Sind Sie auf der Suche nach Dosierspitzen für Materialien mit niedrigerer Viskosität? Dann sind diese Düsen genau das Richtige für Sie. Verwenden Sie sie nicht mit unserer Standardtinte oder Lötpaste ... dies führt zu einer schlechten Leistung.
Dieses Set enthält 4 extra feine Düsen mit einem Innendurchmesser von 0,100 mm (4 mil).
Mit dem Voice Interaction Satellite Kit können Sie die Reichweite Ihrer Basisstation auf jeden Raum in Ihrem Haus erweitern und es Ihnen ermöglichen, mit der Hardware zu interagieren, je nachdem, wo Sie Ihre Befehle erteilen! Sie können in Ihrem Zuhause mehrere Satelliten-Kits anordnen, um dem Basis-Kit oder jedem anderen intelligenten Lautsprecher neue Funktionen hinzuzufügen und so Ihre Sprachsteuerung auf mehrere Räume auszudehnen.
Das Voice Interaction Satellite Kit wird von einem Raspberry Pi Zero W und dem ReSpeaker 2-Mics Pi HAT angetrieben. Zusammen mit dem Kit sind ein Lautsprecher, ein Grove-Temperatur- und Feuchtigkeitssensor (SHT31), ein Grove-Relais und eine Stecktafel zum Aufhängen an der Wand oder zum Erstellen eines praktischen Ständers enthalten.
Hinweis
Alle Satelliten-Kits erfordern ein Basis-Kit (Link zum Snips Voice Interaction Base Kit) oder Raspberry Pi, um wie vorgesehen zu funktionieren.
Das UT381 Lichtmessgerät misst die Lichtintensität und zeigt die Ergebnisse in Lux oder FC an. Es verfügt über eine hohe Abtastrate von 100/s. Der geringe Stromverbrauch ermöglicht einen Dauerbetrieb von bis zu 200 Stunden. Die Ergebnisse können im Gerät gespeichert und zur weiteren Analyse, zum Drucken und Speichern auf einen PC übertragen werden.
Features
Automatischer/manueller Bereich, Datenspeicherung
Automatische Abschaltung (kündbar)
MAX/MIN-Modi
2044 legt den Datenspeicher fest
Zeigt Zeit und einstellbare Aufzeichnungsintervalle (0,5-255s) an
Auf Standardmodus zurücksetzen
Lux/FC wählbar
Technische Daten
Messung der Beleuchtungsstärke (Lux)
20 Lux
±(3%+20)
200 Lux
±(3%+8)
2000 Lux
±(3%+8)
20000 Lux
±(3%+8)
Display count
2000
Datenspeicherung
2044
Automatische Abschaltung
ca. 10 Minuten
Anzeige für niedrigen Batteriestand
ca. ≤7,1 V
Automatischer Bereich
√
Datensperre
√
MAX/MIN-Modus
√
Echtzeituhr
√
Einrichtung der automatischen Aufnahmezeit
√
USB-Schnittstelle
√
Stromversorgung
9 V Batterie (6LF22)
Display
22,5 x 32,5 mm
Abmessungen
195 x 45 x 26 mm
Gewicht
185 g
Downloads
Datasheet
Manual
Der Isolationstester DE-5050 ist ein vielseitiges Instrument zur Messung des Isolationswiderstands, des Niederwiderstands und der Wechsel-/Gleichspannung. Aufgrund seiner benutzerfreundlichen Funktionen eignet es sich für verschiedene elektrische Prüfanwendungen.
Features
Bietet fünf wählbare Prüfspannungen für unterschiedliche Prüfanforderungen
Erkennt automatisch Wechsel-/Gleichspannung und zeigt die Frequenz an, wenn die Wechselspannung 10 V überschreitet
Speichert bis zu 100 Testergebnissätze mit Datum und Uhrzeit
Schaltet sich nach 10 Minuten Inaktivität automatisch aus
Ausgestattet mit einem hintergrundbeleuchteten Display
Ermöglicht die Nullpunkteinstellung für Messungen mit niedrigem Widerstand
Automatische Berechnung und Anzeige der Dielectric Absorption Ratio (DAR) und Polarization Index (PI) während der Isolationswiderstandsprüfung
Technische Daten
Prüfspannungen
50 V, 100 V/125 V, 250 V, 500 V, 1000 V
Isolationswiderstandsbereich
Bis zu 20 GΩ bei 500 VBis zu 40 GΩ bei 1000 V
Genauigkeit der Spannungsmessung
±1%rdg±4dgt (Sinuswelle)
Abmessungen
160 x 100 x 46 mm
Gewicht
380 g (ohne Batterien)
Downloads
Datasheet
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications.
Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels.
The HTCC-AB01 (V2) is an upgraded version of the HTCC-AB01 board.
