Der Pico Cube ist ein 4x4x4 LED-Würfel-HAT für den Raspberry Pi Pico mit einer Betriebsspannung von 5 VDC. Der Pico Cube, ein monochromatisches Blau mit 64 LEDs, ist eine unterhaltsame Möglichkeit, Programmieren zu lernen. Er wurde entwickelt, um Glühbetrieb mit geringem Energieverbrauch, robuster Optik und einfacher Installation auszuführen, so dass Menschen/Kinder/Benutzer die Effekte von LED-Leuchten mit einem unterschiedlichen Farbmuster durch die Kombination von Software und Hardware, d.h. Raspberry Pi Pico, kennenlernen können.
Funktionen
Standard 40 Pins Raspberry Pi Pico Header
Kommunikation über GPIO
64 hochintensive monochromatische LEDs
Einzeln ansteuerbare LEDs
Zugriff auf jede Schicht
Technische Daten
Betriebsspannung: 5 V
Farbe: Blau
Kommunikation: GPIO
LEDs: 64
Im Lieferumfang enthalten
1x Pico Cube Base PCB
4x Layer PCB
8x Pillar PCB
2x Male Berg (1 x 20)
2x Female Berg (1 x 20)
70 LEDs
Hinweis: Der Raspberry Pi Pico ist nicht im Lieferumfang enthalten.
Downloads
GitHub
Wiki
Der Raspberry Pi Pico ist eine großartige Lösung für die Steuerung von Servos. Mit der Hardware-PIO kann der Pico die Servos per Hardware steuern, ohne die Verwendung von Zeiten/Interrupts und die Nutzung der MCU zu begrenzen.
Die Ansteuerung der sechs Servos in diesem Roboterarm beansprucht nur sehr wenig MCU-Kapazität, so dass die MCU problemlos mit anderen Aufgaben betraut werden kann. Dieser 6 DOF-Roboterarm ist ein praktisches Werkzeug zum Lehren und Lernen von Robotik und Pico-Nutzung. Es gibt fünf MG996 (vier werden in der Baugruppe und einer als Reserve benötigt) und drei 25-kg-Servos (zwei werden in der Baugruppe und einer als Reserve benötigt). Beachten Sie, dass der Winkel der Servos von 0° bis 180° reicht. Alle Servos müssen vor dem Zusammenbau auf 90° voreingestellt werden (mit logisch hohem Tastverhältnis von 1,5 ms), um Schäden an den Servos während der Bewegung zu vermeiden.
Dieses Produkt enthält alle notwendigen Teile, um einen Roboterarm auf Basis von Pico und Micropython zu erstellen.
Lieferumfang
1 x Raspberry Pi Pico
1 x Raspberry Pi Pico Servo-Treiber
1 x Satz "6 DOF Roboterarm"
1 x 5 V/5 A Stromversorgung
2 x Ersatz-Servo
Downloads
GitHub
Wiki
Anleitung
Zusammenbau Video
The Naturebytes Wildlife Cam Case is the perfect weatherproof housing to take your Raspberry Pi, camera and sensors outdoors.
It is compatible with all Raspberry Pi models, it has an IR Lens to optimise motion detection, a camera strap so you can set up your ideal wildlife shots or you can take advantage of the electronics mount, with space for additional sensors, power solutions and upgrades….and it looks awesome!
Features
Weatherproof (certified IP55)
Electronics mount compatible with Raspberry Pi models (including all model A+, B, B, B+ and Zero models)
Fresnel IR lens to optimise motion detection
Clip and hinge opening for easy access to the Pi’s ports and internal components
Nylon camera attachment strap for securing outside
Can be secured with a padlock
Fasteners and spacers for attaching electronics
Rear cable access
Rear attachments for modular upgrades
No soldering required
Downloads
Assembly Guides
KrakenSDR ist ein phasenkohärenter Software Defined Radio mit fünf RTL-SDRs
KrakenSDR ist ein RX-only, fünf-Kanal Software Defined Radio (SDR) auf Basis des RTL-SDR und wurde für phasenkohärente Anwendungen und Experimente entwickelt. Phasenkohärente SDR öffnet die Tür zu interessanten Anwendungen wie Funkpeilung, passivem Radar und Beamforming. KrakenSDR kann auch als fünf separate Radios verwendet werden.
KrakenSDR ist eine verbesserte Version des vorherigen Produkts KerberosSDR. Es bietet einen fünften Empfangskanal, automatische phasenkohärente Synchronisationsfähigkeiten, Bias Tees, ein neues RF-Design mit saubererem Spektrum, USB Typ-C-Anschlüsse, ein robustes Gehäuse, aktualisierte Open-Source-DAQ- und DSP-Software und eine aktualisierte Android-App für Funkpeilung.
RTL-SDR
KrakenSDR verwendet fünf kundenspezifische RTL-SDR-Schaltungen, bestehend aus R820T2- und RTL2832U-Chips. Das RTL-SDR ist ein bekanntes, kostengünstiges Software Defined Radio (SDR), aber fünf Einheiten zusammenzuführen und sie auf demselben PC zu verwenden, macht sie nicht "phasenkohärent". Jedes wird Signale mit einem leicht unterschiedlichen Phasenversatz empfangen. Dies erschwert oder macht es unmöglich, ein hohes Maß an Präzision bei der Messung von Beziehungen zwischen Signalen zu erreichen, die an verschiedenen Antennen ankommen.
Um Phasenkohärenz zu erreichen, treibt KrakenSDR alle fünf RTL-SDR-Radios mit einer einzigen Taktsignalquelle an und enthält eine interne Kalibrierungshardware, die es ermöglicht, die Phasenbeziehung zwischen Kanälen präzise zu messen und zu korrigieren. Zusätzlich sorgt das Gesamtdesign von KrakenSDR für eine Phasenstabilität, wobei bei Wärme-Management, Treiberkonfiguration, Stromversorgung und der Reduzierung von externen Störeinflüssen besondere Sorgfalt aufgewendet wurde.
