Das DSO154Pro mit fortschrittlicher ARM+FPGA-Architektur ist ein tragbares Oszilloskop mit einer Bandbreite von 18 MHz und einer Abtastrate von 40 MSa/s.
Es verfügt über einen integrierten Signalgenerator, der einstellbare Wellenformen mit einer Amplitude von 3 V und einem Frequenzbereich von 0-500 kHz ausgeben kann.
Features
18 MHz Bandbreite
40 MSa/s Abtastrate
500 kHz Signalgenerator
2,4" Display
14 Messparameter
Automatische Anpassung
Prüfspitzenunterstützung: X1, X10, X100
Automatische Abschaltung
Technische Daten
Bandbreite
18 MHz
Abtastrate
40 MSa/s
Display
2,4" Farb-TFT (320 x 240)
Messungen
14 Typen
Vertikale Präzision
±2%
Anstiegszeit
<3ns
Speichertiefe
16 KB
Impedanz
1 MΩ
Zeitbasis
50ns-10s
Vertikale Empfindlichkeit
20 mV/div-10 V/div
Max. Spannung
±40 V (x1)±400 V (x10)
Trigger-Modus
Auto/Normal/Single
Triggertyp
Rise/Fall
Trigger-Level
Manual/Auto
Anzeigemodus
YT/Roll
Persistenz
Keine/1s/∞
Wellenformen
Sinus/Square/Triangle/Noise
Frequenz
0-500 KHz
Stromversorgung
USB-C (5 V)
Batterie
1000 mAh Lithiumbatterie
Abmessungen
87 x 58 x 18 mm
Gewicht
80 g
Lieferumfang
1x DSO154Pro Oszilloskop
1x P6100 Prüfspitze
1x USB-Kabel
1x Ringförmige Halterung
1x Manual
Der Milk-V Duo 256M ist eine ultrakompakte Embedded-Entwicklungsplattform basierend auf dem SG2002-Chip. Es kann Linux und RTOS ausführen und bietet eine zuverlässige, kostengünstige und leistungsstarke Plattform für Profis, industrielle ODMs, AIoT-Enthusiasten, Heimwerker und Entwickler.
Dieses Board ist eine aktualisierte Version von Duo mit einer Speichererweiterung auf 256 TMB und eignet sich für Anwendungen, die größere Speicherkapazitäten erfordern. Der SG2002 erhöht die Rechenleistung auf 1,0 TOPS @ INT8. Es ermöglicht den nahtlosen Wechsel zwischen RISC-V/ARM-Architekturen und unterstützt den gleichzeitigen Betrieb dualer Systeme. Darüber hinaus umfasst es eine Reihe umfangreicher GPIO-Schnittstellen wie SPI und UART, die für eine breite Palette von Hardwareentwicklungen im Bereich intelligenter Edge-Überwachung geeignet sind, darunter IP-Kameras, intelligente Türspionschlösser, visuelle Türklingeln und mehr.
SG2002 ist ein leistungsstarker Chip mit geringem Stromverbrauch, der für verschiedene Produktbereiche wie intelligente IP-Überwachungskameras, intelligente Türschlösser, visuelle Türklingeln und Heimintelligenz entwickelt wurde. Es integriert H.264-Videokomprimierung und -Dekodierung, H.265-Videokomprimierungskodierung und ISP-Funktionen. Es unterstützt mehrere Bildverbesserungs- und Korrekturalgorithmen wie HDR Wide Dynamic Range, 3D-Rauschunterdrückung, Antibeschlag und Objektivverzerrungskorrektur und bietet Kunden eine professionelle Videobildqualität.
Der Chip enthält außerdem eine selbst entwickelte TPU, die 1,0 TOPS Rechenleistung bei 8-Bit-Integer-Operationen liefert. Die speziell entwickelte TPU-Planungs-Engine sorgt effizient für einen Datenfluss mit hoher Bandbreite für alle Kerne der Tensor-Verarbeitungseinheit. Darüber hinaus bietet es Benutzern einen leistungsstarken Deep-Learning-Modell-Compiler und ein Software-SDK-Entwicklungskit. Führende Deep-Learning-Frameworks wie Caffe und Tensorflow können problemlos auf die Plattform portiert werden. Darüber hinaus umfasst es Sicherheitsstart, sichere Updates und Verschlüsselung und bietet eine Reihe von Sicherheitslösungen von der Entwicklung über die Massenproduktion bis hin zu Produktanwendungen.
Der Chip integriert ein 8-Bit-MCU-Subsystem und ersetzt die typische externe MCU, um Kosteneinsparungs- und Energieeffizienzziele zu erreichen.
Technische Daten
SoC
SG2002
RISC-V CPU
C906 @ 1 Ghz + C906 @ 700 MHz
Arm CPU
1x Cortex-A53 @ 1 GHz
MCU
8051 @ 6 KB SRAM
Speicher
256 MB SIP-DRAM
TPU
1,0 TOPS @ INT8
Speicher
1x microSD-Anschluss oder 1x SD NAND an Bord
USB
1x USB-C für Strom und Daten, USB-Pads verfügbar
CSI
1x 16P FPC-Anschluss (MIPI CSI 2-spurig)
Sensorunterstützung
5 M bei 30 fps
Ethernet
100 Mbit/s Ethernet mit PHY
Audio
Über GPIO-Pads
GPIO
Bis zu 26x GPIO-Pads
Stromversorgung
5 V/1 A
OS-Unterstützung
Linux, RTOS
Abmessungen
21 x 51 mm
Downloads
Documentation
GitHub
Wide Range Stromversorgung für Raspberry Pi
Mit dem PiEnergy Mini können Sie Ihren Raspberry Pi mit einer Spannung von 6 bis 36 V DC betreiben. Über den auf dem Board integrierten Knopf können Sie Ihren Raspberry Pi sowohl hoch- als auch herunterfahren.
Die Kommunikation mit dem Raspberry Pi läuft über GPIO4, diese Verbindung kann aber auch durch Entfernen eines Widerstands durchtrennt werden, um den Pin frei zu verwenden. Durch das ultraflache Design ist die Verwendung auch in Verbindung mit vielen Gehäusen möglich. Die Stiftleiste ist beiliegend und nicht angelötet, um den Aufbau noch flacher zuhalten.
Technische Daten
Eingangsspannung
6 bis 36 V DC
Ausgangsspannung
5,1 V
Ausgangsstrom
Bis zu 3 A (aktive Belüftung bei zusätzlich angeschlossenen Verbrauchern empfohlen)
Kabelquerschnitt am Spannungseingang
0,2-0,75 mm²
Schnittstelle zum Raspberry Pi
GPIO4
Mikrocontroller
ATtiny5
Weitere Anschlüsse
5 V Lüfteranschluss (2-Pin/2,54 mm)Lötpads für externen Ein-/Ausschalter
Kompatibel mit
Raspberry Pi 3, 4, 5
Abmessungen
23 x 56 x 11 mm
Lieferumfang
Board mit montiertem Kühlkörper
Stiftleiste (2x5)
Abstandshalter, Schraube, Mutter
Downloads
Datenblatt
Anleitung
Lo-Fi (ESP32 + LoRa-Kombination) ist die perfekte Lösung für alle, die eine drahtlose Kommunikation über große Entfernungen in einer Vielzahl von Anwendungen mit WiFi-Funktionen aufbauen möchten. LoRa bietet eine außergewöhnliche Reichweite und einfache Konnektivität und ermöglicht Ihnen die nahtlose Kommunikation mit Geräten in einer Entfernung von bis zu 5 m.