Features
Arduino compatible
Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex-M0+ Core) and SX1262
LoRaWAN 1.0.2 support
Ultra low power design, 3.5 uA in deep sleep
Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching)
Good impendence matching and long communication distance. Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel
Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures
Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing
Specifications
Main Chip
ASR6502 (48 MHz ARM Cortex-M0+ MCU)
LoRa Chipset
SX1262
Frequency
863~870 MHz
Max. TX Power
21 ±1 dBm
Max. Receiving Sensitivity
−134 dBm
Hardware Resource
1x UART1x SPI1x I²C1x SWD1x 12-bit ADC input8-channel DMA engine8x GPIO2x PWM
Memory
128 Kb FLASH16 Kb SRAM
Power consumption
Deep Sleep 3.5 uA
Interfaces
1x USB-C1x LoRa Antenna (IPEX 1.0)SH1.25; 11x 2x 2.54 Pin header1x (2x 2.54 Pin header)
Solar Energy
VS pin can be connected to 5.5~7 V solar panel
Battery
3.7 V Lithium battery (power supply and charging)
Operating temperature
−20~70°C
Dimensions
40.6 x 22.9 x 7.6 mm
Included
1x CubeCell HTCC-AB01 (V2) Development Board
1x Antenna
1x 2x SH1.25 battery connector
Downloads
Datasheet
Schematic
Quick start
GitHub
When playing a board game, do you find it annoying when you push away all the pawns with the dice? Or when friends try to cheat by manipulating the dice? With this soldering kit, this is a thing of the past. Instead of pressing a button, you activate this microprocessor-controlled dice by shaking. The 7 flashing LEDs run out slowly and the final combination is displayed flashing. The kit works with one CR2025 or one CR2032 button cell (not included).
Downloads
Manual
Mit diesem umfangreichen Komplettset können Sie jetzt in die faszinierende Welt der Elektronik einsteigen. Es enthält neben einer Oxocard Connect und einer Breadboard-Cartridge 96 Elektronikbauteile, mit denen Sie eine Vielzahl elektronischer Schaltungen aufbauen können.FeaturesKostenloser und unbegrenzter Zugriff zum Editor von nanopy.io mit einer Vielzahl von Scripts, die Sie per Knopfdruck auf deine Oxocard Connect übertragen können.Elektronikkurs mit 15 Experimenten, die Ihnen Schritt für Schritt zeigen, wie man LEDs schaltet, ein Servo anschließt, mit einem Piezo akustische Signale erzeugst und vielem mehr.Oxocard ConnectHochwertig verarbeitetes Microcontroller-Gerät mit TFT-Screen, Glasabdeckung, Joystick, USB-C sowie revolutionärem 16-Pin-Cartridge-Slot.Die Oxocard Connect stellt die nächste Generation kleiner Experimentiercomputer dar. Durch den universellen Cartridge-Steckplatz können fertige oder selbst entwickelte Platinen durch einfaches Einstecken sofort zum Leben erweckt werden. Jede Karte wird mit installierten Treibern und Demoprogrammen geliefert, die beim Einstecken automatisch geladen und gestartet werden.Breadboard CartridgeMit dem Breadboard lassen sich rasch eigene Schaltungen stecken. Hierzu steht ein Steckbrett mit 17 Reihen zur Verfügung. Anschlüsse: zwei Analog-Eingänge, fünf Digital-Ports, I²C, SPI, GND/V3.3. Zugang zur 5-V-Stromquelle des Ports. An den Digital-Pins sind rote LEDs angebracht. Es kann auch 5 V eingespiesen werden, um die Oxocard Connect ohne USB mit Strom zu versorgen.Lieferumfang1x Oxocard Connect1x Breadboard CartridgeElektronische Komponenten1x PIR-Sensor (Bewegungsmelder)1x Thermistor 10 kΩ (Temperatursensor)1x Photoresistor 10 kΩ (Lichtsensor)1x Potentiometer1x Mikroservo SG92R1x Piezo (Akustische Signale)1x RGB-LED3x LEDs (grün, gelb, rot)2x Buttons9x Widerstände75x Kabel (angewinkelt) – verschiedene Farben und Längen
Das Portenta C33 ist ein leistungsstarkes System-on-Module, das für kostengünstige Internet-of-Things (IoT)-Anwendungen entwickelt wurde. Basierend auf dem R7FA6M5BH2CBG Mikrocontroller von Renesas hat dieses Board den gleichen Formfaktor wie das Portenta H7 und ist mit diesem rückwärtskompatibel, wodurch es durch seine High-Density-Anschlüsse vollständig mit allen Schilden und Trägern der Portenta-Familie kompatibel ist.
Als kostengünstiges Gerät ist das Portenta C33 eine ausgezeichnete Wahl für Entwickler, die IoT-Geräte und -Anwendungen mit geringem Budget erstellen möchten. Ganz gleich, ob Sie ein Smart-Home-Gerät oder einen vernetzten Industriesensor entwickeln, der Portenta C33 bietet die Verarbeitungsleistung und die Konnektivitätsoptionen, die Sie benötigen, um Ihre Arbeit zu erledigen.
Mit Portenta C33 lassen sich KI-gestützte Projekte schnell und einfach umsetzen, da eine Vielzahl an gebrauchsfertigen Software-Bibliotheken und Arduino-Sketches sowie Widgets zur Anzeige von Daten in Echtzeit auf Arduino IoT Cloud-basierten Dashboards zur Verfügung stehen.