Features
Fünf-Kanal, kohärentes RTL-SDR, alle getaktet mit einem einzigen lokalen Oszillator
Eingebaute automatische Kohärenzsynchronisations-Hardware
Automatische Kohärenzsynchronisation und -verwaltung über bereitgestellte Linux-Software
24 MHz bis 1766 MHz Abstimmungsbereich (Standard R820T2 RTL-SDR-Bereich und möglicherweise höher mit gehackten Treibern)
4,5 V Bias Tee an jedem Anschluss
Kern-DAQ- und DSP-Software ist Open-Source und für einen Raspberry Pi 4 ausgelegt
Funkpeilungssoftware für Android (kostenlos für nichtkommerzielle Nutzung)
Anwendungen
Physische Lokalisierung eines unbekannten Senders von Interesse (z.B. illegaler oder störender Rundfunk, Rauschübertragungen oder einfach aus Neugier)
HAM-Radio-Experimente wie Fuchsjagden oder Überwachung von Repeaternmissbrauch
Verfolgung von Vermögenswerten, Wildtieren oder Haustieren außerhalb der Netzabdeckung durch den Einsatz von Low-Power-Beacons
Lokalisierung von Notruf-Beacons für Such- und Rettungsteams
Lokalisierung verlorener Schiffe über VHF-Radio
Passive Radarerkennung von Flugzeugen, Booten und Drohnen
Verkehrsdichtemonitoring über passives Radar
Beamforming
Interferometrie für Radioastronomie
Technische Daten
Bandbreite
2,56 MHz
RX-Kanäle
5
Frequenzbereich
24-1766 MHz
Radio-Tuner
5x R820T2
Radio-ADC
5x RTL2832U
ADC-Bit-Tiefe
8 Bit
Oszillatorstabilität
1 PPM
Typischer Stromverbrauch
5 V/2,2 A (11 W)
Gehäusetyp
Robuste CNC-Aluminium
Abmessungen
177 x 112,3 x 25,9 mm
Gewicht
560 g
Lieferumfang
1x KrakenSDR (vollständig montiert und installiert) mit Aluminiumgehäuse
1x Handbuch
Erforderlich
USB-Typ-C-Kabel
5 V/2,4 A USB-Typ-C-Netzteil
Antennen
Raspberry Pi 4 (für die Berechnung)
Android-Telefon/-Tablet mit mobilen Hotspot-Fähigkeiten (mit Richtungsermittlung)
Downloads
Wiki
Android-App
Basierend auf den SparkFun GPS-RTK2-Designs legt das SparkFun GPS-RTK-SMA die Messlatte für hochpräzises GPS höher und ist das neueste in einer Reihe von leistungsstarken RTK-Boards mit dem ZED-F9P-Modul von u-blox. Das ZED-F9P ist ein Spitzenmodul für hochgenaue GNSS- und GPS-Ortungslösungen, einschließlich RTK mit einer dreidimensionalen Genauigkeit von 10 mm. Mit dieser Karte werden Sie in der Lage sein, die X-, Y- und Z-Position Ihres (oder eines beliebigen Objekts) innerhalb der Breite Ihres Fingernagels zu bestimmen! Das ZED-F9P ist einzigartig, da es sowohl als Rover als auch als Basisstation eingesetzt werden kann. Durch die Verwendung unseres praktischen Qwiic-Systems ist kein Löten erforderlich, um ihn mit dem Rest Ihres Systems zu verbinden. Dennoch haben wir die Pins im 0,1"-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Wir haben eine wiederaufladbare Backup-Batterie eingebaut, um die letzte Modulkonfiguration und die Satellitendaten für bis zu zwei Wochen verfügbar zu halten. Diese Batterie hilft beim "Warmstart" des Moduls und verkürzt die Zeit bis zur ersten Reparatur drastisch. Das Modul verfügt über einen "Survey-in"-Modus, der es ermöglicht, das Modul als Basisstation zu verwenden und RTCM 3.x-Korrekturdaten zu erzeugen. Basierend auf Ihrem Feedback haben wir den u.FL-Stecker ausgetauscht und einen SMA-Stecker in diese Version des Boards eingebaut.
Die Anzahl der Konfigurationsmöglichkeiten des ZED-F9P ist unglaublich! Geofencing, variable I2C-Adresse, variable Update-Raten, sogar die hochpräzise RTK-Lösung kann auf 20Hz erhöht werden. Der GPS-RTK2 hat sogar fünf Kommunikationsanschlüsse, die alle gleichzeitig aktiv sind: USB-C (der sich als COM-Port enumeriert), UART1 (mit 3,3V TTL), UART2 für den RTCM-Empfang (mit 3,3V TTL), I2C (über die beiden Qwiic-Anschlüsse oder herausgebrochene Pins) und SPI.
SparkFun hat außerdem eine umfangreiche Arduino-Bibliothek für u-blox-Module geschrieben, um das GPS-RTK-SMA einfach über unser Qwiic Connect System auszulesen und zu steuern. Lassen Sie NMEA hinter sich! Verwenden Sie eine viel leichtere binäre Schnittstelle und gönnen Sie Ihrem Mikrocontroller (und seinem einen seriellen Port) eine Pause. Die SparkFun Arduino-Bibliothek zeigt, wie man Breitengrad, Längengrad, sogar Kurs und Geschwindigkeit über I2C auslesen kann, ohne dass ständige serielle Abfragen nötig sind.
Features
Gleichzeitiger Empfang von GPS, GLONASS, Galileo und BeiDou
Empfang der Bänder L1C/A und L2C
Spannung: 5 V oder 3,3 V, aber alle Logik ist 3,3 V
Strom: 68 mA - 130 mA (variiert mit Konstellationen und Tracking-Status)
Zeit bis zum ersten Fix: 25 s (kalt), 2 s (heiß)
Max Navigation Rate:
PVT (Basisortung über UBX-Binärprotokoll) - 25 Hz
RTK - 20 Hz
Raw - 25 Hz
Horizontale Positionsgenauigkeit:
2,5 m ohne RTK
0,010 m mit RTK
Max. Höhe: 50 km
Max Geschwindigkeit: 500 m/s
Gewicht: 6,8 g
Abmessungen: 43,5 mm x 43,2 mm
2 x Qwiic-Stecker
Das Arduino Student Kit ist ein hands-on, Schritt-für-Schritt Fernlernwerkzeug für Schüler ab 11 Jahren: Lerne die Grundlagen der Elektronik, Programmierung und Codierung von Zuhause aus. Keine Vorkenntnisse oder Erfahrungen sind nötig, da das Kit dich durch alle Schritte führt. Lehrkräfte können ihre Klassen mit Hilfe der Kits auch von Fernunterricht aus unterrichten und Eltern können das Kit als homeschooling Werkzeug verwenden, damit ihr Kind in eigenem Tempo lernen kann. Jeder wird durch geführte Lektionen und offene Experimente Selbstvertrauen in der Programmierung und Elektronik gewinnen.
Lerne die Grundlagen der Programmierung, Codierung und Elektronik, einschließlich Strom, Spannung und digitaler Logik. Keine Vorkenntnisse oder Erfahrungen sind nötig, da das Kit dich durch alle Schritte führt.
Du bekommst alle notwendigen Hardware- und Softwarekomponenten für eine Person, sodass es ideal für Fernunterricht, homeschooling und Selbstlernen ist. Es gibt Schritt-für-Schritt Lektionen, Übungen und für ein vollständiges und gründliches Erlebnis gibt es auch zusätzliche Inhalte wie Erfindungshighlights, Konzepte und interessante Fakten über Elektronik, Technologie und Programmierung.
Lektionen und Projekte können je nach individuellen Fähigkeiten angepasst werden, sodass Schüler von Zuhause aus auf ihrem eigenen Niveau lernen können. Das Kit kann auch in verschiedene Fächer wie Physik, Chemie und sogar Geschichte integriert werden. Tatsächlich gibt es genug Inhalt für ein gesamtes Semester.
Wie Lehrkräfte das Kit für den Fernunterricht verwenden können
Die Online-Plattform enthält alle Inhalte, die man für den Fernunterricht benötigt: exklusive Lerninhalte, Tipps für den Fernunterricht, neun 90-minütige Lektionen und zwei offene Projekte. Jede Lektion baut auf der vorherigen auf und bietet eine weitere Gelegenheit, um die bereits gelernten Fähigkeiten und Konzepte anzuwenden. Schüler erhalten auch ein Logbuch, das sie bei der Arbeit an den Lektionen ausfüllen.
Der Anfang jeder Lektion bietet eine Übersicht, geschätzte Fertigstellungszeiten und Lernziele. Während jeder Lektion gibt es Tipps und Informationen, die das Lernerlebnis erleichtern werden. Wichtige Antworten und Erweiterungsideen werden ebenfalls bereitgestellt.