Geräte bieten neben dem WLAN-Zugang eine effiziente und vertrauenswürdige Wahl für die drahtlose Kommunikation über große Entfernungen, um Internet-Clouds zu verbinden, die sich am besten für Internet-of-Things-Anwendungen eignen und Konnektivität in abgelegenen und anspruchsvollen Umgebungen ermöglichen.
Funktionen
Gerät mit leistungsstarkem ESP32 S3 WROOM-1, das über einen Xtensa Dual-Core-32-Bit-LX7-Mikroprozessor mit bis zu 240 MHz verfügt
Integriertes WLAN & Bluetooth LE für drahtlose Konnektivität
Typ-C-Schnittstelle für Programmierung/Stromversorgung
1,14-Zoll-TFT-Display für visuelle Interaktionen
GPIO-Breakouts für den Anschluss zusätzlicher Peripheriegeräte
Breadboard-kompatibel für einfache DIY-Breadboarding-Projekte
2 separate, vom Benutzer programmierbare Tasten sowie Reset- und Boot-Tasten
3,7-V-Lithiumbatterieanschluss für einen tragbaren Anwendungsfall mit integrierter Ladeoption
Verwenden Sie das LoRa-Spreizspektrum der neuen Generation, um eine stabile Kommunikation sicherzustellen
Für LoRa höhere Geschwindigkeit und eine größere Datenübertragungsreichweite von bis zu 5 km
Anwendungen
Internet der Dinge (IoT)
Smart Home-Automatisierung
Landwirtschaftliche Automatisierung
Notfalldienste
Umweltüberwachung
Industrielle Automatisierung
Technische Daten
Mikrocontroller: ESP32 S3 WROOM-1
Drahtlose Schnittstelle: WiFi, BLE, LoRa
Protokoll: 802.11b/g/n, Bluetooth 5.0
Speichergröße: 16 MB Flash, 384 kB ROM, 8 MB SRAM
Versorgungsspannung: 5 V
Betriebsspannung: 3,3 V
Displaygröße: 1,14 Zoll
Anzeigetyp: TFT
Anzeigeauflösung: 135 x 240 Pixel
Anzeigetreiber: ST7789V
Anzeigedarstellung: RGB
Anzeigefarbe: 4k/65k/252k
Display-Leuchtdichte: 400 Cd/m²
Betriebstemperatur: -20 bis 70°C
Lagertemperatur: -30 bis 80°C
LoRa-Modulspezifikationen:
Trägerfrequenz (lizenzfreies ISM): 868 MHz
Chip: Basierend auf dem SX1262 RF-Chip
Reichweite: 5 km
Sendeleistung: 22 dBm
Empfangsempfindlichkeit: -147 dBm
Datenrate: Bis zu 62,5 kbps
Kommunikationsport: UART seriell
Downloads
Getting started guide
Hardware design files
Lieferumfang
1x Lo-Fi Board
1x Antenne (868 MHz)
ArdiPi ist die ultimative Arduino Uno-Alternative voller leistungsstarker Spezifikationen und aufregender Funktionen im Arduino Uno-Formfaktor. Sie profitieren von einer kostengünstigen Lösung mit Zugang zu den größten Support-Communitys für Raspberry Pi.
Die ArdiPi-Variante wird von Raspberry Pi Pico W angetrieben. Die integrierte Wi-Fi- und Bluetooth-Konnektivität des Boards ist ideal für IoT-Projekte oder Projekte, die drahtlose Kommunikation erfordern.
Features
Arduino Uno-Formfaktor, so dass Sie 3,3 V-kompatible Arduino-Shields anschließen können
SD-Kartensteckplatz für Speicherung und Datenübertragung
Drag-and-Drop-Programmierung mit Massenspeicher über USB
Multifunktions-GPIO-Breakout mit Unterstützung für allgemeine E/A, UART, I²C, SPI, ADC und mehr. PWM-Funktionen.
Multi-Tune-Summer, um dem Projekt einen Audioalarm hinzuzufügen
SWD-Pins-Breakout für serielles Debugging
Unterstützung mehrerer Plattformen wie Arduino IDE, MicroPython und CircuitPython.
Verfügt über HID-Unterstützung, sodass das Gerät eine Maus oder Tastatur simulieren kann
Technische Daten
Angetrieben von einem RP2040-Mikrocontroller, einem Dual-Core-Arm-Cortex-M0+-Prozessor, 2 MB integriertem Flash-Speicher und 264 KB RAM.
Integrierte drahtlose Single-Band-2,4-GHz-Schnittstellen (802.11n) für WLAN und Bluetooth 5 (LE)
WPA3 & Soft Access Point, der bis zu vier Clients unterstützt
Betriebsspannung der Pins 3,3 V und Platinenversorgung 5 V
25 Mehrzweck-GPIOs-Breakout im Arduino-Stil für einfache Peripherieschnittstellen
Unterstützung für I²C-, SPI- und UART-Kommunikationsprotokolle
2 MB integrierter Flash-Speicher
Plattformübergreifende Entwicklung und Unterstützung mehrerer Programmiersprachen
Die Portenta Breakout-Platine wurde entwickelt, um Hardware-Ingenieuren und Bastlern bei der Prototypenentwicklung und der Überprüfung von Geräteverbindungen und Kapazitäten innerhalb der Portenta-Familienboards (z.B. dem Portenta H7) zu helfen.
Es stellt alle Signale der hochdichten Steckverbinder einzeln zugänglich bereit, was es schnell und einfach macht, externe Hardwarekomponenten und Geräte wie üblich während der Entwicklung im Labor anzuschließen und zu testen.
Features
Power-ON-Taste
Boot-Modus-DIP-Schalter
Anschlüsse
USB-A
RJ45 bis zu 1Gb/s
Micro-SD-Karte
MIPI-20T-JTAG mit Trace-Fähigkeit
Stromversorgung
CR2032 RTC-Lithiumbatterie-Backup
Externer Stromversorgungs-Terminalblock
I/O
Alle Portenta High-Density-Steckverbinder-Signale werden ausgebrochen
Männliche/weibliche HD-Steckverbinder ermöglichen das Einschleifen von Breakouts zwischen Portenta und Shield, um Signale zu debuggen
Kompatibilität
Standard-Portenta-High-Density-Steckverbinder-Pinbelegung
Spezifikationen
USB-Anschluss
USB-A
Ethernet
RJ45 bis zu 1 Gb/s
Speicherkarten
Micro-SD-Karte
Debugging
MIPI-20T-JTAG mit Trace-Fähigkeit
Steckverbinder
HD Männlich/weiblich
RTC-Stromversorgungs-Batterie
CR2032
Abmessungen
164 x 72 mm
Gewicht
69 g
Downloads
Datenblatt
Schaltpläne
Pinbelegung
Die Portenta Machine Control ist eine vollständig zentralisierte, stromsparende, industrielle Steuereinheit zur Ansteuerung von Geräten und Maschinen. Zudem kann es mit dem Arduino-Framework oder anderen Embedded-Entwicklungsplattformen programmiert werden.