Features
Ideal für kostengünstige IoT-Anwendungen mit Wi-Fi/Bluetooth LE-Konnektivität
Unterstützt MicroPython und andere höhere Programmiersprachen
Bietet Sicherheit auf Hardwareebene auf Industrieniveau und sichere OTA-Firmware-Updates
Nutzt gebrauchsfertige Softwarebibliotheken und Arduino-Skizzen
Perfekt zum Überwachen und Anzeigen von Echtzeitdaten auf Arduino IoT Cloud-Widget-basierten Dashboards
Kompatibel mit den Arduino-Portenta- und MKR-Familien
Mit Kronenstiften für automatische Montagelinien
Kostengünstige Leistung
Portenta C33 ist zuverlässig, sicher und verfügt über eine seiner Reichweite würdige Rechenleistung. Er wurde entwickelt, um großen und kleinen Unternehmen in allen Bereichen die Möglichkeit zu bieten, auf das IoT zuzugreifen und von höheren Effizienzniveaus und Automatisierung zu profitieren.
Applikationen
Portenta C33 bietet Nutzern mehr Anwendungen als je zuvor, von der schnellen Plug-and-Play-Prototyperstellung bis hin zur Bereitstellung einer kostengünstigen Lösung für Projekte im industriellen Maßstab.
Industrielles IoT-Gateway
Maschinenüberwachung zur Verfolgung von OEE/OPE
Inline-Qualitätskontrolle und -sicherung
Überwachung des Energieverbrauchs
Gerätesteuerungssystem
Gebrauchsfertige IoT-Prototyping-Lösung
Technische Daten
Mikrocontroller
Renesas R7FA6M5BH2CBG ARM Cortex-M33:
ARM Cortex-M33 Core mit bis zu 200 MHz
512 kB Onboard-SRAM
2 MB Onboard-Flash
Arm TrustZone
Secure Crypto Engine 9
Externe Speicher
16 MB QSPI Flash
USB-C
USB-C High-Speed
Konnektivität
100 MB Ethernet-Schnittstelle (PHY)
Wi-Fi
Bluetooth Low Energy
Schnittstellen
CAN
SD-Karte
ADC
GPIO
SPI
I²S
I²C
JTAG/SWD
Sicherheit
NXP SE050C2 Sicheres Element
Betriebstemperatur
-40 bis +85 °C
Abmessungen
66,04 x 25,40 mm
Downloads
Datasheet
Schematics
Dieses Kameramodul verwendet einen SmartSens SC3336-Sensorchip mit 3 MP-Auflösung. Es zeichnet sich durch hohe Empfindlichkeit, hohes SNR und Leistung bei schwachem Licht aus und ermöglicht einen feineren und lebendigeren Nachtsicht-Bildeffekt und kann sich besser an Änderungen des Umgebungslichts anpassen. Außerdem ist es mit Platinen der Luckfox Pico-Serie kompatibel.
Spezifikationen
Sensor
Sensor: SC3336
CMOS-Größe: 1/2,8"
Pixel: 3 MP
Statische Auflösung: 2304x1296
Maximale Videobildrate: 30fps
Verschluss: Rollladen
Linse
Brennweite: 3,95 mm
Blende: F2.0
Sichtfeld: 98,3° (diagonal)
Verzerrung: <33 %
Fokussierung: Manueller Fokus
Downloads
Wiki
THSER102 ist ein Plug-and-Play-Kabelverlängerungskit für Raspberry Pi-Kameramodule. Das Kit ist mit dem Raspberry Pi-Kameramodul 3 kompatibel, zusätzlich zu Camera V2 (Version 2.1), der HQ/Global Shutter-Kamera und definierten Modi des Raspberry Pi-Kameramoduls V1.3.
Der THSER102 verlängert die Kabellänge um >10 Meter zwischen dem Raspberry Pi-Kameramodul und dem Computer mit einem Standard-LAN-Kabel.
Es ist keine Software oder Codierung erforderlich. THSER102 funktioniert so, als ob die Raspberry Pi-Kamera direkt an den Computer angeschlossen wäre.
Der THSER102 unterstützt auch erweiterte Anwendungen. Die HAT-on-HAT-Unterstützung ermöglicht die Verwendung einer weiteren HAT-Karte auf der THSER102 Rx-Karte. Die 3-Kanal-GPIO-Erweiterung ermöglicht die Erweiterung der GPIO-Kommunikation zwischen dem Kamerastandort und dem Computer.
Features
Unterstützt alle Raspberry Pi-Kameramodule, einschließlich Kameramodul 3
>10-Meter-Kabelverlängerung
Plug-and-Play
Es ist keine Softwarekonfiguration erforderlich.
Kamera funktioniert, als ob THSER102 nicht vorhanden wäre.
Erweiterte Anwendungen werden unterstützt
HUT auf HUT
3-Kanal-GPIO-Erweiterung
Lieferumfang
1x Tx-Board
1x Rx-Board
1x LAN-Kabel (2 m)
2x flache Flexkabel
1x Stiftleiste
6x Befestigungsschrauben für Rx-Board
3x längere Abstandshalter für Rx-Board
4x Befestigungsschrauben für Tx-Platine (nur für Kamera V2)
4x kürzere Abstandshalter für Tx-Board (nur für Kamera V2)
4x Befestigungsmuttern für Tx-Platine (nur für Kamera V2)
Downloads
Datasheet
Erschließen Sie sich eine Welt des interaktiven Lernens mit der robusten Hardware und Software des Science Kit R3. Mit dem Arduino Nano RP2040 Connect, dem Arduino Science Carrier R3 und einer beeindruckenden Auswahl an Sensoren haben Sie alles, was Sie für eine aufregende Bildungsreise benötigen. Unterdessen schließt die Science Journal-App mühelos die Lücke zwischen Theorie und Praxis und erleichtert die Datenerfassung, -aufzeichnung und -interpretation in Echtzeit.