Wie das Kit Eltern hilft, ihre Kinder zu Hause zu unterrichten
Dies ist Ihr praktisches, schrittweises Fernlernwerkzeug, mit dem Ihr Kind die Grundlagen der Programmierung, des Codierens und der Elektronik zu Hause lernen kann. Als Eltern benötigen Sie keine Vorkenntnisse oder Erfahrungen, da Sie schrittweise angeleitet werden. Das Kit ist direkt in den Lehrplan eingebunden, so dass Sie sicher sein können, dass Ihre Kinder das lernen, was sie sollten, und es bietet die Möglichkeit, dass sie selbstbewusst in Programmierung und Elektronik werden. Sie helfen ihnen auch dabei, wichtige Fähigkeiten wie kritisches Denken und Problemlösung zu erlernen.
Selbstlernen mit dem Arduino Student Kit
Schüler können dieses Kit nutzen, um sich die Grundlagen der Elektronik, Programmierung und Codierung selbst beizubringen. Da alle Lektionen schrittweise Anweisungen folgen, ist es einfach für sie, sich durchzuarbeiten und selbstständig zu lernen. Sie können in ihrem eigenen Tempo arbeiten, Spaß an allen realen Projekten haben und ihr Selbstvertrauen dabei steigern. Sie benötigen keine Vorwissen, da alles klar erklärt wird, die Codierung vorgeschrieben ist und es ein Vokabular von Konzepten gibt, auf das sie sich beziehen können.
Das Arduino Student Kit wird mit mehreren Teilen und Komponenten geliefert, die während des Kurses zum Bau von Schaltungen verwendet werden.
Im Kit enthalten
Zugangscode zu exklusivem Online-Inhalt, einschließlich Lernanleitungen, schrittweisen Lektionen und zusätzlichem Material wie Ressourcen, Erfindungsschwerpunkten und einem digitalen Logbuch mit Lösungen.
1x Arduino Uno
1x USB-Kabel
1x Board-Montagebasis
1x Multimeter
1x 9 V Batterieclip
1x 9 V Batterie
20x LEDs (5x rot, 5x grün, 5x gelb und 5x blau)
5x Widerstände 560 Ω
5x Widerstände 220 Ω
1x Breadboard 400 Punkte
1x Widerstand 1 kΩ
1x Widerstand 10 kΩ
1x kleiner Servomotor
2x Potentiometer 10 kΩ
2x Knopf-Potentiometer
2x Kondensatoren 100 uF Solid-Core-Jumper-Drähte
5x Drucktasten
1x Fototransistor
2x Widerstände 4,7 kΩ
1x Jumper-Draht schwarz
1x Jumper-Draht rot
1x Temperatursensor
1x Piezo
1x Jumper-Draht weiblich zu männlich rot
1x Jumper-Draht weiblich zu männlich schwarz
3x Muttern und Bolzen
Der auf Thermodirekttechnologie basierende Niimbot D110 Etikettendrucker ermöglicht das Drucken ohne Tinte, Toner oder Farbbänder, was ihn im Vergleich zu herkömmlichen Druckern zu einer kostengünstigen Lösung macht. Durch seine kompakte Größe und sein geringes Gewicht lässt er sich leicht transportieren und passt problemlos in jede Tasche.
Dank der Bluetooth-Konnektivität und dem eingebautem 1500-mAh-Akku können Sie mit diesem kabellosen Mini-Drucker aus einer Entfernung von bis zu 10 Metern drucken und sind somit auch unterwegs flexibel, egal ob Sie von Ihrem Smartphone oder Tablet aus drucken.
Die "Niimbot"-App (verfügbar für iOS und Android) bietet eine Vielzahl von kostenlosen Vorlagen für die individuelle Gestaltung der Etiketten.
Technische Daten
Modell
D110_M (verbesserte Version 2024)
Material
ABS
Auflösung
203 DPI
Druckgeschwindigkeit
30-60 mm/s
Druckbreite
12-15 mm
Drucktechnologie
Thermisch
Betriebstemperatur
5°C ~ 45°C
Batteriekapazität
1500 mAh
Ladeschnittstelle
USB-C
Ladezeit
2 Stunden
Verbindung
Bluetooth 4.0
Drahtlose Entfernung
10 m
Abmessungen
98 x 76 x 30 mm
Gewicht
149 g
Lieferumfang
1x Niimbot D110 Etikettendrucker
1x Etikettenrolle (12 x 40 mm)
1x USB-Kabel
1x Manual
Downloads
iOS App
Android App
Der Solar Power Manager ist mit allgemeinen 6~24 V-Solarmodulen kompatibel. Es kann die wiederaufladbaren 18650-Lithium-Ionen-Akkus über ein Solarpanel oder eine USB-Typ-C-Verbindung aufladen und bietet einen geregelten 5 V/3 A-Ausgang (mit Unterstützung mehrerer Protokolle, einschließlich PD/QC/FCP/PE/SFCP).
Das Modul verfügt über die MPPT-Funktion (Maximum Power Point Tracking) und mehrere Schutzschaltungen und ist daher in der Lage, den Betrieb mit hoher Effizienz, Stabilität und Sicherheit aufrechtzuerhalten. Es eignet sich für solarbetriebene, stromsparende IoT- und andere Umweltschutzprojekte.
Features
Unterstützt die MPPT-Funktion (Maximum Power Point Tracking) und maximiert so die Effizienz des Solarpanels
Flexibles Aufladen des Akkus: über Solarpanel oder USB-C-Netzteil
Kompatibel mit 6~24 V-Solarmodulen, DC-002-Klinkeneingang oder Schraubklemmeneingang
Onboard-MPPT-SET-Schalter, wählen Sie den Pegel nahe am Eingangspegel aus, um die Ladeeffizienz zu verbessern
Eingebauter Aluminium-Elektrolytkondensator und SMD-Keramikkondensator zur Reduzierung der Welligkeit und stabile Leistung
Eingebauter Batteriehalter, unterstützt 3x 18650 wiederaufladbare Li-Ionen-Batterien
Mehrere LED-Anzeigen zur Überwachung des Status von Solarpanel und Batterie
Multi-Schutzschaltungen: Überladung / Tiefentladung / Rückwärtssicher / Überhitzung / Überstrom, stabil und sicher in der Anwendung
Technische Daten
Solar In
6~24 V (standardmäßig 1 V)
Aufladung
USB
Batterie
3x 18650 Li-Ionen-Akku (NICHT im Lieferumfang enthalten)
USB-Eingang
5 V (USB-C, mit PD-Schnellladeunterstützung)
5-V-Ausgang
5 V/3 A (USB-OUT, USB-C)
Abschaltspannung neu laden
4,2 V ±1 %
Überentladungsschutzspannung
3,0 V ±1 %
Effizienz beim Aufladen von Solarmodulen
~78 %
USB-Ladeeffizienz
~93 %
Batterien steigern die Effizienz im Freien
~90 %
Ruhestrom (max.)
Gehäuse
Metallgehäuse
Betriebstemperatur
-40°C ~ 85°C
Abmessungen
119,0 x 71,0 x 25,2 mm
Lieferumfang
1x Solar Power Manager (C)
1x Adapter
Downloads
Wiki
Erstellen Sie mit diesem Kit Ihre ersten IoT-Geräte durch die nahtlose Integration von Hardware und Software, ohne sich in komplexe Theorien zu vertiefen.