Dank seiner Rechenleistung ermöglicht die Portenta Machine Control eine Vielzahl von Anwendungsfällen für vorausschauende Wartung und KI. Es ermöglicht die Erfassung von Echtzeitdaten aus der Fabrikhalle und unterstützt auf Wunsch die Fernsteuerung von Anlagen, auch aus der Cloud.
Funktionen
Kürzere Time-to-Market
Erweiterung bestehender Geräte
Hinzufügen von Vernetzung für Überwachung und Steuerung
Anpassung an ihre Bedürfnisse, jeder E/A-Pin kann konfiguriert werden
Machen Sie Geräte intelligenter – bereit für die KI-Revolution
Sicherheit und Robustheit als neue Basis
Eröffnen Sie neue Geschäftsmodellmöglichkeiten (z. B. Service Angebote)
Arbeiten Sie mit Ihren Komponenten mit Hilfe fortschrittlichem HMI
Modularer Aufbau für Anpassung & Upgrades
Portenta Machine Control ermöglicht ihrem Unternehmen neue Business-as-a-Service-Modelle, indem sie die Kundennutzung von Geräten für die vorausschauende Wartung analysieren und wertvolle Produktionsdaten auswerten.
Die Portenta Machine Control ermöglicht eine Soft-SPS-Steuerung nach Industriestandard und kann an eine Reihe externer Sensoren und Aktoren über isolierte digital E/A, 4-20 mA-kompatiblen analogen E/A, 3 konfigurierbaren Temperaturkanälen und einem dedizierten I²C-Anschluss angeschlossen werden. Für die Netzwerkverbindung stehen mehrere Optionen zur Verfügung, darunter USB, Ethernet und WiFi/Bluetooth Low Energy sowie branchenspezifische Protokolle wie RS485. Alle E/A sind durch rücksetzbare Sicherungen geschützt. Das integrierte Energiemanagement wurde entwickelt, um maximale Zuverlässigkeit in rauen Umgebungen zu gewährleisten.
Der Portenta Machine Control Kern läuft über die Portenta H7-Mikrocontrollerplatine (im Lieferumfang enthalten). Ein äußerst zuverlässiges Design, das in industriellen Temperaturbereichen (-40 °C bis +85 °C) mit einer Dual-Core-Architektur betrieben wird und die keine externe Kühlung erfordert. Der Hauptprozessor bietet die Möglichkeit externe Mensch-Maschine-Schnittstellen wie Displays, Touchpanels, Tastaturen, Joysticks und Mäuse anzuschließen, um eine Vor-Ort-Rekonfiguration von Zustandsautomaten und die direkte Manipulation von Prozessen zu ermöglichen.
Das Design der Portenta Machine Control eignet sich für eine Vielzahl von Einsatzszenarien. Es ist möglich eine Auswahl der E/A-Pins per Software zu konfigurieren. Die Portenta Maschinensteuerung zeichnet sich als leistungsstarker Computer zur Vereinheitlichung und Optimierung der Produktion aus, indem eine einzige Art von Hardware alle Ihre Anforderungen erfüllen kann. Zu den herausragenden Merkmalen gehören:
Industrie Standard durch Nutzung der Leistungsfähigkeit von Portenta-Boards
DIN-Schienen kompatibles Gehäuse
Push-in-Klemmen für schnellen Anschluss
Kompaktmaße (170 x 90 x 50 mm)
Zuverlässiges Design für industrielle Temperaturanforderungen (-40 °C bis +85 °C) mit einer Dual-Core-Architektur, die keine externe Kühlung erfordert
Embedded RTC (Real Time Clock) für perfekte Synchronisation von Prozessen
Nutzen Sie die integrierten Kommunikationsschnittstellen ohne externe Komponenten
Die Portenta Machine Control kann in verschiedenen Branchen in einer Vielzahl von Maschinentypen eingesetzt werden. Darunter: Etikettiermaschinen, Form- und Versiegelungsmaschine, Kartoniermaschine, Klebemaschine, Elektroofen, industrielle Waschmaschine und Trockner, Mischer usw.
Fügen Sie die Portenta Machine Control mühelos zu Ihren bestehenden Prozessen hinzu und werden Sie Eigentümer Ihrer Lösungen auf dem Maschinenmarkt.
Leistungsbeschreibung
Prozessor
STM32H747XI Dual Cortex-M7+M4 32-bit low power Arm MCU (Portenta H7)
Eingabe
8 digitale 24 VDC
2-Kanal-Encoder
3 analoge für PT100/J/K-Temperaturfühler (3-adriges Kabel mit Kompensation)
3 Analogeingänge (4-20 mA/ 0-10 V/NTC 10K)
Ausgabe
8 digitale 24 VDC bis 0,5 A (Kurzschlussschutz)
4 analoge 0-10 V (bis zu 20 mA Ausgang pro Kanal)
Sonstige E/A
12 programmierbare Digital-E/A (24 V Logik)
Kommunikationsprotokolle
CAN-BUS
Programmierbare serielle Schnittstelle 232/422/485
Schnittstellen
Ethernet
USB-Programmieranschluss
Wi-Fi
Bluetooth Low Energy
Speicher
16 MB integrierter Flash-Speicher
8 MB SD-RAM
Abmessungen
170 x 90 x 50 mm
Gewicht
186 g
Spannungsversorgung
24 VDC +/- 20%
Steckertyp
Push-in-Klemmen für schnellen Anschluss
Betriebstemperatur
-40 °C bis +85 °C (-40 °F bis 185 °F)
Downloads
Datenblatt
Schaltpläne
Pinbelegung
Das SparkFun MicroMod mikroBUS Carrier Board nutzt die Vorteile der MicroMod-, Qwiic- und mikroBUS-Ökosysteme und ermöglicht es Ihnen, schnell Prototypen zu erstellen, indem Sie sie kombinieren. Der MicroMod M.2-Anschluss und der mikroBUS 8-Pin-Header bieten Benutzern die Freiheit, mit jedem Prozessorboard im MicroMod-Ökosystem und jedem Click-Board im mikroBUS-Ökosystem zu experimentieren. Dieses Board verfügt außerdem über zwei Qwiic-Anschlüsse, um Hunderte von Qwiic-Sensoren und Zubehör nahtlos in Ihr Projekt zu integrieren.