Das Kit verbessert die Lernerfahrung, indem es durch spannende praktische Experimente ein besseres Verständnis komplexer physikalischer Konzepte fördert. Es fördert die wissenschaftliche Kompetenz und schärft die Fähigkeiten zum kritischen Denken durch die Bereitstellung realer Anwendungsszenarien. Mit dem intuitiven Inhaltsleitfaden können sowohl Lehrer als auch Schüler problemlos durch wissenschaftliche Untersuchungen navigieren.
Features
Praktisches experimentelles Lernen: Führen Sie physikalische Experimente durch und verwandeln Sie abstrakte physikalische Konzepte in greifbare und interaktive Erfahrungen.
Echtzeit-Datenerfassung & Analyse: Durch die Integration der Science Journal-App ermöglicht das Kit den Schülern das Sammeln, Aufzeichnen und Interpretieren von Echtzeitdaten mit mobilen Geräten und stärkt so ihre Datenkompetenz und wissenschaftlichen Untersuchungsfähigkeiten.
Lehrer- und schülerfreundliches Design: Ausgestattet mit einem vorinstallierten Programm erfordert das Kit keine Vorkenntnisse in Codierung oder Elektronik. Es verfügt außerdem über eine Bluetooth-Konnektivität für eine einfache Datenübertragung vom Arduino-Board auf die Mobilgeräte der Schüler.
Umfassendes Sensor-Ökosystem: Das Kit wird mit mehreren Sensoren geliefert, die eine breite Palette an Datenerfassungsmöglichkeiten bieten und es an sich ändernde Bildungsbedürfnisse anpassen.
Kostenlose geführte Kurse – Explore Physics: Enthält einen intuitiven Kursführer, der Lehrer und Schüler bei der Verwendung des Kits, der Präsentation und Analyse von Daten sowie der Bewertung experimenteller Ergebnisse unterstützt. Diese Kurse helfen den Studierenden auch dabei, ihre wissenschaftlichen Entdeckungen effektiv zu kommunizieren.
Umfassende Unterrichtsunterstützung: Mit seiner intuitiven Anleitung erleichtert das Arduino Science Kit R3 den Unterrichtsprozess für Lehrer. Es gibt nicht nur Anweisungen zur Verwendung des Kits, sondern hilft auch bei der Präsentation, Analyse und Auswertung von Daten und stellt so sicher, dass Schüler ihre wissenschaftlichen Entdeckungen effektiv kommunizieren.
Technische Daten
Hardware
Arduino Nano RP2040 Connect
Arduino Science Carrier R3
Integrierte Sensoren:
Luftqualität, Temperatur, Luftfeuchtigkeit & Druck
IMU: 6-Achsen-Linearbeschleunigungsmesser, Gyroskop und Magnetometer
Nähe, Umgebungslicht, Lichtfarbe
Spannungs- oder elektrische Potenzialdifferenz
Elektrischer Strom
Elektrischer Widerstand
Funktionsgeneratoren zum Sehen und Hören der Auswirkung von Frequenz, Amplitude und Phase auf eine Schallwelle
Umgebungsgeräuschintensitätssensor
Schnittstellen
2x Grove-Analogeingänge (für externen Temperaturfühler)
2x Grove I²C-Ports (für externen Distanz- und Ping-Echo-Sensor)
1x Batterie-JST-Anschluss
2x Ausgangsanschlüsse, die mit einem niedrigeren Leistungssignal von Funktionsgeneratoren (zukünftige Generation) verbunden sind
1x 3,3 V Ausgangsanschluss und Masse
2x Lautsprecheranschlüsse verbunden mit Funktionsgeneratoren
Sonstige
50 cm langes doppelseitiges Kabel (blau): Krokodilklemmen an einem Ende, Bananenstecker am anderen
20 cm doppelseitiges Kabel (schwarz): Krokodilklemmen an einem Ende, Bananenstecker am anderen
20 cm doppelseitiges Kabel (rot): Krokodilklemmen an einem Ende, Bananenstecker am anderen
VELCRO-Streifen
Silikonständer
Externer Temperaturfühlersensor
Ultraschall-Abstandssensor
Grove-Kabel 4-poliges Gehäuse mit Schloss x2 (L=200 mm)
USB-C-Kabel
50 cm doppelseitiges Kabel (gelb): Krokodilklemmen an einem Ende, Bananenstecker am anderen
2x Lautsprecher
Kabel für Batteriehalter mit JST-Stecker
Batteriehalter für vier 1V5 AA-Batterien