Plug and Make Kit ist der einfachste Weg, mit Arduino zu beginnen. Es enthält alles, was Sie für Ihre allerersten sieben Projekte benötigen – sowie viele weitere, die unsere Community teilt und die Sie selbst erfinden können!
Wetterbericht: Lassen Sie sich nie wieder vom Regen überraschen, mit einer visuellen Erinnerung, bei Bedarf einen Regenschirm mitzunehmen
Sanduhr: Wer braucht schon eine Eieruhr? Passen Sie Ihre eigene digitale Sanduhr an
Eco Watch: Stellen Sie sicher, dass Ihre Pflanzen bei perfekter Temperatur und Luftfeuchtigkeit gedeihen
Gamecontroller: Steigen Sie mit Ihrem eigenen HID-Gamepad (Human Interface Device) auf ein höheres Level
Sonic Synth: Kommen Sie Ihrem Beruf als Rockstar, DJ oder Toningenieur einen Schritt näher!
Intelligente Lichter: Sorgen Sie mit Ihrer eigenen intelligenten Lampe für Stimmung
Berührungslose Lampe: Steuern Sie Lichter mit einer einfachen Geste
Jede Idee ist Inspiration für eine unterhaltsame Aktivität, die Ihnen nicht nur die Grundlagen der Heimwerkerelektronik vermittelt, sondern Ihnen auch ein großartiges Erfolgserlebnis vermittelt. Sie können auch Technologie machen!
Mit den innovativen Modulino-Knoten verbinden Sie diese einfach nacheinander über den integrierten Qwiic-Anschluss des Arduino Uno R4 WiFi. Durch die Verwendung einer der Arduino-Cloud-Vorlagen können Sie Ihr Konzept schnell in ein voll funktionsfähiges Projekt umwandeln.
Features
Keine zusätzlichen Werkzeuge erforderlich, alles, was Sie brauchen, um Ihre Reise zu beginnen, ist im Kit enthalten.
Kein Steckbrett und kein Löten erforderlich.
Erstellen Sie in weniger als 45 Minuten ein voll funktionsfähiges IoT-Projekt und verstehen Sie dessen Funktionsweise.
Beginnen Sie mit dem Projekt, das Sie interessanter finden. Sie definieren Ihren eigenen Lernpfad.
Lernen Sie weiter und arbeiten Sie an Ihren Projekten von jedem angeschlossenen Computer aus mithilfe des Online-Arduino-Ökosystems.
Modulino
Modulino sind Sensoren und Aktoren, die einfach über den integrierten Qwiic-Anschluss des Uno R4 WiFi verbunden werden. Für komplexere Projekte können Sie mehrere anschließen und müssen sich nie fragen, welche Seite wo hingehört, da der Stecker polarisiert ist.
Modulino Knopf: für superfeine Werteinstellungen
Modulino Pixel: 8 LEDs, die hell leuchten, dimmen oder die Farbe ändern
Modulino Abstand: ein Flugzeit-Näherungssensor zur präzisen Messung von Entfernungen
Modulino Bewegung: zur perfekten Erfassung von Bewegungen wie Nicken, Rollen oder Neigen
Modulino Summer: zum Erzeugen eigener Alarmtöne oder einfacher Melodien
Modulino Thermo: ein Sensor für Temperatur- und Feuchtigkeitsdaten
Modulino Button: 3 Button für die schnelle Projektnavigation
Technische Daten
Board inklusive
Arduino Uno R4 WiFi
Modulino-Knoten
Kommunikation
I²C (über Qwiic-Anschluss)
Betriebsspannung
3,3 V
Modulino-Knoten enthalten
Modulino Bewegung
LSM6DSOXTR
0x6A (0x6B)
Modulino Abstand
VL53L4CDV0DH/1
0x29
Modulino Thermo
HS3003
0x44
Modulino Knopf
PEC11J (STM32C011F4 für I²C-Kommunikation)
0x76 (Adresse kann per Software geändert werden)
Modulino Summer
PKLCS1212E4001-R1 (STM32C011F4 für I²C-Kommunikation)
0x3C (Adresse kann per Software geändert werden)
Modulino Pixel
8 LC8822-2020 (STM32C011F4 für I²C-Kommunikation)
0x6C (Adresse kann per Software geändert werden)
Modulino Button
3 Drucktasten plus 3 gelbe LEDs (STM32C011F4 für I²C-Kommunikation)
0x7C (Adresse kann per Software geändert werden)
Lieferumfang
1x Arduino Uno R4 WiFi
1x Modulino-Basis
7x Modulino-Sensoren
1x USB-C-Kabel
7x Qwiic-Kabel
24x Schrauben M3 (10 mm)
20x Muttern M3
4x Metallabstandshalter
Downloads
Datasheet
Schematics
Dieses vielseitige Mikroskop mit verbessertem Plus-Stativ deckt einen großen Vergrößerungsbereich (60-240x, 18-720x, 1560-2040x) mit 3 Objektiven ab. Mit diesem digitalen Mikroskop können Sie Pflanzen, Insekten, Edelsteine und Münzen untersuchen oder elektronische Arbeiten wie Reparaturen oder die Herstellung von Leiterplatten ausführen.
Features
Verbesserter Plus-Ständer, die gespleißte Grundplatte, die sich leicht zerlegen und zusammenbauen lässt
In eine große Basis verwandeln, von 18 x 20 cm bis 40 x 30 cm
Fügen Sie einen Werkzeughalter und eine Ablage an der Unterseite hinzu, um Ihren Schreibtisch aufgeräumt zu halten
Ein Paar Löthilfshände zum Sichern der Leiterplatte oder anderer Gegenstände
Ein antistatisches und hochtemperaturbeständiges Silikonpad/Lötmatte, damit Sie Ihre Arbeit besser erledigen können
Die Pro Metal Stands verfügen über einen stabilen Metallständer, der in verschiedene Richtungen und Winkel verstellbar ist
3-Linsen-Digital-Mikroskop, mit dem Sie Objekte von Löt- und Reparaturarbeiten bis hin zu Münzen und sogar biologischen Objektträgern beobachten können.
Objektiv A (18-720x)
Objektiv D (1800-2040x)
Objektiv L (60-240x)
Beobachtungsentfernung:
Objektiv A (12-320 mm)
Objektiv L (90-300 mm)
Objektiv D (4-5 mm)
Technische Daten
AD246SM-Plus
AD249SM-Plus
Vergrößerung
Objektiv A
18-720
18-720
Fokusbereich
12-320 mm
12-320 mm
Objektiv D
1800-2040
1800-2040
Fokusbereich
4-5 mm
4-5 mm
Objektiv L
60-240
60-240
Fokusbereich
90-300 mm
90-300 mm
Bildschirmgröße
7 Zoll (17,8 cm)
10 Zoll (25,7 cm)
Videoauflösung (max.)