Der mikroBUS-Anschluss besteht aus einem Paar weiblicher 8-Pin-Header mit einer standardisierten Pin-Konfiguration. Die Pins bestehen aus drei Gruppen von Kommunikationspins (SPI, UART und I²C), sechs zusätzlichen Pins (PWM, Interrupt, Analogeingang, Reset und Chip-Select) und zwei Stromgruppen (3,3 V und 5 V).
Während ein moderner USB-C-Anschluss das Programmieren erleichtert, ist das Carrier Board auch mit einem MCP73831 Single-Cell Lithium-Ionen-/Lithium-Polymer-Lade-IC ausgestattet, mit dem Sie einen angeschlossenen LiPo-Akku mit einer Zelle aufladen können. Das Lade-IC erhält Strom über die USB-Verbindung und kann bis zu 450 mA bereitstellen, um einen angeschlossenen Akku aufzuladen.
Features
M.2 MicroMod (Prozessorboard) Anschluss
USB-C-Anschluss
3,3 V 1 A Spannungsregler
2x Qwiic-Anschlüsse
mikroBUS-Anschluss
Boot/Reset-Tasten
Ladekreis
JTAG/SWD PTH-Pins
Downloads
Schaltplan
Eagle-Dateien
Platinenabmessungen
Anschlussanleitung
Erste Schritte mit Necto Studio
mikroBUS-Standard
Qwiic Info-Seite
GitHub-Hardware-Repo
Wollten Sie schon immer ein automatisiertes Haus? Oder einen intelligenten Garten? Mit dem Arduino IoT Cloud kompatiblen Board Nicla Vision können Sie Ihr nächstes smartes Projekt bauen. Sie können Geräte verbinden, Daten visualisieren, Ihre Projekte von überall auf der Welt steuern und teilen.
Nicla Vision kombiniert einen leistungsstarken STM32H747AII6 Dual ARM Cortex M7/M4 IC Prozessor mit einer 2 MP Farbkamera, die TinyML unterstützt, sowie einem intelligenten 6-Achsen Bewegungssensor, integriertem Mikrofon und Abstandssensor. Sie können ihn problemlos in jedes Projekt einbinden, da er mit allen Arduino Portenta und MKR-Produkten kompatibel ist, vollständig in OpenMV integriert ist, MicroPython unterstützt und sowohl WiFi als auch Bluetooth Low Energy Konnektivität bietet. Er ist so kompakt – mit seinem Formfaktor von 22,86 x 22,86 mm – dass er in die meisten Szenarien passt und so wenig Energie benötigt, dass er für Standalone-Anwendungen mit einer Batterie betrieben werden kann.
All dies macht Nicla Vision zur idealen Lösung für die Entwicklung oder den Prototypenbau mit geräteinterner Bildverarbeitung und maschinellem Sehen an der Schnittstelle, für die Verfolgung von Anlagen, die Objekterkennung, die vorausschauende Wartung und vieles mehr - einfacher und schneller als je zuvor. Trainieren Sie das Erkennen von Details, damit Sie sich auf das große Ganze konzentrieren können.
Features
Winziger Formfaktor von 22,86 x 22,86 mm
Leistungsstarker Prozessor zum Hosten von Intelligenz am Rand
Ausgestattet mit einer 2 MP-Farbkamera, die TinyML unterstützt, einem intelligenten 6-Achsen-Bewegungssensor, einem Mikrofon und einem Abstandssensor
WLAN- und Bluetooth Low Energy-Konnektivität
Unterstützt MicroPython
Standalone bei Batteriebetrieb
Bestehendes Projekt mit Sensorfunktionen erweitern, MV-Prototyping beschleunigen
Alles automatisieren
Überprüfen Sie, ob jedes Produkt etikettiert ist, bevor es die Produktionslinie verlässt; Entriegeln Sie Türen nur für autorisiertes Personal und nur, wenn es die PSA korrekt trägt; verwenden Sie KI, um Nicla Vision zu trainieren, regelmäßig analoge Messgeräte zu überprüfen und Messwerte in die Cloud zu übertragen; Bringen Sie ihm bei, durstige Pflanzen zu erkennen und bei Bedarf die Bewässerung einzuschalten.Immer wenn Sie handeln oder eine Entscheidung treffen müssen, lassen Sie Nicla Vision beobachten, entscheiden und für Sie handeln.
Fühlen Sie sich gesehen
Interagieren Sie mit Kiosken mit einfachen Gesten, schaffen Sie immersive Erlebnisse, arbeiten Sie mit Cobots an Ihrer Seite. Nicla Vision ermöglicht es Computern und intelligenten Geräten, Sie zu sehen, zu erkennen, Ihre Bewegungen zu verstehen und Ihr Leben einfacher, sicherer, effizienter und besser zu machen.
Halten Sie die Augen offen
Lassen Sie Nicla Vision Ihre Augen sein: Erkennen Sie Tiere auf der anderen Seite der Farm, lassen Sie Ihre Türklingel vom Strand aus beantworten, überprüfen Sie ständig die Vibrationen oder den Verschleiß Ihrer Industriemaschinen. Es ist Ihr immer aktiver, immer präziser Ausguck, wo immer Sie ihn brauchen.
Downloads
Schematics
Datasheet
Merkmale
Integrierte Vergleichsstellenkompensation
Unterstützte Typen (bezeichnet durch NIST ITS-90): Typ K, J, T, N, S, E, B und R Vier programmierbare Temperaturalarmausgänge:
Überwachen Sie Hot- oder Cold-Junction
Temperaturen
Erkennen Sie steigende oder fallende Temperaturen
Bis zu 255 °C oder programmierbare Hysterese
Programmierbarer digitaler Filter für Temperatur
Geringer Strom
Abmessungen: 20 mm x 40 mm x 18 mm
Gewicht: 18g
Anwendung
Petrochemisches Wärmemanagement
Handmessgeräte
Wärmemanagement für Industrieanlagen
Öfen
Wärmeüberwachung für Industriemotoren
Temperaturerkennungsregale
Downloads
Eagle-Dateien
Github-Bibliothek
Datenblatt
Dieser Grove - PIR-Bewegungssensor (Passiv-Infrarot-Sensor) kann durch Bewegung verursachte Infrarotsignale erkennen. Wenn der PIR-Sensor die Infrarotenergie wahrnimmt, wird der Bewegungsmelder ausgelöst und der Sensor gibt HIGH an seinem SIG-Pin aus. Der Erfassungsbereich und die Reaktionsgeschwindigkeit können mit 2 Potentiometern auf der Platine eingestellt werden. Die Reaktionsgeschwindigkeit liegt zwischen 0,3s und 25s, der Erfassungsbereich beträgt maximal 6 Meter.
Der Grove - PIR Bewegungssensor (Passiv-Infrarot-Sensor) ist ein einfach zu bedienender Bewegungssensor mit Grove-kompatibler Schnittstelle. Durch einfaches Anschließen an das Base Shield und Programmierung kann er als geeigneter Bewegungsmelder für Arduino-Projekte verwendet werden. Der PIR-Bewegungssensor wird zum Beispiel häufig in Sicherheitsalarmsystemen und automatischen Beleuchtungsanwendungen eingesetzt.