Der beste Weg, um mit dem Arduino MKR WiFi 1010 in die Welt der verbundenen Geräte einzutauchen.Das MKR IoT-Bundle enthält alles, was Sie benötigen, um Ihre ersten verbundenen Geräte zu bauen. Folgen Sie den 5 Schritt-für-Schritt-Anleitungen, die wir für Sie vorbereitet haben und kombinieren Sie die im Bundle enthaltenen elektronischen Komponenten, um schnell zu lernen, wie man Geräte baut, die mit der Arduino IoT-Cloud verbunden sind.Alles was Sie für IoT benötigenDieses Bundle enthält alle Hardware- und Softwarekomponenten, die Sie für den Bau Ihrer ersten IoT-Geräte benötigen, ohne dass zusätzliche Gebühren anfallen.5 IoT-Projekte bauenAlle Komponenten, die Sie benötigen, um Ihre Reise beim Bau eigener IoT-Projekte zu beginnen.Lernen Sie die Arduino IoT-Cloud kennenNicht nur Elektronik, sondern auch die Möglichkeiten, die Ihnen die Arduino IoT-Cloud bieten kann.Lieferumfang1x Arduino MKR1000 WiFi (mit aufgelöteten Headers)6x Fototransistoren1x Kippsensor1x Temperatursensor (TMP36)3x Potentiometer1x Piezokapsel10x Druckknöpfe1x DC-Motor1x Kleiner Servomotor1x Alphanumerisches LCD-Display (16x2 Zeichen)1x Optokoppler (4N35)1x H-Brücken-Motor-Treiber (L293D)2x MOSFET-Transistoren (IRF520)5x Kondensatoren 100µF70x Solid Core Jumper-Kabel1x Micro-USB-Kabel1x Steckbrett1x LED (Hellweiß)3x LEDs (Blau)1x LED (RGB)8x LED 5 mm (Rot)8x LED 5 mm (Grün)8x LED 5 mm (Gelb)1x Steckleiste männlich (4x1)1x Geflochtene Jumper-Kabel (Rot)1x Geflochtene Jumper-Kabel (Schwarz)5x Diode20x 220Ω Widerstände5x 560Ω Widerstände5x 1 KΩ Widerstände5x 4,7 KΩ Widerstände20x 10 KΩ Widerstände5x 1 MΩ Widerstände5x 10 MΩ Widerstände
Der 301T Fingerabdrucksensor ist durch den integrierten Chip in der Lage, Bilder zu sammeln und Algorithmen zu berechnen. Eine weitere bemerkenswerte Funktion des Sensors ist, dass er Fingerabdrücke unter verschiedenen Bedingungen, wie z. B. Feuchtigkeit, Lichtbeschaffenheit oder Veränderungen der Haut, erkennen kann. Dies bietet ein sehr breites Spektrum an Anwendungsmöglichkeiten, unter anderem zur Sicherung von Schlössern und Türen. Der Chip kann Daten über UART, TTL seriell und USB an den angeschlossenen Controller senden.
Technische Daten
Modell
JP2000 Sensor
Chip
32 Bit ARM Cortex-M3
Chip-Speicher
96 kB RAM, 1 MB Flash
Versorgungsspannung
4,2 - 6,0 V
Arbeitsstromverbrauch
Durchschnittlich: 40 mASpitze: 50 mA
Logiklevel
3,3 / 5 V TTL Logic
Fingerabdruckspeicherkapazität
3000 Abdrücke
Abgleichmethode
1:N Identifikation1:1 Verifizierung
Anpassbare Sicherheitsstufe
Stufe 1 - 5(Standardstufe: 3)
Falschakzeptanzrate
(auf Sicherheitsstufe 3)
Falschablehnungsrate
(auf Sicherheitsstufe 3)
Antwortzeit
Vorberechnung: Abgleich:
Baudratenunterstützung
9600 - 921600
UART-Übertragung
Keine Parität, Stopp-Bit: 1
Abmessungen
42 x 19 x 8 mm
Lieferumfang
1x Fingerabdrucksensor COM-FP-R301T
1x Kabel
Downloads
Datenblatt
Handbuch
Merkmale
Grove-kompatibel
3,5-mm-Anschluss
6 Einweg-Oberflächenelektroden
Versorgungsspannung: 3,3 V – 5 V
1000 mm Kabelleitungen
Keine zusätzliche Stromversorgung
Spezifikationen
Abmessungen: 140 mm x 100 mm x 30 mm
Gewicht: 45 g
Batterie: Ausschließen
Stückliste
1 x Grove - EMG-Detektor
1 x Grove-Kabel.
6 x Einmalelektrode
1 x DC-Jacke-zu-Taste-Anschlusskabel 1000 mm
Datenerfassung: Sondieren Sie die Umwelt ihres Gerätes mit den integrierten Temperatur-, Feuchtigkeits- und Drucksensoren und sammeln Sie Daten über Bewegungen mit der 6-Achsen-IMU sowie Licht-, Gesten- und Näherungssensorik. Fügen Sie ganz einfach weitere externe Sensoren hinzu, um noch mehr Daten aus verschiedenen Quellen über die integrierten Grove-Anschlüsse (x3) zu erfassen.
