den GPIOs D2 … D12
Serielle SchnittstellenSPI & I²C
JP4: Auswahl des Signals an Pin X der SPI-Steckerleiste SV12SV9 bis SV12: SPI-Interface (3,3 V/5 V) bzw. I²C-Interface
Schaltausgang für externe Geräte
SV1, SV7: Schaltausgang (maximal +24 V/160 mA, extern zugeführt)SV2: 2x13 Pins zum Anschluss externer Module
3x3 LED-Matrix (9 rote LEDs)
SV3: Spalten der 3x3 LED-Matrix (Ausgänge D6 … D8)JP1: Verbindung der Reihen mit den GPIOs D3 … D5
Software
Library MCCABLib
Steuerung der Hardware-Komponenten (Schalter, Taster, Leuchtdioden, 3x3 LED-Matrix, Summer) auf dem MCCAB Trainingsboard
Betriebstemperatur
bis +40 °C
Abmessungen
100 x 100 x 20 mm
Technische Daten (Arduino Nano)
Mikrocontroller
ATmega328P
Architektur
AVR
Betriebsspannung
5 V
Flashspeicher
32 KB, davon 2 KB vom Bootloader belegt
SRAM
2 KB
Taktfrequenz
16 MHz
Analoge IN-Pins
8
EEPROM
1 KB
DC-Strom pro I/O-Pin
40 mA an einem I/O-Pin, insgesamt maximal 200 mA an allen Pins gemeinsam
Eingangsspannung
7-12 V
Digitale I/O-Pins
22 (6 davon sind PWM-fähig)
PWM-Ausgänge
6
Stromverbrauch
19 mA
Abmessungen
18 x 45 mm
Gewicht
7 g
Lieferumfang
1x Elektor Arduino Nano Trainingsboard (MCCAB)
1x Arduino Nano
Das Board enthält alles, was zur Unterstützung des Mikrocontrollers benötigt wird; schließen Sie es einfach mit einem Micro-USB-Kabel an einen Computer an oder versorgen Sie es mit einem AC/DC-Adapter oder einer Batterie, um loszulegen. Das Due ist mit allen Arduino Shields kompatibel, die mit 3,3V arbeiten und mit der Arduino 1.0 Pinbelegung konform sind.
Der Due folgt der 1.0 Pinbelegung:
TWI: Die SDA- und SCL-Pins liegen in der Nähe des AREF-Pins.
IOREF: ermöglicht es einem angeschlossenen Shield mit der richtigen Konfiguration, sich an die vom Board bereitgestellte Spannung anzupassen. Dies ermöglicht die Kompatibilität des Shields mit einem 3,3V-Board wie dem Due und AVR-basierten Boards, die mit 5V arbeiten.
Ein nicht angeschlossener Pin, reserviert für zukünftige Verwendung.
Technische Daten
Betriebsspannung
3,3 V
Eingangsspannung
7-12 V
Digitaler E/A
54
Analoge Eingangs-Pins
12
Analoge Ausgangsstifte
2 (DAC)
Gesamt-DC-Ausgangsstrom auf allen E/A-Leitungen
130 mA
Gleichstrom pro E/A-Pin
20 mA
DC Strom für 3.3 V Pin
800 mA
DC Strom für 5 V Pin
800 mA
Flash-Speicher
512 KB verfügbar für alle Benutzeranwendungen
SRAM
96 KB
Taktfrequenz
84 MHz
Länge
101.52 mm
Breite
53.3 mm
Gewicht
36 g
Bitte beachten Sie: Im Gegensatz zu den meisten Arduino-Boards läuft das Arduino Due-Board mit 3,3 V. Die maximale Spannung, die die E/A-Pins tolerieren können, beträgt 3,3 V. Applying voltages higher than 3.3V to any I/O pin could damage the board.