UHD 2880x2160 (24fps)
UHD 2880x2160 (24fps)
Videoformat
MP4
MP4
Bildformat
JPG
JPG
Bildauflösung
5600x2400 (mit Interpolation)
5600x2400 (mit Interpolation)
Bildrate
Max. 120fps
Max. 120fps
HDMI-Ausgang
Ja (unterstützt Dual-Screen-Anzeige)
Ja (nur HDMI-Monitoranzeigen)
PC-Ausgang
Ja
Ja
Standgröße
30 x 40 x 33 cm
30 x 40 x 33 cm
Lieferumfang
1x Andonstar AD246SM-Plus Digital-Mikroskop
3x Objektive (A, D & L)
1x Metallständer mit 2 LEDs
1x Lötmatte
1x Träger
1x Säule
1x Werkzeughalter
1x Helfende Hand beim Löten
1x Objektträgerhalter
1x 32 GB microSD-Karte
1x USB-Kabel
1x Schalterkabel
1x HDMI-Kabel
1x Fernbedienung
5x Vorbereitete Objektträger
1x Beobachtungsbox
1x Pinzette
1x Manual
Downloads
Manual
Software
Das OWON XDM1241 ist ein schnelles, hochpräzises digitales True RMS Tisch-Multimeter mit einem hochauflösenden 3,5-Zoll-LCD und 50.000 Counts. Seine Gleichspannungsgenauigkeit beträgt bis zu 0,05% und es kann bis zu 65 Werte pro Sekunde messen.
Features
3,5" hochauflösendes LCD (480x320 Pixel)
55.000 Counts
DC-Spannungsgenauigkeit bis zu 0,05%
Bis zu 65 Messwerte pro Sekunde
Zweizeilige Anzeige unterstützt
Trendanalyse im Diagrammmodus zugänglich
AC True RMS-Messungen (Bandbreite: 20 Hz – 1 kHz)
SCPI-Unterstützung: Fernsteuerung des Multimeters über PC-Software über USB-Anschluss
Datenaufzeichnungsfunktion: Sie können die gemessenen Daten im internen Speicher aufzeichnen und die aufgezeichneten Daten dann mit Ihrem Computer lesen und verarbeiten.
Technische Daten
Messbereich
Auflösung
Genauigkeit
Gleichspannung
50.000 mV
0,001 mV
0,1% +10
500,00 mV
0,01 mV
0,05% +5
5,0000 V
0,0001 V
0,05% +5
50.000 V
0,001 V
0,05% +5
500,00 V
0,01 V
0,1% +5
1000,0 V
0,1 V
0,1% +10
Wechselspannung
500 mV ~ 750 V
20 Hz ~ 45 Hz
1% +30
45 Hz ~ 65 Hz
0,5% +30
65 Hz ~ 1 kHz
0,7% +30
Gleichstrom
500 uA
0,01 uA
0,15% +20
5000 uA
0,1 uA
0,15% +10
50 mA
0,001 mA
0,15% +20
500 mA
0,01 mA
0,15% +10
5 A
0,0001 A
0,5% +10
10 A
0,001 A
0,5% +10
Wechselstrom
500 uA ~ 500 mA
20 Hz ~ 1 KHz
0,5% +20
5 A ~ 10 A
1,5% +20
Widerstand
500 Ω
0,01 Ω
0,15% +10
5 KΩ
0,0001 KΩ
0,15% +5
50 KΩ
0,001 KΩ
0,15% +5
500 kΩ
0,01 kΩ
0,15% +5
5 MΩ
0,0001 MΩ
0,3% +5
50 MΩ
0,001 MΩ
1% +10
Häufigkeit
10.000 Hz ~ 60 MHz
/
±(0,2% +10)
Kapazität
50nF ~ 500uF
/
2,5% +10
5mF ~ 50mF
5% +10
Diode
3,0000 V
0,0001 V
/
Kontinuität
1000 Ω
0,1 Ω
Einstellbarer Schwellenwert
Temperatur
Typ K, PT100
Max. Anzeige
55.000 Counts
Datenprotokollierungsfunktion
Protokollierungsdauer
15 ms ~ 9999,999 s
Protokollierungslänge
1.000 Punkte
Anzeige
3,5" TFT LCD (480x320 Pixel)
Stromversorgung
Lithium-Akku über USB-C oder 5 V DC Eingang
Abmessungen
200 x 88 x 150 mm
Gewicht
ca. 0,5 kg
Lieferumfang
1x OWON XDM1241 Multimeter
2x Messleitungen
1x USB-Kabel
1x USB auf DC Kabel
1x Manual
Downloads
Programming Manual
PC Software
Die Raspberry Pi SSD bietet herausragende Leistung für I/O-intensive Anwendungen auf dem Raspberry Pi 5 und anderen Geräten, einschließlich superschneller Startzeiten beim Booten von der SSD.
Es handelt sich um eine zuverlässige, reaktionsschnelle und leistungsstarke PCIe Gen 3-konforme SSD, die eine schnelle Datenübertragung ermöglicht und auch mit einer Kapazität von 512 GB erhältlich ist.
Features
40k IOPS (4 kB zufällige Lesevorgänge)
70k IOPS (4 kB zufällige Schreibvorgänge)
Downloads
Datasheet
Dieses ESP32 S3 7-Zoll-IPS 5-Punkt-kapazitives Touch-Display mit einer ultrahohen Auflösung von 1024 x 600 Pixel ist ideal für IoT-Anwendungen. Es ist ideal für Anwendungen wie die Heimautomation. Eine integrierte SD-Karte ermöglicht die Aufzeichnung/Wiedergabe gespeicherter Daten. Es gibt außerdem zwei Mabee/Grove-Anschlüsse, um verschiedene Sensoren an dieses Board anzuschließen und so im Handumdrehen persönliche Prototypenprojekte zu erstellen.
Technische Daten
Controller: ESP32-S3-WROOM-1, PCB-Antenne, 16 MB Flash, 8 MB PSRAM, ESP32-S3-WROOM-1-N16R8
Wireless: WLAN & Bluetooth 5.0
LCD: 7-Zoll-High-Lightness-IPS
FPS: >30
Auflösung: 1024 x 600
LCD-Schnittstelle: RGB 565
Touchpanel: Kapazitiver 5-Punkt-Touch
Touchpanel-Treiber: GT911
USB: Dual USB-C (einer für USB-zu-UART und einer für natives USB)
UART-zu-UART-Chip: CP2104
Stromversorgung: USB-C 5,0 V (4,0 V ~ 5,25 V)
Taste: Flash-Taste und Reset-Taste
Mabee-Schnittstelle: 1x I²C, 1x GPIO
MicroSD: Ja
Arduino-Unterstützung: Ja
Typ-C-Stromversorgung: Nicht unterstützt
Betriebstemperatur: −40 bis +85°C
Downloads
Wiki
GitHub
ESP32-S3 Datasheet
Screen touch coordinates calibration
Merkmale
Stereo-Eingang und -Ausgang
Dedizierter 192 kHz / 24-Bit hochwertiger Burr-Brown-DAC
Dedizierter 192 kHz / 24-Bit hochwertiger Burr-Brown-ADC
Hardware-Lautstärkeregler für DAC. Die Ausgangslautstärke kann mit „alsamixer“ oder jeder Anwendung geregelt werden, die ALSA-Mixersteuerungen unterstützt.
Wird direkt mit dem Raspberry Pi verbunden.
Kein Löten erforderlich.
Kompatibel mit allen Raspberry Pi-Modellen, die über einen 40-poligen GPIO-Anschluss verfügen
Kein zusätzliches Netzteil erforderlich.
Drei lineare Spannungsregler mit extrem geringem Rauschen.
HAT-kompatibel, EEPROM für automatische Konfiguration.
Vergoldete Cinch-Ausgangsanschlüsse.
Inklusive 4 M 2,5 x 12 mm Abstandshalter.