Datenspeicherung: Erfassen und speichern Sie alle Daten lokal auf einer SD-Karte oder stellen Sie eine Verbindung zur Arduino IoT Cloud her, um die Daten in Echtzeit zu erfassen, zu speichern und zu visualisieren.
Datenvisualisierung: Zeigen Sie die Sensormesswerte in Echtzeit auf dem integrierten OLED-Farbdisplay an und erstellen Sie mithilfe der integrierten LEDs und des Summers visuelle oder akustische Ausgaben.
Steuerung: Das integrierte Display erlaub eine praktische und direkte Steuerung von elektronischen Kleinspannungsgeräten über die integrierten Relais und die fünf Steuertasten.
Peak UTP05E ist ein umfassender CAT 5/5e/6-Netzwerkkabel-Analyzer mit hervorragendem Zubehör. Einfach zu bedienen und sehr schnell. Identifiziert automatisch den Kabeltyp (Straight Through, Crossover, Token Ring usw.) und überprüft alle Verbindungen. Störungen werden übersichtlich auf dem Bildschirm angezeigt und erklärt. Das Atlas IT-Team weist Sie sogar in die Konfektionierung von Standard- und Spezialkabeln mit Angabe der Aderfarben ein. Der Anzeigetyp ist ein alphanumerisches LCD (nicht hintergrundbeleuchtet).
Features
Automatische Verbindungsmustererkennung.
Schnelle Beurteilung aller 8 Adern in Ihrem Kabel.
Identifiziert fehlende Verbindungen, kurzgeschlossene Verbindungen oder falsche Verbindungen.
Zeigt die Identitätsnummer der „identifizierten“ Abschlusswiderstände an, um eine einfache Prüfung und Identifizierung mehrerer Kabelstrecken zu ermöglichen.
Kann gängige Kabelfarbcodes anzeigen, um Ihnen bei der Konfektionierung von Kabeln zu helfen.
Lieferumfang
UTP05-Instrument
2 Miniatur-Abschlusswiderstände zum Einstecken in ein anderes Ende der Kabelstrecke.
4 kurze Patchkabel zum Testen von Patchpanels und Wandsteckdosen.
24 gekennzeichnete Miniatur-Abschlusswiderstände, ideal zum Testen und Identifizieren mehrerer Kabelstrecken.
Paar RJ11-zu-RJ45-Adapter zum einfachen Testen von RJ11-basierten Verkabelungen.
RJ45-auf-8-fach-vergoldeter Krokodiladapter zum Testen nicht abgeschlossener Kabel.
Ausführliches gedrucktes Benutzerhandbuch, komplett mit farbigem Ethernet-Verkabelungsdiagramm für gängige Kabelkonfigurationen.
Alkalibatterie installiert und eine Ersatz-Alkalibatterie.
Alles wird in einer robusten, gepolsterten Tragetasche geliefert.
Technische Daten
Kategorie
Cat 5, 5e, 6 (UTP)
Verbindungstyp
RJ45-Stecker oder -Buchse (RJ11 über mitgeliefertes Adapterset)
Leitungen getestet
8 Leitungen (Abschirmung nicht getestet)
Max. Kabellänge
150 Meter (500 Fuß)
Prüfspannung
±5V
Prüfstrom
±2,5 mA
Temperaturbereich
10°C bis 50°C
Batteriebetriebsreichweite
7 V bis 13 V
Akku-Typ
GP23, L1128, MN21, V23 (12 V Alkaline)
Instrumentenabmessungen
103 x 70 x 20 mm
Abmessungen des Terminators
18 x 15 x 14 mm
Downloads
Datasheet (EN)
User Guide (DE)
Common Ethernet Wiring Diagrams
Avoid socket damage
Das ATmega328 Uno Development Board (Arduino Uno kompatibel) ist ein Mikrocontroller-Board, das auf dem ATmega328 basiert.
Es verfügt über 14 digitale Ein-/Ausgangspins (von denen 6 als PWM-Ausgänge verwendet werden können), 6 analoge Eingänge, einen 16 MHz-Keramikresonator, einen USB-Anschluss, eine Strombuchse, einen ICSP-Header und eine Reset-Taste.
Es enthält alles, was zur Unterstützung des Mikrocontrollers erforderlich ist. Schließen Sie es über ein USB-Kabel an einen Computer an oder betreiben Sie es mit einem AC-DC-Adapter oder einer Batterie, um loszulegen.
Technische Daten
Mikrocontroller
ATmega328
Betriebsspannung
5 V DC
Eingangsspannung (empfohlen)
7-12 V DC
Eingangsspannung (Grenzwerte)
6-20 V DC
Digitale I/O-Pins
14 (davon 6 mit PWM-Ausgang)
Analoge Eingangspins
6
SRAM
2 kB (ATmega328)
EEPROM
1 kB (ATmega328)
Flash-Speicher
32 kB (ATmega328), davon 0,5 kB vom Bootloader verwendet
Taktgeschwindigkeit
16 MHz
Downloads
Manual
Das X500 V2 ARF-Kit ist ein erschwingliches, leichtes und robustes professionelles Drohnen-Kit aus Kohlefaser, das einfach zusammenzubauen ist (weniger als 15 Minuten). Es wird mit dem X500 V2-Rahmenkit und vorinstallierten Motoren, Reglern, Stromverteilerplatinen und Propellern geliefert. Es ist perfekt kompatibel mit verschiedenen Flugsteuerungen wie der Holybro Pixhawk-Serie, Durandal, Pix32 V5 usw. Im Vergleich zum Vorgängermodell gibt es zahlreiche Verbesserungen.