Merkmale
Grove-kompatible Schnittstelle
Spannungsbereich: 3 V - 5 V
Größe: 20 mm x 40 mm
Erfassungswinkel: 120 Grad
Maximale Erfassungsdistanz: 6 m (standardmäßig 3 m)
Einstellbarer Erfassungsabstand und Haltezeit
Anwendungen
Bewegungsmelder
Bewegungsdetektor
Sicherheitsalarmsystem
Menschen-Detektionssystem
Technische Spezifikationen
Dimensionen
40 mm x 20 mm x 15 mm
Gewicht
12 g
Batterie
Nicht Enthalten
Spannungsbereich
3 V – 5 V
Detektionswinkel
120 Grad
Erkennungsabstand
max. 6 m (standardmäßig 3 m)
Merkmale
Wählbares Ausgabeformat: Uart oder Wiegand.
4Pins elektronische Brick-Schnittstelle
Hohe Empfindlichkeit
Spezifikationen
Abmessungen: 44 mm x 24 mm x 9,6 mm
Gewicht: 15g
Batterie: Ausschließen
Spannung: 4,75 V – 5,25 V
Arbeitsfrequenz: 125 kHz
Erfassungsabstand (maximal): 70 mm
TTL-Ausgang: 9600 Baudrate, 8 Datenbits, 1 Stoppbit und kein Prüfbit
Wiegand-Ausgabe: 26-Bit-Wiegand-Format, 1 gerades Verifizierungsbit, 24 Datenbits und 1 ungerades Verifizierungsbit
GrovePi+ wird auf dem Raspberry Pi gestapelt, ohne dass weitere Verbindungen erforderlich sind. Die Kommunikation zwischen beiden erfolgt über die I2C-Schnittstelle. Alle Grove-Module werden über das universelle 4-polige Anschlusskabel mit den universellen Grove-Anschlüssen auf dem GrovePi+-Shield verbunden.
Grove-Module arbeiten mit analogen und digitalen Signalen und können direkt an den ATMEGA328-Mikrocontroller auf dem Grove Pi+ angeschlossen werden. Der Mikrocontroller fungiert als Interpreter zwischen dem Raspberry Pi und den Grove-Sensoren. Er sendet, empfängt und führt Befehle aus, die vom Raspberry Pi gesendet werden.
Merkmale
Eine GrovePi+-Platine zusammen mit 12 beliebten Grove-Sensoren und 10 Grove-Kabeln
GrovePi+ ist kompatibel mit Raspberry Pi A+, B, B+ / 2, 3, 4.
CE-zertifiziert und kompatibel mit Linux und Win 10 IoT.
Inbegriffen
1 x Grove Pi+
1x Grove - Drehwinkelsensor
1x Grove - Geräuschsensor
1x Grove – LCD-RGB-Hintergrundbeleuchtung
1x Grove - Temperatur- und Feuchtigkeitssensor
1x Grove - Rote LED
1x Grove - Lichtsensor
1x Grove - Summer
1x Grove - Relais
1x Grove - Blaue LED
1x Hain - Knopf
1x GrovePi+ Handbuch
10x Kabel
1x Grove - Ultraschall-Ranger
1x Grove - Grüne LED
Wenn Sie die Auflösungsgrenzen des V-One erweitern möchten, helfen Ihnen diese Dosierspitzen bei der Umsetzung Ihrer experimentellen Projekte. Dieses Set enthält 4 extra feine Düsen mit einem Innendurchmesser von 0,150 mm (6 mil).
Verwenden Sie diese Düsen nicht mit Lötpaste! Es wird verstopfen!
Das DSO1511G Oszilloskop mit fortschrittlicher ARM+FPGA Architektur bietet außergewöhnliche Leistung mit einer Bandbreite von 120 MHz und einer Abtastrate von 500 MSa/s und gewährleistet Präzision und Stabilität für Profis und Enthusiasten gleichermaßen.
Seine Vielseitigkeit macht es ideal für die MCU-Fehlerbehebung, Fahrzeugreparaturen, Gerätediagnose, Heimwerkerelektronik, Netzteiltests und Wechselrichteranalyse.
Das Gerät verfügt außerdem über einen integrierten Signalgenerator, der einstellbare Wellenformen mit einer Amplitude von 2,5 V, einem Frequenzbereich von 0-2 MHz und einer Genauigkeit von 0,1 Hz ausgeben kann.
Features
120 MHz Bandbreite
500 MSa/s Abtastrate
2 MHz Signalgenerator
14 Messungen
10 mV vertikale Empfindlichkeit
Videoausgabe
FFT-Spektrum
PC-Verbindung
Technische Daten
Bandbreite
120 MHz
Abtastrate
500 MSa/s
Display
2,4" Farb-TFT (320 x 240)
Messungen
14 Typen
Vertikale Präzision
±2 %
Anstiegszeit
<3ns
Speichertiefe
128 KB
Impedanz
1 MΩ
Zeitbasis
5ns-10s
Vertikale Empfindlichkeit
10 mV/div-10 V/div
Max. Spannung
±40 V (x1)±400 V (x10)
Trigger-Modus
Auto/Normal/Single
Triggertyp
Rise/Fall
Trigger-Level
Manual/Auto
Anzeigemodus
YT/Roll
Persistenz
Keine/1s/∞
Wellenformen
Sinus/Square/Triangle/Noise
Frequenz
0-2 MHz
Stromversorgung
USB-C (5 V)
Batterie
2500 mAh Lithiumbatterie
Abmessungen
107 x 72 x 32 mm
Gewicht
166 g
Lieferumfang
1x DSO1511G Oszilloskop
1x P6100 Prüfspitze
1x Videokabel
1x USB-Kabel
1x Ringförmiger Ständer
1x Aufbewahrungstasche
1x Manual
Downloads
Manual
Das Zweikanal-Oszilloskop DSO2512G mit fortschrittlicher ARM+FPGA-Architektur bietet außergewöhnliche Leistung mit einer Bandbreite von 120 MHz und einer Abtastrate von 500 MSa/s und gewährleistet Präzision und Stabilität für Profis und Enthusiasten gleichermaßen.
Seine Vielseitigkeit macht es ideal für die MCU-Fehlerbehebung, Fahrzeugreparaturen, Gerätediagnose, Heimwerkerelektronik, Netzteiltests und Wechselrichteranalyse.
Das Gerät verfügt außerdem über einen integrierten Signalgenerator, der einstellbare Wellenformen mit einer Amplitude von 2,5 V, einem Frequenzbereich von 0-10 MHz (oder 0-2 MHz) und einer Genauigkeit von 0,1 Hz ausgeben kann.
