Die Messung der leitungsgebundenen Emission ist die einfachste und kostengünstigste Methode, um einen Hinweis darauf zu erhalten, ob ein Design die EMI/EMV-Anforderungen erfüllen kann. Ein Line Impedance Stabilization Network (LISN) ist dabei ein unverzichtbarer Bestandteil eines EMV-Prüfaufbaus (Pre-Compliance).
In Zusammenarbeit mit Würth Elektronik hat Elektor einen 5 µH, 50 Ω Dual DC LISN entwickelt, der Spannungen bis zu 60 V und Ströme bis zu 10 A unterstützt.
Das Gerät misst HF-Störungen auf beiden Kanälen (der Stromversorgung) mit Hilfe von 5-μH-Sperrinduktivitäten. Das interne 10-dB-Dämpfungsnetzwerk – eines in jedem Kanal – enthält einen Hochpassfilter dritter Ordnung mit einer Grenzfrequenz von 9 kHz, um den Eingang von Instrumenten wie z. B. einem Spektrumanalysator vor potenziell schädlichen Gleichspannungen oder niedrigen Frequenzen zu schützen, die vom Prüfling (EUT – Equipment Under Test) stammen.
Technische Daten
RF-Pfad
Kanäle
2 (mit Klemmdioden)
Bandbreite
150 kHz – 200 MHz
Induktivität
5 μH || 50 Ω
Interne Abschwächung
10 dB
Steckverbinder
SMA
DC-Pfad
Max. Strom
< 10 ADC
Max. Spannung
< 60 VDC
DC-Widerstand
< 2 x 70 mΩ
Platinengröße
94,2 x 57,4 mm
Steckverbinder
4-mm-Bananenstecker
Hammond-Gehäuse
Typ
1590N
Abmessungen
121 x 66 x 40 mm
Lieferumfang
1x 4-lagige Platine mit allen SMD-Bauteilen bestückt
1x Vorgebohrtes Gehäuse mit vorgedrucktem Frontplattenlayout
5x Vergoldete, isolierte 4-mm-Bananenbuchsen, ausgelegt für 24 A, 1 kV
1x Hammond-Gehäuse 1590N1, Aluminium (Druckgusslegierung)
Mehr Info
Projekt auf Elektor Labs: Dual DC LISN for EMC pre-compliance testing
Elektor 9-10/2021: EMV-Vor-Konformitätstester für Ihr Projekt mit DC-Versorgung (Teil 1)
Elektor 11-12/2021: EMV-Vorkonformitätstest für Ihr DC-versorgtes Projekt (Teil 2)
Wenn Sie regelmäßig mit dem Raspberry Pi experimentieren und eine Vielzahl von externer Hardware über die Stiftleiste an den GPIO-Port anschließen, haben Sie in der Vergangenheit vielleicht schon einige Schäden verursacht. Das Elektor Raspberry Pi Buffer Board ist dazu da, dies zu verhindern! Das Board ist kompatibel mit Raspberry Pi Zero, Zero 2 (W), 3, 4, 5, 400 und 500.
Alle 26 GPIOs sind mit bidirektionalen Spannungswandlern gepuffert, um den Raspberry Pi beim Experimentieren mit neuen Schaltungen zu schützen. Die Platine ist dafür vorgesehen, auf der Rückseite des Raspberry Pi 400/500 eingesetzt zu werden. Der Stecker zum Anschluss an den Raspberry Pi ist eine rechtwinklige 40-polige Buchse (2x20). Die Platine ist nur ein wenig breiter. An die Pufferausgangsbuchse kann ein 40-poliges Flachbandkabel mit entsprechenden 2x20-Steckern angeschlossen werden, um z. B. mit einer Schaltung auf einem Breadboard oder einer Platine zu experimentieren.
Die Schaltung verwendet 4x TXS0108E ICs von Texas Instruments. Die Platine lässt sich auch auf einem Raspberry Pi aufstellen.
Downloads
Schematics
Layout
Das Elektor MultiCalculator Kit ist ein Arduino-basierter Multifunktionsrechner, der über einfache Berechnungen hinausgeht. Es bietet 22 Funktionen, darunter Licht- und Temperaturmessung, Differenztemperaturanalyse und NEC-IR-Fernbedienungsdekodierung. Der Elektor MultiCalculator ist ein praktisches Werkzeug für den Einsatz in Ihren Projekten oder für Bildungszwecke.
Das Kit enthält ein Pro Mini-Modul als Recheneinheit. Die Platine lässt sich mithilfe von Durchgangslochkomponenten einfach zusammenbauen. Das Gehäuse besteht aus 11 Acrylplatten und Montagematerial für eine einfache Montage. Darüber hinaus ist das Gerät mit einem 16x2 alphanumerischen LCD, 20 Tasten und Temperatursensoren ausgestattet.
Der Elektor MultiCalculator ist über einen 6-Wege-PCB-Header mit der Arduino-IDE programmierbar. Der Rechner kann mit einem Programmieradapter programmiert werden und wird über USB-C mit Strom versorgt.