Analogeingang, Klinkenbuchse 3,5 mm
Analogausgang Cinch
Analogausgang (P5)
Eingangskonfigurations-Jumper (J1)
Anschluss für symmetrischen Eingang (P6)
Bitte beachten Sie: Layout und Komponenten können ohne weitere Ankündigung geändert werden.
Symmetrischer/unsymmetrischer Eingangsanschluss (P6)
Der 5-polige Stecker kann zum Anschluss eines symmetrischen Eingangs verwendet werden. Bitte beachten Sie, dass der symmetrische Eingang mit den Jumpern ausgewählt werden muss und immer eine Verstärkung von 12 dB hat. Er sollte nicht mit Line-Level-Eingängen verwendet werden.
Pin 1 ist links.
rechts +
Rechts -
Masse
links -
links +
Ausgangsanschluss (P5)
Der Ausgangsanschluss ermöglicht die Verbindung zu externen Komponenten wie einem Verstärker.
Pin 1 befindet sich oben links.
+5 V
1
2
R
Masse
3
4
Masse
+5 V
5
6
M
Eingangsverstärkungseinstellungen (J1)
Der Jumperblock ist für die Eingangskonfiguration zuständig. Es wird empfohlen, die Standardeinstellung ohne zusätzliche Eingangsverstärkung zu verwenden. 32 dB Verstärkung können zum Anschluss dynamischer Mikrofone verwendet werden.
Jumper sind von oben nach unten nummeriert.
1
2
3
4
Funktion
1
0
0
–
0 dB Verstärkung
0
1
1
–
12 dB Verstärkung
0
1
0
–
32 dB Verstärkung
0
0
1
–
symmetrischer Eingang, 12 dB Verstärkung
Spezifikationen
Maximale Eingangsspannung: 2,1 Vrms – 4,2 Vrms für symmetrischen Eingang
Maximale Ausgangsspannung: 2,1 Vrms
ADC-Signal-Rausch-Verhältnis: 110 dB
DAC-Signal-Rausch-Verhältnis: 112 dB
ADC THD+N: -93 dB
DAC THD+N: -93 dB
Eingangsspannung für geringste Verzerrungen: 0,8 Vrms
Eingangsverstärkung (konfigurierbar mit Jumpern): 0 dB, 12 dB, 32 dB
Leistungsaufnahme: < 0,3 W
Abtastraten: 44,1 kHz – 192 kHz
Um den HiFiBerry DAC + ADC verwenden zu können, muss Ihr Raspberry Pi-Linux-Kernel mindestens die Version 4.18.12 aufweisen. Klicken Sie hier , um zu erfahren, wie Sie den Raspberry Pi-Kernel aktualisieren
Verwendung von Mikrofonen mit dem DAC+ ADC
Der DAC+ ADC ist mit einem analogen Stereoeingang ausgestattet, der für einen weiten Bereich von Eingangsspannungen konfiguriert werden kann. Er funktioniert am besten mit analogen Line-Pegel-Quellen. Es ist jedoch auch möglich, ihn als Mikrofoneingang zu verwenden.
Es können ausschließlich dynamische Mikrofone verwendet werden. Mikrofone die eine Stromversorgung benötigen werden nicht unterstützt.
Die Ausgangsspannung des Mikrofons ist sehr niedrig. Das bedeutet, dass Sie sie verstärken müssen. Der DAC+ ADC hat den notwendigen Vorverstärker bereits eingebaut. Sie müssen die Jumper richtig einstellen.
Der Ton vom Eingang wird nicht automatisch am Ausgang wiedergegeben. Hierfür ist die Verwendung einer Software notwendig, die den Eingang einliest und wieder ausgibt.
Einstellen der richtigen Eingangsverstärkereinstellungen für ein Mikrofon
Standardmäßig ist die Eingangsempfindlichkeit für Line-Level-Audioquellen angepasst. Dies erfolgt über einen Jumper am J1-Header.
Um ein Mikrofon verwenden zu können, muss der Jumper wie unten gezeigt eingestellt werden.
Audioeingang zum Ausgang
Es besteht keine direkte Verbindung zwischen Eingang und Ausgang. Das führt dazu, dass der Eingang vom angeschlossenen Mikrofon nicht automatisch wiedergegeben wird. Möchte man ihn am Ausgang hören, muss man das Kommandozeilentool alsaloop verwenden.
Features
4 1/2 Bit Auflösung (20000 Zählungen)
Datenlogger
Multimeter
Thermometer
True RMS Test unterstützt
BLE 4.0 drahtlose Übertragung, stabiler, weniger Stromverbrauch
Integrierte Offline-Aufzeichnungsfunktion
Chart und Diagramm-Modus hilft bei der Analyse der Daten Tendenz
Taschenlampenfunktion erhellt die Dunkelheit
Unterstützt NCV berührungslose Spannungsmessung
Weitgehend unterstützt auf Android, iOS, Windows
Lieferumfang
OWON OW18E Multimeter
Kurzanleitung
Multimeterleitung
Thermoelement Typ K
Bolzen-Treiber
App Download
Die Bluetooth-Funktion dieses Multimeters ist mit der Android-App Version 1.5.8.0 oder neuer kompatibel.
Verwenden Sie den QR-Code in der Box oder nutzen Sie http://files.owon.com.cn/bluetooth.
CrowBot BOLT ist ein ESP32-gesteuertes, intelligentes, einfaches und benutzerfreundliches Open-Source-Roboterauto. Es ist mit den Arduino- und MicroPython-Umgebungen kompatibel und bietet grafische Programmierung über Letscode. Es stehen 16 Lernkurse mit interessanten Experimenten zur Verfügung.
Features
16 Lektionen in drei Sprachen (Letscode, Arduino, Micropython) für schnelles Lernen und unterhaltsame Experimente.
Kompatibel mit Arduino, MicroPython-Entwicklungsumgebung, mit grafischer Letscode-Programmierung.
Starke Skalierbarkeit mit einer Vielzahl von Schnittstellen, erweiterbar und mit Crowtail-Modulen nutzbar.
Eine Vielzahl von Fernbedienungsmodi: Sie können das Auto mit der Infrarot-Fernbedienung und dem Joystick steuern.