Technische Daten
Radstand: 500 mm
Motormontagemuster: 16x16 mm
Rahmenkörper: 144x144 mm, 2 mm dick
Fahrwerkshöhe: 215 mm
Abstand zwischen Ober- und Unterplatte: 28 mm
Gewicht: 610 g
Flugzeit: ca. 18 Minuten im Schwebeflug ohne zusätzliche Nutzlast. Getestet mit 5000 mAh-Akku.
Nutzlast: 1500 g (ohne Akku)
Batterieempfehlung: 4S 3000-5000 mAh 20C+ mit XT60 Lipo-Batterie (nicht im Lieferumfang enthalten)
Lieferumfang
X500 V2 Rahmenkit
Mit vorinstallierten Elementen:
4x Motoren: Holybro 2216 KV920 Motor (4 Stück) mit XT30-Stecker
4x Regler (BLHeli S ESC 20A)
6x 1045 Propeller
Stromverteilungsplatine – XT60-Stecker für Batterie & XT30-Stecker für ESCs & Peripheriegeräte
Hinweis: Die Tiefenkamerahalterung ist separat erhältlich.
Eine SMD-Magazinschiene fasst bis zu acht SMD-Magazine. Eine bestimmte Schiene kann zur unbegrenzten Aufnahme eines projektspezifischen Magazinsatzes verwendet werden. Zeitschriften werden im rechten Winkel gehalten und können von Pixel Pump entnommen und platziert werden.
Jede SMD-Magazinschiene präsentiert bis zu acht Magazine im perfekten Winkel, damit Sie ihre Komponenten mit der Pixel Pump aufnehmen und platzieren können. Sie können diese Schienen auch verwenden, um Komponenten für bestimmte Projekte zu gruppieren. Sie sind mit rutschfesten Gummifüßen ausgestattet und für zusätzliche Stabilität beschwert.
SMD-Magazine sind spritzgegossene Behälter und eine hervorragende Möglichkeit, SMD-Teile zu organisieren und zu verbrauchen. Sie sind speziell für die Lagerung von Bauteilen und deren Bereitstellung zur Kommissionierung konzipiert. Sie können bis zu 12 mm breite und 9,5 mm hohe Bänder laden. Sie ersetzen diese schwer zu findenden Plastiktüten und sind gleichzeitig eine hervorragende Quelle für Teile, die mit Pixel Pump aufgenommen und platziert werden können.
Jede SMD-Magazinschiene präsentiert bis zu acht Magazine im perfekten Winkel, damit Sie ihre Komponenten mit der Pixel Pump aufnehmen und platzieren können. Sie können diese Schienen auch verwenden, um Komponenten für bestimmte Projekte zu gruppieren. Sie sind mit rutschfesten Gummifüßen ausgestattet und für zusätzliche Stabilität beschwert.
Ein Adapter zum Anschluss eines Servometers mit Krokodil-/Krokodilklemmen.
Dies ist eine praktische kleine Klemme zum Anschließen eines Servomotors mit 5,4-mm-Stiftleiste mithilfe von Krokodilklemmen. Es ist ideal für die Verwendung mit Boards wie dem BBC micro:bit und dem Circuit Playground Express oder Gemma von Adafruit.
Breite: 27 mm
Höhe: 35 mm
Downloads
Datasheet
MDP-M01 ist ein Display-Steuermodul, das mit einem 2,8-Zoll-TFT-Display ausgestattet ist. Das Display kann um 90 Grad gedreht werden, was für Benutzer bequem ist, um Daten und Wellenformen anzuzeigen. MDP-M01 kann Online-Anzeige und -Steuerung mit MDP-P906 Mini-Digital-Netzteilmodulen und anderen Modulen des MDP-Systems über drahtlose 2,4-GHz-Kommunikation realisieren und bis zu 6 Sub-Module gleichzeitig steuern.
Technische Daten
Bildschirmgröße
2,8" TFT
Bildschirmauflösung
240 x 320
Leistung
Micro-USB-Stromeingang oder Stromversorgung vom Submodul über dediziertes Stromkabel
Eingabe
DC 5 V/0,3 A
Andere Funktionen
Kann bis zu 6 Submodule steuernUpgrade der Formware über Micro USB
Abmessungen
107 x 66 x 13,6 mm
Gewicht
133 g
Included
1x MDP-M01 Smart Digital-Monitor
1x Kabel (2,5 mm Klinke auf Micro USB)
Downloads
User Manual v3.4
Firmware v1.32
Der Portenta H7 Lite ermöglicht es Ihnen, Ihr nächstes intelligentes Projekt zu erstellen.
Haben Sie sich jemals ein automatisiertes Haus oder einen smarten Garten gewünscht? Nun, mit den Arduino-IoT-Cloud-kompatiblen Boards ist es jetzt einfach. Das heißt: Sie können Geräte verbinden, Daten visualisieren, Projekte von überall auf der Welt steuern und teilen.