Betriebsmodi
Rechner
4-Ring-Widerstandscode
5-Ring-Widerstandscode
Konvertierung von Dezimalzahlen in Hexadezimalzahlen und Zeichen (ASCII)
Konvertierung von Hexadezimalzahlen in Dezimalzahlen und Zeichen (ASCII)
Dezimal-zu-Binär- und Zeichen-Konvertierung (ASCII)
Binär-zu-Dezimal- und Hexadezimal-Konvertierung
Berechnung von Hz, nF und kapazitiver Reaktanz (XC)
Hz, µH, Berechnung der induktiven Reaktanz (XL)
Widerstandsberechnung zweier parallel geschalteter Widerstände
Widerstandsberechnung zweier in Reihe geschalteter Widerstände
Berechnung des unbekannten Parallelwiderstands
Temperaturmessung
Differenztemperaturmessung T1&T2 und Delta (δ)
Lichtmessung
Stoppuhr mit Rundenzeitfunktion
Artikelzähler
NEC IR-Fernbedienungsdekodierung
AWG-Umwandlung (American Wire Gauge)
Würfeln
Startnachricht personalisieren
Temperaturkalibrierung
Technische Daten
Menüsprachen: Englisch, Niederländisch
Abmessungen: 92 x 138 x 40 mm
Bauzeit: ca. 5 Stunden
Lieferumfang
Leiterplatten- und Durchgangslochkomponenten
Vorgeschnittene Acrylplatten mit allen mechanischen Teilen
Pro Mini Mikrocontroller-Modul (ATmega328/5 V/16 MHz)
Programmieradapter
Wasserdichte Temperatursensoren
USB-C Kabel
Downloads
Software
Dieses Arduino-kompatible Sensorkit bietet eine reichhaltige Sammlung verschiedener, universell einsetzbarer Sensoren, die direkt mit Arduino-Boards verwendet werden können.
Kit-Inhalt
1x Joystick
1x Relay
1x Big Sound
1x Small Sound
1x Tracking
1x Avoidance
1x Flame
1x Linear Hall Sensor
1x Touch
1x Digital Temperature
1x Buzzer
1x Passive Buzzer
1x RGB LED
1x SMD RGB
1x Two Color (5 mm)
1x Mini Two Color (3 mm)
1x Reed Switch
1x Mini Reed Switch
1x Heartbeat
1x 7 Color Flash
1x Laser Emitter
1x PCB mounted push button
1x Shock, a rolling-ball type Tilt Switch
1x Rotary Encoders
1x Rolling ball Tilt Switch
1x Photoresistor
1x Temp and Humidity
1x Analog Hall
1x Hall Magnetic
1x DS18B20 Temp
1x Analog Temp
1x IR Emission
1x IR Receiver
1x Tap Module
1x Light Blocking
Hinweis: Das ursprünglich 37-teilige Sensorkit darf innerhalb der EU nicht verkauft werden. Die Quecksilber enthaltenden Module Mercury Tilt Switch und Light Cup sind deshalb nicht mehr Bestandteil dieses Kits.
Downloads
Manual
Raspberry Pi-basierter Eyecatcher
Eine handelsübliche Sanduhr zeigt nur, wie die Zeit verrinnt. Dagegen zeigt diese Raspberry Pi Pico-gesteuerte Sanduhr die genaue Uhrzeit an, indem die vier Ziffern für Stunde und Minute in die Sandschicht „eingraviert“ werden. Nach einer einstellbaren Verzögerung wird der Sand durch zwei Vibrationsmotoren flachgedrückt und der Zyklus beginnt von vorne.
Das Herzstück der Sanduhr sind zwei Servomotoren, die über einen Pantographenmechanismus einen Schreibstift antreiben. Ein dritter Servomotor hebt den Stift auf und ab. Der Sandbehälter ist mit zwei Vibrationsmotoren ausgestattet, um den Sand zu glätten. Der elektronische Teil der Sanduhr besteht aus einem Raspberry Pi Pico und einer RTC/Treiberplatine mit Echtzeituhr, plus Treiberschaltungen für die Servomotoren.
Eine ausführliche Bauanleitung steht zum Download bereit.
Features
Abmessungen: 135 x 110 x 80 mm
Bauzeit: ca. 1,5 bis 2 Stunden
Lieferumfang
3x vorgeschnittene Acrylplatten mit allen mechanischen Teilen
3x Mini-Servomotoren
2x Vibrationsmotoren
1x Raspberry Pi Pico
1x RTC/Treiberplatine mit montierten Teilen
Muttern, Bolzen, Abstandshalter und Drähte für die Baugruppe
Feinkörniger weißer Sand
Der Elektor Mini-Wheelie ist eine experimentelle autonome selbstbalancierende Roboterplattform. Der selbstbalancierende Roboter basiert auf einem ESP32-S3-Mikrocontroller und ist mithilfe der Arduino-Umgebung und Open-Source-Bibliotheken vollständig programmierbar. Dank seiner drahtlosen Fähigkeiten kann er über WLAN, Bluetooth oder ESP-NOW ferngesteuert werden oder mit einem Benutzer oder sogar einem anderen Roboter kommunizieren.
Zur Erkennung von Hindernissen steht ein Ultraschallwandler zur Verfügung. Über das Farbdisplay lassen sich niedliche Gesichtsausdrücke oder für den bodenständigeren Nutzer auch kryptische Debug-Meldungen darstellen.
Der Roboter wird als Komplettbausatz mit Teilen geliefert, die Sie selbst zusammenbauen müssen. Alles ist dabei, sogar ein Schraubenzieher.