Features
120 MHz Bandbreite
500 MSa/s Abtastrate
10 MHz Signalgenerator
2,8" Display
XY-Modus
Videoausgabe
Einzelner Auslöser
10 mV Empfindlichkeit
FFT-Spektrum
Technische Daten
Kanäle
2
Bandbreite
120 MHz
Abtastrate
500 MSa/s
Display
2,8" Farb-TFT (320 x 240)
Messungen
14 Typen
Vertikale Präzision
±2%
Anstiegszeit
<3ns
Speichertiefe
128 KB
Impedanz
1 MΩ
Zeitbasis
5ns-10s
Vertikale Empfindlichkeit
10 mV/div-10 V/div
Max. Spannung
±40 V (x1)±400 V (x10)
Trigger-Modus
Auto/Normal/Single
Triggertyp
Rise/Fall
Trigger-Level
Manual/Auto
Anzeigemodus
YT/Roll
Persistenz
Keine/1s/∞
Wellenformen
Sinus/Square/Triangle/Noise
Frequenz
0-10 MHz (sin)0-2 MHz (andere)
Stromversorgung
USB-C (5 V)
Batterie
4000 mAh Lithiumbatterie
Abmessungen
137 x 82 x 38 mm
Gewicht
286 g
Lieferumfang
1x DSO2512G Oszilloskop
2x P6100 Prüfspitzen
1x Videokabel
1x USB-Kabel
1x Ringförmiger Ständer
1x Aufbewahrungstasche
1x Manual
Downloads
Manual
Verbessern und schützen Sie Ihr Color Kit Grande mit diesem maßgeschneiderten, 3D-gedruckten Gehäuse. Dieses mit fortschrittlicher SLA-Drucktechnologie fachmännisch gefertigte Gehäuse verfügt über eine elegante grauschwarze Oberfläche, die sich mühelos in jede Umgebung einfügt.
Features
Premium-Qualität: Hergestellt mit präzisem SLA-Druck, der ein langlebiges und professionelles Finish gewährleistet.
Stilvolles Design: Die grauschwarze Farbe verleiht Ihrem Color Kit Grande einen modernen Touch.
Einfache Installation: Enthält 4 selbstschneidende Kreuzschlitzschrauben für eine sichere und problemlose Montage.
Perfekte Passform: Speziell für das Color Kit Grande entwickelt.
Lieferumfang
1x 3D-gedrucktes Gehäuse
4x Selbstschneidende Philips-Schrauben
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications.
Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels.
The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions.
Features
Arduino compatible
Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262
LoRaWAN 1.0.2 support
Ultra low power design, 21 uA in deep sleep
Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching)
Good impendence matching and long communication distance
Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel
Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures
Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing
Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information
Using Air530 GPS module with GPS/Beidou Dual-mode position system support
Specifications
Main Chip
ASR6502 (48 MHz ARM Cortex-M0+ MCU)
LoRa Chipset
SX1262
Frequency
863~870 MHz
Max. TX Power
22 ±1 dBm
Max. Receiving Sensitivity
−135 dBm
Hardware Resource
2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO
Memory
128 Kb FLASH16 Kb SRAM
Power consumption
Deep sleep 21 uA
Interfaces
1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header)
Battery
3.7 V lithium battery (power supply and charging)
Solar Energy
VS pin can be connected to 5.5~7 V solar panel
USB to Serial Chip
CP2102
Display
0.96" OLED (128 x 64)
Operating temperature
−20~70°C
Dimensions
55.9 x 27.9 x 9.5 mm
Included
1x CubeCell HTCC-AB02S Development Board
1x Antenna
1x 2x SH1.25 battery connector
Downloads
Datasheet
Schematic
GPS module (Manual)
Quick start
GitHub
The Theremin was the first music synthesizer. The Junior Theremin is our, smaller, version of that classic electronic musical instrument. As you move your hand towards and away from the wire aerial, the Theremin responds by changing the pitch of the note it is playing. It can play individual notes as well as varying the tone of a single note.
How do you use the theremin?
The wire aerial responds to the movement of your hand towards and away from it and changes the pitch of the note it plays, without actually being touched. Junior Theremin works in two modes – continuous and discrete. When you first connect the battery Junior Theremin is in continuous mode. Pressing both pushbuttons together switches between continuous and discrete modes. Discrete mode, as its name implies, plays individual or discrete notes rather than a continuously variable tone. Eight notes over a single octave are available. In discrete mode the two pushbuttons change the octave of the notes. The left-hand pushbutton (marked -) lowers the octave, and the right-hand pushbutton (marked +) raises the octave. The pushbuttons only change the octave so long as they are pressed. In continuous mode the pushbuttons have no effect.
Downloads
Manual
Dieses 5,83" große schwarz/weiße E-Paper E-Ink-Displaymodul für Raspberry Pi Pico bietet eine Auflösung von 648×480 Pixeln, eine SPI-Schnittstelle, einen geringen Stromverbrauch, einen großen Betrachtungswinkel und einen papierähnlichen Effekt ohne Strom.
Features
Keine Hintergrundbeleuchtung, der letzte Inhalt wird auch bei ausgeschaltetem Gerät noch lange angezeigt
Extrem geringer Stromverbrauch, Strom wird grundsätzlich nur zum Auffrischen benötigt
SPI-Schnittstelle, erfordert nur minimale I/O-Pins
2x Benutzertasten und 1x Reset-Taste für einfache Interaktion
Kommt mit Entwicklungsressourcen und Handbuch (Raspberry Pi Pico C/C++ und MicroPython-Beispiele)
Technische Daten
Betriebsspannung
3,3 V
Displayfarbe
Schwarz, weiß
Auflösung
648 × 480 Pixel
Graustufen
2
Schnittstelle
3-Draht-SPI, 4-Draht-SPI
Blickwinkel
>170°
Teilweise Aktualisierungszeit
N/A
Vollständige Aktualisierungszeit
5s
Umrissabmessungen
125,4 × 99,5 mm
Displaygröße
119,232 × 88,320 mm
Leistung auffrischen
26,4 mW (typ.)
Standby-Strom
<0,01 uA (fast keine)
Punktabstand
0,184 × 0,184 mm
Anwendungen
Geeignet für Preisschilder
Asset-/Ausrüstungs-Tags
Regaletiketten
Namensschild der Konferenz
Lieferumfang
1x 5,83-Zoll-E-Paper
1x Pico-ePaper-Treiberplatine
1x Abstandshalter-Paket
Downloads
Wiki
Die weltweit beliebteste ROS-Plattform
TurtleBot ist der beliebteste Open-Source-Roboter für Bildung und Forschung. Die neue Generation TurtleBot3 ist ein kleiner, kostengünstiger, vollständig programmierbarer, ROS-basierter mobiler Roboter, der modular, kompakt und anpassbar ist. Er ist für Bildung, Forschung, Hobby und Produktprototyping gedacht.
Erschwingliche Kosten
TurtleBot wurde entwickelt, um die kostenbewussten Bedürfnisse von Schulen, Labors und Unternehmen zu erfüllen. TurtleBot3 ist der günstigste Roboter unter den SLAM-fähigen mobilen Robotern, die mit einem 360°-Laser-Distanzsensor LDS-01 ausgestattet sind.