Technische Daten
Prozessor
ESP32-Wrover-B (8 MB)
Programmierung
Letscode, Arduino, Micropython
Steuermethode
Bluetooth-Fernbedienung/Infrarot-Fernbedienung
Eingabe
Taste, Lichtsensor, Infrarot-Empfangsmodul, Ultraschallsensor, Linienverfolgungssensor
Ausgabe
Summer, programmierbares RGB-Licht, Motor
WLAN & Bluetooth
Ja
Lichtsensor
Kann die Funktion erfüllen, Licht zu jagen oder Licht zu meiden
Ultraschallsensor
Wenn ein Hindernis erkannt wird, kann die Fahrtroute des Fahrzeugs korrigiert werden, um dem Hindernis auszuweichen
Linienverfolgungssensor
Kann das Auto entlang der dunklen/schwarzen Linien bewegen lassen, den Fahrweg intelligent beurteilen und korrigieren
Summer
Kann das Auto ertönen/pfeifen lassen und so ein direkteres Sinneserlebnis bieten
Programmierbares RGB-Licht
Durch Programmierung können bunte Lichter in verschiedenen Szenen angezeigt werden
Infrarotempfänger
Empfangen Sie Infrarot-Fernbedienungssignale, um die Fernbedienung zu realisieren
Schnittstellen
1x USB-C, 1x I²C, 1x A/D
Motortyp
GA12-N20 Mikro-DC-Getriebemotor
Betriebstemperatur
-10℃~+55℃
Stromversorgung
4x 1,5 V Batterien (nicht im Lieferumfang enthalten)
Akkulaufzeit
1,5 Stunden
Abmessungen
128 x 92 x 64 mm
Gewicht
900 g
Lieferumfang
1x Gehäuse
1x Ultraschallsensor
1x Batteriehalter
2x Räder
4x M3x8 mm Schrauben
2x M3x5 mm Kupfersäule
2x Seitliche Acrylplatten
1x Vordere Acrylplatten
1x Schraubendreher
2x 4-poliges Crowtail-Kabel
1x USB-C Kabel
1x Infrarot-Fernbedienung
1x Anleitung & Linien-Gleiskarte
1x Joystick
Downloads
Wiki
CrowBot-BOLT_Assembly-Instruction
Joystick-for-CrowBot-BOLT_Assembly-Instruction
CrowBot_BOLT_Beginner’s_Guide
Designing Documents of CrowBot
Designing Documents of Joystick
Lesson Code
3D Model
Factory Source Code
Build Trust and Convert Buyers with Technical Content
Research shows that this analytical, skeptical buyer conducts a great deal of independent research before engaging with vendors. Companies that share expertise through high-quality content on a consistent basis are not only seen as trusted resources, they also spend less per lead and achieve greater pipeline efficiency.
Content Marketing, Engineered guides you through the key steps in creating content to inform, educate, and help your technical buyers on their journey to purchase and beyond. By the time you reach the last page, you’ll be familiar with the entire end-to-end content marketing process, from planning and writing to publishing, promoting, and measuring the performance of your content.
Der Elektor Laserkop verwandelt die Elektor Sanduhr in eine Uhr, die die Zeit auf eine im Dunkeln leuchtende Folie statt auf Sand schreibt. Neben der Anzeige der Zeit können damit auch flüchtige Zeichnungen erstellt werden. Der 5-mW-Laserpointer mit einer Wellenlänge von 405 nm erzeugt leuchtend grüne Zeichnungen auf der im Dunkeln leuchtenden Folie. Um optimale Ergebnisse zu erzielen, verwenden Sie das Kit in einem schwach beleuchteten Raum. Achtung: Schauen Sie niemals direkt in den Laserstrahl!
Der Bausatz enthält alle notwendigen Komponenten, es ist jedoch das Anlöten von drei Drähten erforderlich.
Hinweis: Dieses Kit ist auch mit der originalen Arduino-basierten Sanduhr aus dem Jahr 2017 kompatibel. Weitere Einzelheiten finden Sie unter Elektor 1-2/2017 und Elektor 1-2/2018.
Der USB-CAN-FD ist ein leistungsstarker USB-zu-CAN-FD-Adapter in Industriequalität, eine CAN/CAN-FD-Bus-Kommunikationsschnittstellenkarte und ein CAN/CAN-FD-Protokolldatenanalysator. Integrierte zwei unabhängige CAN-FD-Schnittstellen mit elektrischer Isolierung und mehreren Schutzschaltungen. Unterstützt Windows-Systeme, wird mit Treibern, CAN-FD-Tools-bezogener Software, sekundären Entwicklungsbeispielen und Tutorials geliefert.Es kann über einen USB-Anschluss an einen PC oder einen industriellen Steuerungshost angeschlossen werden, um die Transceiver-Steuerung, Datenanalyse, Sammlung und Überwachung des CAN/CAN-FD-Busnetzwerks zu realisieren. Es ist kompakt und einfach zu bedienen und kann zum Erlernen und Debuggen des CAN/CAN-FD-Busses sowie zur sekundären Entwicklung und Integration in verschiedene Industrie-, Energiekommunikations- und intelligente Steuerungsanwendungen verwendet werden, die CAN/CAN erfordern -FD-Buskommunikation.Technische DatenProdukttypIndustriequalität: USB-zu-CAN-FD-Schnittstellenkonverter, CAN/CAN-FD-Bus-Kommunikationsschnittstellenkarte, CAN/CAN-FD-ProtokolldatenanalysatorUSBBetriebsspannung5 V (direkte Stromversorgung über USB-Anschluss ohne externe Stromversorgung)AnschlussUSB-BCAN/CAN FD-SchnittstelleCAN/CAN FD-KanalZweikanalig: CAN1 und CAN2 (unabhängig und vollständig isoliert, isolierte Spannung: 3000 V DC)AnschlussCAN-Bus-Schraubklemme (OPEN6 5,08 mm Rastermaß)AbschlusswiderstandJeder CAN/CAN-FD-Kanal verfügt über zwei eingebaute 120-Ω-Abschlusswiderstände, die per Schalter aktiviert werden könnenBaudrate100 Kbit/s ~ 5 Mbit/s (über Software konfigurierbar)ProtokollunterstützungCAN2.0A, CAN2.0B und ISO 11898-1 CAN-FD-Protokoll V.1.0ÜbertragungsgeschwindigkeitDie Empfangs- und Sendegeschwindigkeit jedes CAN/CAN-FD-Kanals kann 20.000 Frames/s und 5.000 Frames/s erreichenSendepuffer1500 Frames Empfangspuffer und 64 Frames Sendepuffer pro Kanal (automatische Neuübertragung, wenn die Übertragung fehlschlägt)IndikatorenPWRStromanzeigeSYSSystemstatusanzeige, normalerweise aus; bleibt eingeschaltet, wenn ein Busfehler vorliegtCAN1CAN1-Kanalanzeige (blinkt beim Senden und Empfangen von Daten)CAN2CAN2-Kanalanzeige (blinkt beim Senden und Empfangen von Daten)SystemunterstützungWindowsWindows XP/7/8/10/11 (32/64-bit); Unterstützt das Linux-System derzeit nicht und die entsprechenden Treiber befinden sich in der Entwicklung.Betriebstemperatur−40 bis +85°CFallmaterialGehäuse aus Aluminiumlegierung + flammhemmende 3D-Isolierfolie auf beiden Seiten (Dieses Design bietet einen besseren Schutz vor Metallspitzenentladungen, verbessert außerdem die Produktsicherheit und verlängert die Lebensdauer)Abmessungen104 x 70 x 25 mmLieferumfangWaveshare USB-CAN-FDUSB-A auf USB-B Kabel4-poliges KabelSchraubendreherDownloadsWiki
Dieses Bundle enthält die beliebte Elektor Sanduhr für Raspberry Pi Pico und das neue Elektor Laserkopf-Upgrade und bietet damit noch mehr Möglichkeiten zur Zeitanzeige. Sie können die aktuelle Uhrzeit nicht nur in Sand "gravieren", sondern sie jetzt auch alternativ auf eine im Dunkeln leuchtende Folie schreiben oder grüne Zeichnungen erstellen.
Inhalt des Bundles
Elektor Sanduhr für Raspberry Pi Pico (Einzelpreis: 50 €)
NEU: Elektor Laserkopf-Upgrade für Sanduhr (Einzelpreis: 35 €)
Elektor Sanduhr für Raspberry Pi Pico (Raspberry Pi-basierter Eyecatcher)
Eine handelsübliche Sanduhr zeigt nur, wie die Zeit verrinnt. Dagegen zeigt diese Raspberry Pi Pico-gesteuerte Sanduhr die genaue Uhrzeit an, indem die vier Ziffern für Stunde und Minute in die Sandschicht "eingraviert" werden. Nach einer einstellbaren Verzögerung wird der Sand durch zwei Vibrationsmotoren flachgedrückt und der Zyklus beginnt von vorne.