Hinweis: Der Mini-Wheelie ist eine pädagogische Entwicklungsplattform, die zum Lernen, Experimentieren und zur Entwicklung von Robotern gedacht ist. Er ist nicht als Kinderspielzeug klassifiziert, und seine Funktionen, Dokumentation und Zielgruppe spiegeln diesen Zweck wider. Das Produkt richtet sich an Studenten, Dozenten und Entwickler, die Robotik, Programmierung und Hardware-Integration in einem pädagogischen Umfeld erforschen möchten.
Technische Daten
ESP32-S3 Mikrocontroller mit WLAN und Bluetooth
MPU6050 6-achsige Inertial Measurement Unit (IMU)
Zwei unabhängig gesteuerte 12 V-Elektromotoren mit Drehzahlmesser
Ultraschallwandler
2,9" TFT-Farbdisplay (320 x 240)
MicroSD-Kartensteckplatz
Batterieleistungsmonitor
3S wiederaufladbarer Li-Po-Akku (11,1 V/2200 mAh)
Batterieladegerät im Lieferumfang enthalten
Arduino-basierte Open-Source-Software
Abmessungen (B x L x H): 23 x 8 x 13 cm
Lieferumfang
1x ESP32-S3 Mainboard + MPU6050 Modul
1x LCD-Board (2,9 Zoll)
1x Ultraschallsensor
1x Akku (2200 mAh)
1x Batterieladegerät
1x Motorreifen-Set
1x Gehäuseplatine
1x Acrylplatte
1x Schraubendreher
1x Schutzstreifen
1x Flexkabel B (8 cm)
1x Flexkabel A (12 cm)
1x Flexkabel C
4x Kupfersäule A (25 mm)
4x Kupfersäule B (55 mm)
4x Kupfersäule C (5 mm)
2x Kunststoff-Nylonsäule
8x Schrauben A (10 mm)
24x Schrauben B (M3x5)
8x Nüsse
24x Metallscheiben
2x Kabelbinder
1x MicroSD-Karte (32 GB)
Downloads
Documentation
Der Elektor Audio DSP FX Processor kombiniert einen ESP32-Mikrocontroller und einen ADAU1701 Audio DSP von Analog Devices. Neben einem vom Benutzer programmierbaren DSP-Kern verfügt der ADAU1701 über hochwertige integrierte Analog-Digital- und Digital-Analog-Wandler und verfügt über einen I²S-Port. Dadurch eignet es sich als hochwertiges Audio-Interface für den ESP32.
Programme für den ESP32 können mit Arduino, Platform IO, CMake oder durch die Verwendung des Espressif IDF auf andere Weise erstellt werden. Programme für die Audio-DSPs ADAU7101 werden mit dem kostenlosen visuellen Programmiertool SigmaStudio durch Ziehen und Ablegen vordefinierter Algorithmusblöcke auf einer Leinwand erstellt.
Anwendungen
Bluetooth/Wi-Fi-Audiosink (z. B. Lautsprecher) & Quelle
Gitarreneffektpedal (Stomp-Box)
Musiksynthesizer
Sound-/Funktionsgenerator
Programmierbarer Crossover-Filter für Lautsprecher
Erweiterter Audioeffektprozessor (Hall, Chorus, Pitch-Shifting usw.)
Mit dem Internet verbundenes Audiogerät
DSP-Experimentierplattform
Drahtloses MIDI
MIDI-zu-CV-Konverter
und viele mehr...
Technische Daten
ADAU1701 28-/56-Bit, 50-MIPS digitaler Audioprozessor, der Abtastraten von bis zu 192 kHz unterstützt
ESP32 32-Bit-Dual-Core-Mikrocontroller mit Wi-Fi 802.11b/g/n und Bluetooth 4.2 BR/EDR und BLE
2x 24-Bit-Audioeingänge (2 V RMS, 20 kΩ)
4x 24-Bit-Audioausgänge (0,9 V RMS, 600 Ω)
4x Steuerpotentiometer
MIDI Ein- und Ausgang
I²C-Erweiterungsport
Multi-Mode-Betrieb
Stromversorgung: 5 V DC USB oder 7,5-12 V DC (Hohlbuchse, mittlerer Pin ist GND)
Stromverbrauch (Durchschnitt): 200 mA
Lieferumfang
1x ESP32 Audio DSP FX Prozessor Board (montiert)
1x ESP32-PICO-KIT
2x Jumper
2x 18-Pin Header (female)
4x 10 KB Potentiometer
Downloads
Documentation
GitHub
Bauen Sie Ihren eigenen Vintage-Radiosender
Das Elektor AM-Sender-Kit ermöglicht das Streamen von Audio auf Vintage-AM-Radioempfänger. Basierend auf einem Raspberry Pi Pico Mikrocontroller-Modul kann der AM-Sender auf 32 Frequenzen im AM-Band senden, von 500 kHz bis 1,6 MHz in 32 Schritten von ca. 35 kHz.
Die Frequenz wird mit einem Potentiometer gewählt und auf einem 0,96" OLED-Display angezeigt. Eine Taste ermöglicht das Umschalten des Sendemodus zwischen Ein und Aus. Die Reichweite des Senders hängt von der Antenne ab. Die integrierte Antenne bietet eine Reichweite von wenigen Zentimetern, sodass der AM-Sender nahe am Radio oder im Radio selbst platziert werden muss. Eine externe Loop-Antenne (nicht enthalten) kann angeschlossen werden, um die Reichweite zu erhöhen.