Der Portenta H7 Lite ist dem Portenta H7 sehr ähnlich, da er gleichzeitig hochgradigen Code zusammen mit Echtzeitaufgaben dank seiner beiden Prozessoren ausführen kann. Zum Beispiel ist es möglich, Code den Arduino-kompilierten Code zusammen mit MicroPython auszuführen und beide Kerne miteinander kommunizieren zu lassen. Der H7 Lite ist jedoch ein kostengünstiges Board mit H7-Funktionalitäten, das für spezifische Anwendungsfälle konfiguriert werden kann.
Eigenschaften
Dual Core – Zwei beste Prozessoren in einem, die parallel Aufgaben ausführen
AI on the Edge – So leistungsstark, dass es AI-Zustandsmaschinen ausführen kann
Anpassungsfähigkeit – Das Board ist in Volumen hochgradig anpassungsfähig
Unterstützung von hochgradigem Programmiersprachen (Micropython)
Der Portenta H7 Lite bietet doppelte Funktionalität: Er kann wie jedes andere eingebettete Mikrocontroller-Board ausgeführt werden oder als Hauptprozessor eines eingebetteten Computers.
Zum Beispiel können Sie mit dem Portenta Vision Shield Ihren H7 Lite in eine industrielle Kamera verwandeln, die in der Lage ist, auf lebendigen Videostreams Echtzeit-Maschinenlernalgorithmen auszuführen. Da der H7 Lite einfach Prozesse, die mit TensorFlow Lite erstellt wurden, ausführen kann, könnte einer der Kerne auf der Fly einen Computer Vision-Algorithmus berechnen, während der andere niedrigschwellige Operationen wie das Steuern eines Motors oder das Verhalten als Benutzeroberfläche ausführt.
Lösungen
Hochwertige industrielle Maschinen
Laborgeräte,
computergestützte Bildverarbeitung,
Programmierbare Logiksteuerungen,
Robotersteuerungen,
gerätekritische Geräte,
schneller Boot-Vorgang (in Millisekunden)
Zwei parallele Kerne
Die Portenta H7 Lite wird von einem STM32H747 Dual Core mit einem Cortex-M7, der mit 480 MHz arbeitet, und einem Cortex-M4, der mit 240 MHz betrieben wird, angetrieben. Die beiden Kerne kommunizieren über ein Remote-Prozeduraufruf-Mechanismus, mit dem Funktionen auf dem anderen Prozessor nahtlos aufgerufen werden können. Beide Prozessoren teilen sich alle on-Chip-Peripheriegeräte und können ausgeführt werden:
Arduino-Skizzen auf der ARM Mbed OS
Native Mbed-Anwendungen
MicroPython / JavaScript über einen Interpreter
TensorFlow Lite
Ein neuer Standard für Pinouts
Die Portenta-Familie fügt zwei 80-Pin-High-Density-Stecker am Boden des Boards hinzu. Dies stellt die Skalierbarkeit für eine Vielzahl von Anwendungen sicher: Erweitern Sie einfach Ihr Portenta-Board auf dasjenige, das Ihren Anforderungen entspricht.
USB-C Mehrzweckanschluss
Der Programmieranschluss des Boards ist ein USB-C-Anschluss, der auch zum Energieversorgen des Boards, als USB-Hub oder zur Energieversorgung von OTG-verbundenen Geräten verwendet werden kann.
Arduino IoT Cloud
Verwenden Sie Ihr Portenta-Board in der Arduino IoT Cloud, einer einfachen und schnellen Möglichkeit, um sichere Kommunikation für alle Ihre verbundenen Dinge zu gewährleisten.
Spezifikationen
Microcontroller
STM32H747XI Dual Cortex-M7+M4 32-Bit Low-Power ARM-MCU (Datenblatt)
Sicherheitselement (Standard)
Microchip ATECC608
Stromversorgung des Boards (USB/VIN)
5 V
Unterstützter Akku
Li-Po Einzelzelle, 3,7 V, 700 mAh Minimum (integriertes Ladegerät)
Betriebsspannung des Schaltkreises
3.3 V
Stromverbrauch
2,95 ?A im Standby-Modus (Backup-SRAM OFF, RTC/LSE ON)
Timer
22x Timer und Watchdogs
UART
4x Ports (2 mit Flusskontrolle)
Ethernet PHY
10/100 Mbps (nur über Erweiterungsport)
SD card
Schnittstelle für SD-Kartenstecker (nur über Erweiterungsport)
Betriebstemperatur
-40 °C to +85 °C
MKR Header
Verwendung von vorhandenen industriellen MKR-Shields
Hochdichte Anschlüsse
Zwei 80-polige Anschlüsse werden alle Peripheriegeräte des Boards anderen Geräten zugänglich machen
Kamera-Schnittstelle
8-Bit, bis zu 80 MHz
ADC
3x ADCs mit 16-Bit max. Auflösung (bis zu 36 Kanäle, bis zu 3,6 MSPS)
DAC
2x 12-Bit DAC (1 MHz)
USB-C
Host/Gerät, Hoch/Voll Geschwindigkeit, Leistungsabgabe
Downloads
Datenblatt
Schaltpläne