Kleine Größe
Die Abmessungen des TurtleBot3 Burger betragen nur 138 x 178 x 192 mm (L x B x H). Seine Größe ist etwa 1/4 der Größe des Vorgängers. Stellen Sie sich vor, Sie könnten TurtleBot3 in Ihrem Rucksack mitnehmen und Ihr Programm entwickeln und testen, wo immer Sie sind.
ROS Standard
Die Marke TurtleBot wird von Open Robotics verwaltet, das ROS entwickelt und pflegt. Heutzutage ist ROS die bevorzugte Plattform für alle Robotiker auf der ganzen Welt geworden. TurtleBot kann mit bestehenden ROS-basierten Roboterkomponenten integriert werden, aber TurtleBot3 kann eine erschwingliche Plattform für diejenigen sein, die mit dem Erlernen von ROS beginnen wollen.
Erweiterbarkeit
TurtleBot3 ermutigt Benutzer, seine mechanische Struktur mit einigen alternativen Optionen anzupassen: Open Source Embedded Board (als Steuerplatine), Computer und Sensoren. TurtleBot3 Burger ist eine zweirädrige Plattform mit Differentialantrieb, aber sie kann strukturell und mechanisch auf viele Arten angepasst werden: Autos, Fahrräder, Anhänger und so weiter. Erweitern Sie Ihre Ideen jenseits der Vorstellungskraft mit verschiedenen SBC, Sensoren und Motoren auf einer skalierbaren Struktur.
Modularer Aktuator für mobile Roboter
TurtleBot3 ist in der Lage, durch den Einsatz von 2 DYNAMIXELs in den Radgelenken präzise räumliche Daten zu erhalten. Die DYNAMIXEL der XM-Serie können in einem von 6 Betriebsmodi betrieben werden (XL-Serie: 4 Betriebsmodi): Geschwindigkeitsregelung für die Räder, Drehmomentregelung oder Positionsregelung für die Gelenke, usw. DYNAMIXEL kann sogar für die Herstellung eines mobilen Manipulators verwendet werden, der leicht ist, aber mit Geschwindigkeits-, Drehmoment- und Positionssteuerung präzise gesteuert werden kann. DYNAMIXEL ist eine Kernkomponente, die den TurtleBot3 perfekt macht. Er ist einfach zu montieren, zu warten, zu ersetzen und neu zu konfigurieren.
Open Control Board für ROS
Die Steuerplatine ist sowohl hardware- als auch softwareseitig für die ROS-Kommunikation offengelegt. Die Open-Source-Steuerungsplatine OpenCR1.0 ist leistungsfähig genug, um nicht nur DYNAMIXELs, sondern auch ROBOTIS-Sensoren zu steuern, die häufig für grundlegende Erkennungsaufgaben auf kostengünstige Weise verwendet werden. Verschiedene Sensoren wie z. B. Berührungssensor, Infrarotsensor, Farbsensor und eine Handvoll weiterer sind verfügbar. Das OpenCR1.0 hat einen IMU-Sensor im Inneren des Boards, so dass es die präzise Steuerung für unzählige Anwendungen verbessern kann. Das Board verfügt über 3,3 V, 5 V und 12 V Stromversorgungen, um die verfügbaren Computergeräte zu verstärken.
Starke Sensoraufbauten
TurtleBot3 Burger verwendet ein verbessertes 360°-LiDAR, eine 9-achsige Trägheitsmesseinheit und einen präzisen Encoder für Ihre Forschung und Entwicklung.
Open Source
Die Hardware, Firmware und Software des TurtleBot3 sind Open Source, was bedeutet, dass die Benutzer willkommen sind, die Quellcodes herunterzuladen, zu ändern und zu teilen. Alle Komponenten des TurtleBot3 werden aus Kostengründen im Spritzgussverfahren aus Kunststoff hergestellt, die 3D-CAD-Daten sind jedoch auch für den 3D-Druck verfügbar.
Technische Daten
Maximale Translationsgeschwindigkeit
0,22 m/s
Maximale Rotationsgeschwindigkeit
2,84 rad/s (162,72 Grad/s)
Maximale Nutzlast
15 kg
Größe (L x B x H)
138 x 178 x 192 mm
Gewicht (+ SBC + Batterie + Sensoren)
1 kg
Kletterschwelle
10 mm oder weniger
Erwartete Betriebszeit
2h 30m
Erwartete Ladezeit
2h 30m
SBC (Single Board Computer)
Raspberry Pi 4 (2 GB RAM)
MCU
32-bit ARM Cortex-M7 mit FPU (216 MHz, 462 DMIPS)
Aktuator
XL430-W250
LDS (Laser Distance Sensor)
360 Laser-Abstandssensor LDS-01 or LDS-02
IMU
3-Achsen-Gyroskop3-Achsen-Beschleunigungsmesser
Stromanschlüsse
3,3 V/800 mA5 V/4 A12 V/1 A
Erweiterungspins
GPIO 18 PinsArduino 32 Pins
Peripherie
3x UART, 1x CAN, 1x SPI, 1x I²C, 5x ADC, 4x 5-pin OLLO
DYNAMIXEL-Ports
3x RS485, 3x TTL
Audio
Mehrere programmierbare Signaltonfolgen
Programmierbare LEDs
4x Benutzer-LED
Status-LEDs
1x Board-Status-LED1x Arduino-LED1x Power-LED
Tasten und Schalter
2x Drucktasten, 1x Reset-Taste, 2x Dip-Schalter
Batterie
Lithiumpolymer 11,1 V 1800 mAh / 19,98 Wh 5C
PC-Verbindung
USB
Firmware-Upgrade
via USB / via JTAG
Netzadapter (SMPS)
Eingang: 100-240 VAC 50/60 Hz, 1,5 A @maxAusgang: 12 VDC, 5 A
Downloads
ROS Robot Programming
GitHub
E-Manual
Community
Der Arduino MKR NB 1500 ermöglicht es Ihnen, Ihr nächstes intelligentes Projekt zu entwickeln.
Haben Sie schon einmal von einem automatisierten Haus oder einem intelligenten Garten geträumt? Mit den Arduino IoT Cloud-kompatiblen Boards wird es jetzt einfach. Sie können Geräte anschließen, Daten visualisieren, Projekte von überall auf der Welt steuern und teilen. Egal, ob Sie Anfänger oder Profi sind, wir bieten eine breite Palette von Plänen an, um sicherzustellen, dass Sie die Funktionen erhalten, die Sie benötigen.
Fügen Sie Ihrem Projekt mit dem MKR NB 1500 die Narrowband-Kommunikation hinzu. Er ist die perfekte Wahl für Geräte an abgelegenen Orten ohne Internetverbindung oder in Situationen, in denen keine Stromversorgung verfügbar ist, wie z.B. bei Feldinstallationen, Fernmesssystemen, solarbetriebenen Geräten oder anderen extremen Szenarien.