Das Elektor AM-Sender-Kit wird als Bausatz geliefert, den Sie selbst auf die Platine löten müssen.
Features
Die Platine ist kompatibel mit einem Hammond-1593N-Gehäuse (nicht enthalten).Ein 5-VDC-Netzteil mit Micro-USB-Anschluss (z. B. ein altes Handy-Ladegerät) wird benötigt, um das Kit zu betreiben (nicht enthalten). Stromaufnahme: 100 mA.
Die Arduino-Software (benötigt Earle Philhowers RP2040-Boards-Paket) für das Elektor-AM-Sender-Kit sowie weitere Informationen sind auf der Elektor-Labs-Seite dieses Projekts verfügbar.
Stückliste
Widerstände
R1, R4 = 100 Ω
R2, R3, R8 = 10 kΩ
R5, R6, R9, R10, R11 = 1 kΩ
R7 = optional (nicht enthalten)
P1 = Potentiometer 100 kΩ, linear
Kondensatoren
C1 = 22 µF 16V
C2, C4 = 10 nF
C3 = 150 pF
Sonstiges
K1 = 4×1 Stiftleiste
K2, K3 = 3,5-mm-Buchse
Raspberry Pi Pico
Drucktaste, Winkelmontage
0,96" monochromes I²C-OLED-Display
Leiterplatte 150292-1
Das Elektor ESP32-Energiemessgerät wurde für die Echtzeit-Energieüberwachung und die Smart Home-Integration entwickelt. Angetrieben durch den ESP32-S3 Mikrocontroller bietet es robuste Leistung mit modularen und skalierbaren Funktionen.
Das Gerät verwendet einen 220 V-auf-12 V-Abwärtstransformator zur Spannungsabtastung, der eine galvanische Trennung und Sicherheit gewährleistet. Sein kompaktes Platinenlayout umfasst Schraubklemmenblöcke für sichere Verbindungen, einen Qwiic-Anschluss für zusätzliche Sensoren und einen Programmier-Header für die direkte ESP32-S3-Konfiguration. Der Energiezähler ist mit einphasigen und dreiphasigen Systemen kompatibel und somit für verschiedene Anwendungen anpassbar.
Das Energiemessgerät ist einfach einzurichten und lässt sich in Home Assistant integrieren. Er bietet Echtzeitüberwachung, Verlaufsanalysen und Automatisierungsfunktionen. Es liefert genaue Messungen von Spannung, Strom und Leistung und ist damit ein wertvolles Werkzeug für das Energiemanagement in Haushalten und Unternehmen.
Features
Umfassende Energieüberwachung: Erhalten Sie detaillierte Einblicke in Ihren Energieverbrauch für eine intelligentere Verwaltung.
Anpassbare Software: Passen Sie die Funktionalität an Ihre Bedürfnisse an, indem Sie eigene Sensoren programmieren und integrieren.
Smart Home Ready: Kompatibel mit ESPHome, Home Assistant und MQTT für vollständige Smart Home-Integration.
Sicher & Flexibles Design: Funktioniert mit einem 220 V-zu-12 V-Abwärtstransformator und verfügt über eine vormontierte SMD-Platine.
Schnellstart: Enthält einen Stromwandlersensor und Zugang zu kostenlosen Einrichtungsressourcen.
Technische Daten
Mikrocontroller
ESP32-S3-WROOM-1-N8R2
Energiemess-IC
ATM90E32AS
Statusanzeigen
4x LEDs zur Anzeige des Stromverbrauchs2x programmierbare LEDs für benutzerdefinierte Statusbenachrichtigungen
Benutzereingabe
2x Drucktasten zur Benutzersteuerung
Ausgabe anzeigen
I²C-OLED-Display zur Echtzeit-Anzeige des Stromverbrauchs
Eingangsspannung
110/220 V AC (über Abwärtstransformator)
Eingangsleistung
12 V (über Abwärtstransformator oder DC-Eingang)
Klemmstromsensor
YHDC SCT013-000 (100 A/50 mA) im Lieferumfang enthalten
Smart Home-Integration
ESPHome, Home Assistant und MQTT für nahtlose Konnektivität
Konnektivität
Header für die Programmierung, Qwiic für Sensorerweiterung
Anwendungen
Unterstützt einphasige und dreiphasige Energieüberwachungssysteme
Abmessungen
79,5 x 79,5 mm
Lieferumfang
1x Teilbestückte Platine (SMD-Bauteile sind vormontiert)
2x Schraubklemmenblock-Anschlüsse (nicht montiert)
1x YHDC SCT013-000 Stromwandler
Erforderlich
Netztransformator nicht enthalten
Downloads
Datasheet (ESP32-S3-WROOM-1)
Datasheet (ATM90E32AS)
Datasheet (SCT013-000)
Frequently Asked Questions (FAQ)
Vom Prototyp zum fertigen Produkt
Was als innovatives Projekt zur Entwicklung eines zuverlässigen und benutzerfreundlichen Energiemessgeräts mithilfe des ESP32-S3-Mikrocontrollers begann, hat sich zu einem robusten Produkt entwickelt. Ursprünglich als Open-Source-Projekt entwickelt, zielte das Gerät darauf ab, eine präzise Energieüberwachung, Smart-Home-Integration und mehr zu ermöglichen. Durch sorgfältige Hardware- und Firmware-Entwicklung ist das Energiemessgerät heute eine kompakte, vielseitige Lösung für das Energiemanagement.
Dieser USB Logic Analyzer ist ein 8-Kanal-Logikanalysator, bei dem jeder Eingang doppelt für die analoge Datenaufzeichnung dient. Es eignet sich perfekt zum Debuggen und Analysieren von Signalen wie I²C, UART, SPI, CAN und 1-Wire. Dabei wird ein digitaler Eingang, der mit einem zu testenden Gerät (DUT) verbunden ist, mit einer hohen Abtastrate abgetastet. Die Verbindung zum PC erfolgt via USB.Technische DatenKanäle8 digitale KanäleMaximale Abtastrate24 MHzMaximale Eingangsspannung0 V ~ 5 VBetriebstemperatur0°C ~ 70°CEingangsimpedanz1 MΩ || 10 pFUnterstützte ProtokolleI²C, SPI, UART, CAN, 1-Wire etc.PC-VerbindungUSBAbmessungen55 x 28 x 14 mmLieferumfangUSB Logic Analyzer (8 Kanäle, 24 MHz)USB-KabelJumper Wire Ribbon KabelDownloadsSoftware
Der Elektor Super Servo Tester kann Servos steuern und Servosignale messen. Es können bis zu vier Servokanäle gleichzeitig getestet werden.
Der Super Servo Tester wird als Bausatz geliefert. Alle zum Zusammenbau des Super Servo Testers erforderlichen Teile sind im Bausatz enthalten. Für den Zusammenbau des Bausatzes sind grundlegende Lötkenntnisse erforderlich. Der Mikrocontroller ist bereits programmiert.
Der Super Servo Tester verfügt über zwei Betriebsmodi: Steuerung/Manuell und Messen/Eingänge.
Im Control/Manual Modus generiert der Super Servo Tester an seinen Ausgängen Steuersignale für bis zu vier Servos oder für den Flugregler oder ESC. Die Signale werden über die vier Potentiometer gesteuert.
Unter Measure/Inputs misst der Super Servo Tester die an seine Eingänge angeschlossenen Servosignale. Diese Signale können beispielsweise von einem Regler, einem Flugregler, dem Empfänger oder einem anderen Gerät stammen. Die Signale werden auch an die Ausgänge weitergeleitet, um die Servos oder den Flugregler bzw. ESC zu steuern. Die Ergebnisse werden auf dem Display angezeigt.
Technische Daten
Betriebsmodi
Control/Manual & Measure/Inputs
Kanäle
3
Servosignaleingänge
4
Servosignalausgänge
4
Alarm
Summer & LED
Anzeige
0,96' OLED (128 x 32 Pixel)
Eingangsspannung an K5
7-12 VDC
Eingangsspannung an K1
5-7,5 VDC
Eingangsstrom
30 mA (9 VDC an K5, nichts an K1 und K2 angeschlossen)
Abmessungen
113 x 66 x 25 mm
Gewicht
60 g
Lieferumfang
Widerstände (0,25 W)
R1, R3
1 kΩ, 5%
R2, R4, R5, R6, R7, R9, R10
10 kΩ, 5%
R8
22 Ω, 5%
P1, P2, P3, P4
10 kΩ, lin/B, vertikales Potentiometer
Kondensatoren
C1
100 µF 16 V
C2
10 µF 25 V
C3, C4, C7
100 nF
C5, C6
22 pF
Halbleiter
D1
1N5817
D2
LM385Z-2.5
D3
BZX79-C5V1
IC1
7805
IC2
ATmega328P-PU, programmiert
LED1
LED, 3 mm, rot
T1
2N7000
Außerdem
BUZ1
Piezo-Summer mit Oszillator
K1, K2
2-reihiger, 12-poliger Pinheader, 90°
K5
Barrel jack
K4
1-reihige, 4-polige Stiftbuchse
K3
2-reihiger, 6-fach geschachtelter Pinheader
S1
Slide Switch DPDT
S2
Slide Switch SPDT
X1
Crystal, 16 MHz
28-polige DIP-Buchse für IC2
Elektor Platine
OLED-Display, 0,96', 128 x 32 Pixel, 4-pin I²C-Interface
Links
Elektor Magazine
Elektor Labs
Pfeifen Sie und es zwitschert zurück!Obwohl Vögel aller Art von vielen Menschen liebevoll gehalten und beobachtet werden, haben die meisten von ihnen leider noch nicht gelernt, mit uns zu kommunizieren. Dieser vollelektronische Vogel macht einen Schritt in die richtige Richtung: Wenn man ihn anpfeift, zwitschert er zurück!FeaturesReagiert auf PfeifenEinstellbare Vogelgeräusche (Ton und Länge)Symbole des Elektor Heritage CircuitGetestet und geprüft von Elektor LabsEdukatives und geekiges ProjektNur Teile mit DurchgangslochLieferumfangPlatineAlle KomponentenHolzständerStücklisteWiderständeR1,R2 = 2.2kΩR3,R4,R13 = 47kΩR5 = 4.7kΩR6 = 3.3kΩR7,R10,R11,R12,R17 = 100kΩR8,R19,R23 = 1kΩR9 = 1MΩR14,R15 = 10kΩR16,R18 = 470kΩR20 = 68kΩR21 = 10MΩR22 = 2.7kΩR24 = 22ΩP1,P2 = 1MΩP3,P5 = 470kΩP4 = 100kΩKondensatorenC1,C2,C12 = 100nFC3,C4 = 10nFC5 = 22μF, 16VC6,C7,C11 = 10μF, 16VC8 = 2.2μF, 100VC9 = 1μF, 50VC10 = 2.2nFC13 = 10nFHalbleiterD1,D3,D4,D5,D6,D7,D8 = 1N4148D2 = 3V3 ZenerdiodeT1,T2 = BC557BT3 = BC547BT4 = BC327-40IC1 = TL084CNIC2 = 4093SonstigesBT1 = Kabelgebundener Batterieclip für 6LR61/PP3LS1 = Miniaturlautsprecher, 8Ω, 0,5WS1 = Schalter, Schieber, SPDTMIC1 = ElektretmikrofonPCB 230153-1 v1.1
Der Elektor Milliohmmeter-Adapter nutzt die Präzision eines Multimeters zur Messung sehr niedriger Widerstandswerte. Er wandelt einen Widerstand in eine Spannung um, die mit einem Standardmultimeter gemessen werden kann.