Der Hauptprozessor des Boards ist ein stromsparender ARM Cortex-M0 32-Bit-SAMD21, wie auch bei anderen Boards der Arduino MKR-Familie. Die Narrowband-Konnektivität erfolgt über ein Modul von u-blox, das SARA-R410M-02B, ein stromsparender Chipsatz, der in verschiedenen Bändern des IoT-LTE-Zellbereichs arbeitet. Darüber hinaus wird die sichere Kommunikation durch den Microchip ECC508-Crypto-Chip gewährleistet. Das PCB enthält auch einen Batterielader und einen Anschluss für eine externe Antenne.
Dieses Board ist für den weltweiten Einsatz konzipiert und bietet Konnektivität in den LTE Cat M1/NB1-Bändern 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28. Zu den Betreibern, die Dienste in diesem Teil des Spektrums anbieten, gehören unter anderem Vodafone, AT&T, T-Mobile USA, Telstra und Verizon.
Spezifikationen
Der Arduino MKR NB 1500 basiert auf dem SAMD21-Mikrocontroller.
Microcontroller
SAMD21 Cortex-M0+ 32-bit low power ARM MCU (Datenblatt)
Funkmodul
u-blox SARA-R410M-02B (Zusammenfassung des Datenblatts)
Sicherheitselement:
ATECC508 (Datenblatt)
Stromversorgung des Boards (USB/VIN)
5 V
Unterstützte Batterie
Li-Po-Einzelle, 3,7 V, 1500 mAh Minimum
Betriebsspannung des Schaltkreises
3.3 V
Digitale I/O-Pins
8
PWM-Pins
13 (0 .. 8, 10, 12, 18 / A3, 19 / A4)
UART
1
SPI
1
I²C
1
Analogeingangspins
7 (ADC 8/10/12 bit)
Analogausgangspin
1 (DAC 10 bit)
Externe Unterbrechungen
8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2)
Stromstärke pro I/O-Pin
7 mA
Flash-Speicher
256 KB (internal)
SRAM
32 KB
EEPROM
No
Taktfrequenz
32.768 kHz (RTC), 48 MHz
LED_BUILTIN
6
USB
USB-Gerät in voller Geschwindigkeit und integrierter Host
Antennengewinn
2 dB
Carrier frequency
LTE bands 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28
Leistungsklasse (Funk)
LTE Cat M1/NB1: Klasse 3 (23 dBm)
Datenrate (LTE M1 Halb-Duplex)
UL 375 kbps / DL 300 kbps
Datenrate (LTE NB1 Full-Duplex)
UL 62.5 kbps / DL 27.2 kbps
Arbeitsbereich
Multiregion
Geräteposition
GNSS über Modem
Stromverbrauch (LTE M1)
min 100 mA / max 190 mA
Stromverbrauch (LTE NB1)
min 60 mA / max 140 mA
SIM-Karte
MicroSIM (nicht im Lieferumfang enthalten)
Abmessungen
67.6 x 25 mm
Gewicht
32 g
SPI
1
I²C
1
Analogeingangspins
7 (ADC 8/10/12 bit)
Analogausgangspin
1 (DAC 10 bit)
Externe Unterbrechungen
8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2)
Stromstärke pro I/O-Pin
7 mA
Flash-Speicher
256 KB (internal)
SRAM
32 KB
EEPROM
No
Taktfrequenz
32.768 kHz (RTC), 48 MHz
LED_BUILTIN
6
USB
USB-Gerät in voller Geschwindigkeit und integrierter Host
Antennengewinn
2 dB
Carrier frequency
LTE bands 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28
Leistungsklasse (Funk)
LTE Cat M1/NB1: Klasse 3 (23 dBm)
Datenrate (LTE M1 Halb-Duplex)
UL 375 kbps / DL 300 kbps
Datenrate (LTE NB1 Full-Duplex)
UL 62.5 kbps / DL 27.2 kbps
Arbeitsbereich
Multiregion
Geräteposition
GNSS über Modem
Stromverbrauch (LTE M1)
min 100 mA / max 190 mA
Stromverbrauch (LTE NB1)
min 60 mA / max 140 mA
SIM-Karte
MicroSIM (nicht im Lieferumfang enthalten)
Abmessungen
67.6 x 25 mm
Gewicht
32 g
Downloads
Eagle-dateien
Schaltpläne
Anschlussbelegung
Der Grove Piezo-Vibrationssensor eignet sich für Messungen von Flexibilität, Vibration, Aufprall und Berührung. Das Modul basiert auf dem PZT-Filmsensor LDT0-028. Wenn sich der Sensor hin und her bewegt, erzeugt der Spannungskomparator im Inneren eine bestimmte Spannung. Daher werden hohe und niedrige Pegel ausgegeben. Trotz der Tatsache, dass es eine hohe Aufnahmefähigkeit für starke Stöße aufweist, garantiert ein großer Dynamikbereich (0,001 Hz ~ 1000 MHz) auch eine hervorragende Messleistung. Schließlich können Sie die Empfindlichkeit anpassen, indem Sie das Potentiometer mit einer Schraube einstellen.
Merkmale
Standard-Groove-Buchse
Großer Dynamikbereich: 0,001 Hz bis 1000 MHz
Einstellbare Empfindlichkeit
Hohe Aufnahmefähigkeit für starke Stöße
Anwendungen
Vibrationssensor in der Waschmaschine
Weckschalter mit niedrigem Stromverbrauch
Kostengünstige Vibrationssensorik
Autoalarme
Körperbewegung
Sicherheitssysteme
Downloads
Wiki-PDF herunterladen
Grove - Piezo-Vibrationssensor Eagle-Datei
Grove – Schematischer PDF-Datei für Piezo-Vibrationssensor
Grove – Piezo-Vibrationssensor-PCB-PDF-Datei
Piezo-Vibrationssensor – Datenblatt
Der GrovePi+ ist ein benutzerfreundliches und modulares System zum Hardware-Hacken mit dem Raspberry Pi, ohne dass Löten oder Steckbretter erforderlich sind: Schließen Sie Ihre Grove-Sensoren an und beginnen Sie direkt mit der Programmierung. Grove ist eine benutzerfreundliche Sammlung von mehr als 100 kostengünstigen Plug-and-Play-Modulen, die die physische Welt erfassen und steuern. Durch die Verbindung von Grove Sensors mit Raspberry Pi wird Ihr Pi in der physischen Welt gestärkt. Mit Hunderten von Sensoren aus den Grove-Familien sind die Möglichkeiten der Interaktion endlos.
Einrichtung in 4 einfachen Schritten
Schieben Sie das GrovePi+-Board über Ihren Raspberry Pi
Verbinden Sie die Grove-Module mit der GrovePi+-Platine
Laden Sie Ihr Programm auf Raspberry Pi hoch
Beginnen Sie mit der Aufnahme der Weltdaten
Bitte beachten Sie: Raspberry Pi-Board ist nicht im Lieferumfang enthalten