Der Elektor Milliohmmeter-Adapter misst Widerstände unter 1 mΩ mit der 4-Leiter-Methode (Kelvin). Er eignet sich zum Auffinden von Kurzschlüssen auf Leiterplatten.
Der Adapter bietet drei Messbereiche – 1 mΩ, 10 mΩ und 100 mΩ –, die über einen Schiebeschalter ausgewählt werden können. Integrierte Kalibrierwiderstände sind ebenfalls enthalten. Der Elektor Milliohmmeter-Adapter wird mit drei 1,5-V-AA-Batterien betrieben (nicht im Lieferumfang enthalten).
Technische Daten
Messbereiche
1 mΩ, 10 mΩ, 100 mΩ, 0,1%
Stromversorgung
3x 1,5 V AA-Batterien (nicht im Lieferumfang enthalten)
Abmessungen
103 x 66 x 18 mm (kompatibel mit Hammond 1593N-Gehäuse, nicht im Lieferumfang enthalten)
Besonderheit
Integrierte Kalibrierwiderstände
Downloads
Documentation
Ziehen Sie den Hebel nach unten, um die höchste Punktzahl zu erzielen!Dieser Elektor-Schaltungsklassiker aus dem Jahr 1984 zeigt eine spielerische Anwendung von Logik-ICs der CMOS-400x-Serie in Kombination mit LEDs, einer damals sehr beliebten Kombination. Das Projekt imitiert einen Spielautomaten mit rotierenden Ziffern.Das SpielUm das Spiel zu spielen, vereinbaren Sie zunächst die Anzahl der Runden. Spieler 1 betätigt den Schalthebel so lange wie gewünscht und lässt ihn los. Die LEDs zeigen dann die Punktzahl an, die sich aus der Summe der 50-20-10-5 aufleuchtenden Ziffern ergibt. Wenn die Play Again!-LED aufleuchtet, hat Spieler 1 eine weitere, „freie“ Runde. Wenn nicht, ist Spieler 2 am Zug. Die Spieler behalten ihre Punkte im Auge und der Spieler mit der höchsten Punktzahl gewinnt.FeaturesLEDs zeigen den Punktestand anMulti-Player und Play Again!Symbole des Elektor Heritage CircuitGetestet und geprüft von Elektor LabsEdukatives und geekiges ProjektNur Teile mit DurchgangslochLieferumfangPlatineAlle KomponentenHolzständerStücklisteWiderstände (5%, 250 mW)R1,R2,R3,R4 = 100kΩR5,R6,R7,R8,R9,R10 = 1kΩKondensatorenC1 = 4.7nF, 10%, 50V, 5mmC2 = 4.7μF, 10%, 63V, axialC3,C4 = 100nF, 10 %, 50V, Keramik X7R, 5mmHalbleiterLED1-LED6 = rot, 5mm (T1 3/4)IC1 = 74HC4024IC2 = 74HC132SonstigesS1 = Schalter, Kipphebel, 21-mm-Hebel, SPDT, tastendS2 = Schalter, taktil, 24V, 50mA, 6x6mmS3 = Schalter, Schieber, SPDTIC1,IC2 = IC-Sockel, DIP14BT1 = CR2032-Batteriehalteklammer für PlatinenmontageTischständerPCB 230098-1Nicht im Lieferumfang enthalten: BT1 = CR2032-Knopfzellenbatterie
Dieses Hardware-Kit ist speziell für "Das offizielle ESP32-Handbuch" zusammengestellt. Der Bausatz enthält alle Komponenten, die in den Projekten im Buch verwendet werden. Mit Hilfe dieses Hardware-Kits sollte es einfach und unterhaltsam sein, diese Projekte aufzubauen.
Kit-Inhalt
1x ESP32 DevKitC
8x LEDs (RED)
1x LED (GREEN)
2x push-button
8x 330 ohm resistors
1x Buzzer
1x RGB LED
1x TMP36 temperature sensor chip
1x DHT11 temperature and humidity chip
1x MCP23017 (DIL 28 package)
1x LDR
1x BC108 (or any other PNP) transistor
1x 7 segment LED
1x Small Microphone Module
1x I²C LCD
1x SG90 servo
1x 4x4 Keypad
8x Female-Male jumpers
4x Male-Male jumpers
1x Small breadboard
Ein Retro-Würfel mit Neon-Charakter
LED-basierte Würfel sind weit verbreitet, doch ihr Licht ist kalt. Nicht so dieser elektronische Neonwürfel, der seinen Wert mit dem warmen Schein von Neonröhren anzeigt. Er eignet sich perfekt für Spiele an kalten, dunklen Winterabenden. Die Würfelpunkte sind Neonlampen, und der Zufallszahlengenerator verfügt über sechs Neonröhren, die seine Funktion anzeigen.
Obwohl der Würfel über eine integrierte 100-V-Stromversorgung verfügt, ist er absolut sicher. Wie bei allen Elektor Classic-Produkten ist auch bei diesem Würfel der Schaltplan auf der Vorderseite aufgedruckt, während sich auf der Rückseite eine Erklärung zur Funktionsweise befindet.
Der Glimmlampenwürfel wird als Kit mit leicht zu lötenden bedrahteten Bauteilen geliefert. Die Stromversorgung erfolgt über eine 9-V-Batterie (nicht im Lieferumfang enthalten).
Features
Warmer Vintage-Glanz
Elektor Heritage Schaltsymbole
Erprobt und getestet von Elektor Labs
Lern- und Technikprojekt
Nur bedrahtete Bauteile
Lieferumfang
Platine
Alle Komponenten
Holzständer
Erforderlich
9 V Batterie
Stückliste
Widerstände (THT, 150 V, 0.25 W)
R1, R2, R3, R4, R5, R6, R14 = 1 MΩ
R7, R8, R9, R10, R11, R12 = 18 kΩ
R13, R15, R16, R17, R18, R21, R23, R24, R25, R26, R28, R30, R33 = 100 kΩ
R32, R34 = 1.2 kΩ
R19, R20, R22, R27, R29 = 4.7 kΩ
R31 = 1 Ω
Kondensatoren
C1, C2, C3, C4, C5, C6 = 470 nF, 50 V, 5 mm pitch
C7, C9, C11, C12 = 1 µF, 16 V, 2 mm pitch
C8 = 470 pF, 50 V, 5 mm pitch
C10 = 1 µF, 250 V, 2.5 mm pitch
Induktivitäten
L1 = 470 µH
Halbleiter
D1, D2, D3, D4, D5, D6, D7 = 1N4148
D8 = STPS1150
IC1 = NE555
IC2 = 74HC374
IC3 = MC34063
IC4 = 78L05
T1, T2, T3, T4, T5 = MPSA42
T6 = STQ2LN60K3-AP
Sonstiges
K1 = PP3 9 V Batteriehalter
NE1, NE2, NE3, NE4, NE5, NE6, NE7, NE8, NE9, NE10, NE11, NE12, NE13 = Neonlicht
S2 = Miniatur-Schiebeschalter
S1 = Druckknopf (12 x 12 mm)
Dieses Bundle enthält die beliebte Elektor Sanduhr für Raspberry Pi Pico und das neue Elektor Laserkopf-Upgrade und bietet damit noch mehr Möglichkeiten zur Zeitanzeige. Sie können die aktuelle Uhrzeit nicht nur in Sand "gravieren", sondern sie jetzt auch alternativ auf eine im Dunkeln leuchtende Folie schreiben oder grüne Zeichnungen erstellen.
Inhalt des Bundles
Elektor Sanduhr für Raspberry Pi Pico (Einzelpreis: 50 €)
NEU: Elektor Laserkopf-Upgrade für Sanduhr (Einzelpreis: 35 €)
Elektor Sanduhr für Raspberry Pi Pico (Raspberry Pi-basierter Eyecatcher)
Eine handelsübliche Sanduhr zeigt nur, wie die Zeit verrinnt. Dagegen zeigt diese Raspberry Pi Pico-gesteuerte Sanduhr die genaue Uhrzeit an, indem die vier Ziffern für Stunde und Minute in die Sandschicht "eingraviert" werden. Nach einer einstellbaren Verzögerung wird der Sand durch zwei Vibrationsmotoren flachgedrückt und der Zyklus beginnt von vorne.
Das Herzstück der Sanduhr sind zwei Servomotoren, die über einen Pantographenmechanismus einen Schreibstift antreiben. Ein dritter Servomotor hebt den Stift auf und ab. Der Sandbehälter ist mit zwei Vibrationsmotoren ausgestattet, um den Sand zu glätten. Der elektronische Teil der Sanduhr besteht aus einem Raspberry Pi Pico und einer RTC/Treiberplatine mit Echtzeituhr, plus Treiberschaltungen für die Servomotoren.
Eine ausführliche Bauanleitung steht zum Download bereit.
Features
Abmessungen: 135 x 110 x 80 mm
Bauzeit: ca. 1,5 bis 2 Stunden
Lieferumfang
3x vorgeschnittene Acrylplatten mit allen mechanischen Teilen
3x Mini-Servomotoren
2x Vibrationsmotoren
1x Raspberry Pi Pico
1x RTC/Treiberplatine mit montierten Teilen
Muttern, Bolzen, Abstandshalter und Drähte für die Baugruppe
Feinkörniger weißer Sand
Elektor Laserkopf-Upgrade für Sanduhr
Der neue Elektor-Laserkopf verwandelt die Elektor Sanduhr in eine Uhr, die die Zeit auf eine im Dunkeln leuchtende Folie statt auf Sand schreibt. Neben der Anzeige der Zeit können damit auch flüchtige Zeichnungen erstellt werden. Der 5-mW-Laserpointer mit einer Wellenlänge von 405 nm erzeugt leuchtend grüne Zeichnungen auf der im Dunkeln leuchtenden Folie. Um optimale Ergebnisse zu erzielen, verwenden Sie das Kit in einem schwach beleuchteten Raum. Achtung: Schauen Sie niemals direkt in den Laserstrahl!
Der Bausatz enthält alle notwendigen Komponenten, es ist jedoch das Anlöten von drei Drähten erforderlich.
Hinweis: Dieses Kit ist auch mit der originalen Arduino-basierten Sanduhr aus dem Jahr 2017 kompatibel. Weitere Einzelheiten finden Sie unter Elektor 1-2/2017 und Elektor 1-2/2018.
Der Elektor Laserkop verwandelt die Elektor Sanduhr in eine Uhr, die die Zeit auf eine im Dunkeln leuchtende Folie statt auf Sand schreibt. Neben der Anzeige der Zeit können damit auch flüchtige Zeichnungen erstellt werden. Der 5-mW-Laserpointer mit einer Wellenlänge von 405 nm erzeugt leuchtend grüne Zeichnungen auf der im Dunkeln leuchtenden Folie. Um optimale Ergebnisse zu erzielen, verwenden Sie das Kit in einem schwach beleuchteten Raum. Achtung: Schauen Sie niemals direkt in den Laserstrahl!
Der Bausatz enthält alle notwendigen Komponenten, es ist jedoch das Anlöten von drei Drähten erforderlich.
Hinweis: Dieses Kit ist auch mit der originalen Arduino-basierten Sanduhr aus dem Jahr 2017 kompatibel. Weitere Einzelheiten finden Sie unter Elektor 1-2/2017 und Elektor 1-2/2018.
Das Elektor Arduino Nano MCCAB Trainingsboard enthält alle Bauteile (inkl. Arduino Nano), die für die Übungen des "Mikrocontroller-Praxiskurs für Arduino-Einsteiger" benötigt werden wie Leuchtdioden, Schalter, Taster, akustische Signalgeber usw. Auch externe Sensoren, Motoren oder Baugruppen können mit diesem Mikrocontroller-Übungssystem abgefragt oder gesteuert werden.
Technische Daten (Arduino Nano Trainingsboard MCCAB)
Stromversorgung
Über die USB-Verbindung des zur Erstellung der Programme sowieso angeschlossenen PCs oder ein externes Netzteil (nicht im Lieferumfang enthalten)
Betriebsspannung
+5 Vcc
Eingangsspannung
Alle Eingänge
0 V bis +5 V
VX1 und VX2
+8 V bis +12 V (nur bei Verwendung eines externen Netzteils)
Mikrocontrollermodul
Arduino Nano
Hardwareperipherie
LCD
2x16 Zeichen
Potenziometer P1 & P2
JP3: Auswahl der Betriebsspannung von P1 & P2
Verteiler
SV4: Verteiler für die BetriebsspannungenSV5, SV6: Verteiler für die Ein-/Ausgänge des Mikrocontrollers
Schalter und Taster
RESET-Taster auf dem Arduino Nano-Modul6x Tastschalter K1 … K66x Schiebeschalter S1 … S6JP2: Verbindung der Schalter mit den Eingängen des Mikrocontrollers
Summer
Piezo-Summer Buzzer1 mit Steckbrücke auf JP6
Leuchtanzeigen
LED L auf dem Arduino Nano-Modul, verbunden mit GPIO D1311x LED: Zustandsanzeige für die Ein-/AusgängeJP6: Verbindung der LEDs LD10 … LD20 mit den GPIOs D2 … D12
Serielle SchnittstellenSPI & I²C
JP4: Auswahl des Signals an Pin X der SPI-Steckerleiste SV12SV9 bis SV12: SPI-Interface (3,3 V/5 V) bzw. I²C-Interface
Schaltausgang für externe Geräte
SV1, SV7: Schaltausgang (maximal +24 V/160 mA, extern zugeführt)SV2: 2x13 Pins zum Anschluss externer Module
3x3 LED-Matrix (9 rote LEDs)
SV3: Spalten der 3x3 LED-Matrix (Ausgänge D6 … D8)JP1: Verbindung der Reihen mit den GPIOs D3 … D5
Software
Library MCCABLib
Steuerung der Hardware-Komponenten (Schalter, Taster, Leuchtdioden, 3x3 LED-Matrix, Summer) auf dem MCCAB Trainingsboard
Betriebstemperatur
bis +40 °C
Abmessungen
100 x 100 x 20 mm
Technische Daten (Arduino Nano)
Mikrocontroller
ATmega328P
Architektur
AVR
Betriebsspannung
5 V
Flashspeicher
32 KB, davon 2 KB vom Bootloader belegt
SRAM
2 KB
Taktfrequenz
16 MHz
Analoge IN-Pins
8
EEPROM
1 KB
DC-Strom pro I/O-Pin
40 mA an einem I/O-Pin, insgesamt maximal 200 mA an allen Pins gemeinsam
Eingangsspannung
7-12 V
Digitale I/O-Pins
22 (6 davon sind PWM-fähig)
PWM-Ausgänge
6
Stromverbrauch
19 mA
Abmessungen
18 x 45 mm
Gewicht
7 g
Lieferumfang
1x Elektor Arduino Nano Trainingsboard (MCCAB)
1x Arduino Nano