Das Herzstück der Sanduhr sind zwei Servomotoren, die über einen Pantographenmechanismus einen Schreibstift antreiben. Ein dritter Servomotor hebt den Stift auf und ab. Der Sandbehälter ist mit zwei Vibrationsmotoren ausgestattet, um den Sand zu glätten. Der elektronische Teil der Sanduhr besteht aus einem Raspberry Pi Pico und einer RTC/Treiberplatine mit Echtzeituhr, plus Treiberschaltungen für die Servomotoren.
Eine ausführliche Bauanleitung steht zum Download bereit.
Features
Abmessungen: 135 x 110 x 80 mm
Bauzeit: ca. 1,5 bis 2 Stunden
Lieferumfang
3x vorgeschnittene Acrylplatten mit allen mechanischen Teilen
3x Mini-Servomotoren
2x Vibrationsmotoren
1x Raspberry Pi Pico
1x RTC/Treiberplatine mit montierten Teilen
Muttern, Bolzen, Abstandshalter und Drähte für die Baugruppe
Feinkörniger weißer Sand
Elektor Laserkopf-Upgrade für Sanduhr
Der neue Elektor-Laserkopf verwandelt die Elektor Sanduhr in eine Uhr, die die Zeit auf eine im Dunkeln leuchtende Folie statt auf Sand schreibt. Neben der Anzeige der Zeit können damit auch flüchtige Zeichnungen erstellt werden. Der 5-mW-Laserpointer mit einer Wellenlänge von 405 nm erzeugt leuchtend grüne Zeichnungen auf der im Dunkeln leuchtenden Folie. Um optimale Ergebnisse zu erzielen, verwenden Sie das Kit in einem schwach beleuchteten Raum. Achtung: Schauen Sie niemals direkt in den Laserstrahl!
Der Bausatz enthält alle notwendigen Komponenten, es ist jedoch das Anlöten von drei Drähten erforderlich.
Hinweis: Dieses Kit ist auch mit der originalen Arduino-basierten Sanduhr aus dem Jahr 2017 kompatibel. Weitere Einzelheiten finden Sie unter Elektor 1-2/2017 und Elektor 1-2/2018.
Dieses vielseitige Digital-Mikroskop deckt einen großen Vergrößerungsbereich (18-720x, 1560-2040x, 2760-4080x) mit 3 Objektiven für Hobby-, Industrie- und biologische Zwecke ab. Mit Objektiv A (18-720x) können Sie ganze Münzen oder Teile, Leiterplatten, Pflanzen, Steine usw. beobachten. Mit Objektiv B (1560-2040x) und C (2760-4080x) können Sie biologische Objektträger beobachten. Technische Daten Vergrößerung Objektiv A 18-720 Fokusbereich 12-320 mm Objektiv B 1560-2040 Fokusbereich 7-8 mm Objektiv C 2760-4080 Fokusbereich 3-4 mm Bildschirmgröße 10 Zoll (25,7 cm) Videoauflösung (max.) UHD 2880x2160 (24fps) Videoformat MP4 Fotoformat JPG Fotoauflösung 5600x2400 (mit Interpolation) Bildrate Max. 120fps HDMI-Ausgang Ja (nur HDMI-Monitoranzeigen) PC-Ausgang Ja Stromversorgung USB 5 V DC (nicht im Lieferumfang enthalten) Standmaterial Pro Plastic Standgröße 20 x 19 x 30 cm Lieferumfang 1x Andonstar AD249S-P Digital-Mikroskop 1x Pro-Kunststoffständer 1x Objektiv A (fest) 1x Objektiv (B & C) 1x USB-Kabel 1x HDMI-Kabel 1x Fernbedienung 1x Dimmerkabel 3x Hintergrundtafel 1x Folienset 1x 32 GB microSD-Karte 1x Beobachtungsbox 1x Pinzette 1x Schraubendreher 1x Handbuch
Dieses vielseitige Digital-Mikroskop deckt einen großen Vergrößerungsbereich (18–720x, 1560–2040x, 2760–4080x, 3600–5100x, 60–240x) mit 5 Objektiven für Hobby-, Industrie- und biologische Zwecke ab.
Objektiv A (18-720x) kann zur Beobachtung ganzer Münzen oder Teile, Leiterplatten, Pflanzen, Steine usw. verwendet werden. Mit Objektiv B (1560-2040x), C (2760-4080x) und M (3600) können -5100x) können Sie biologische Objektträger beobachten. Lens L ist ideal für Löt- und Reparaturarbeiten.
Darüber hinaus verfügt das Mikroskop über ein Endoskop zur klaren Beobachtung der Seiten von Bauteilen und Innenrohren und ermöglicht so eine 360°-Sicht ohne tote Winkel.
Technische Daten
Vergrößerung
Objektiv A
18-720x
Objektiv B
1560-2040x
Objektiv C
2760-4080x
Objektiv M
3600-5100x
Objektiv L
60-240x
Displaygröße
10 Zoll (25,7 cm)
Videoauflösung (max.)
UHD 2880x2160 (24fps)
Videoformat
MP4
Bildformat
JPG
Bildauflösung
5600x2400 (mit Interpolation)
Bildrate
Max. 120fps
HDMI-Ausgang
Ja (nur HDMI-Monitoranzeigen)
PC-Ausgabe
Ja
Stromversorgung
USB 5 V DC (nicht im Lieferumfang enthalten)
Standmaterial
Metall
Standgröße
20 x 19 x 40 cm
Lieferumfang
1x Andonstar AD269S Digital-Mikroskop
1x Metallständer mit 2 LEDs
1x XY-beweglicher Tisch
1x Objektiv A
1x Linsenset (B, C, M)
1x Objektiv L
1x Endoskop (+ Zubehör)
1x USB-Kabel
1x HDMI-Kabel
1x Fernbedienung
1x Dimmerkabel
3x Rückwandtafel
5x Biologische Objektträger
1x 32 GB microSD-Karte
1x Beobachtungsbox
1x Pinzette
1x Manual
Merkmale
Verwendet sowohl eine 4-Draht-SPI- als auch eine I²C-Schnittstelle, bessere Kompatibilität und schnelle Datenrate
Standard-Raspberry-Pi-Pico-Header, unterstützt Platinen der Raspberry-Pi-Pico-Serie
Kommt mit Entwicklungsressourcen und Handbuch (Raspberry Pi Pico C/C++ und MicroPython-Beispiele)
Spezifikationen
Logische Spannung
3,3 V
Blickwinkel
>160°
Betriebsspannung
3,3 V/5 V
Auflösung
128×32 Pixel
Kommunikationsinterface
4-Draht-SPI, I²C
Bildschirmgröße
55,02×13,10mm
Anzeigetafel
OLED
Pixel Größe
0,41 × 0,39 mm
Treiber
SSD1305
Maße
63,00 × 26,00 mm
Das RGB Matrixmodul ist mit 4096 LED‘s bestückt und zeichnet sich durch ein besonders kleines Rastermaß von nur 3mm aus. Hierdurch eignet es sich hervorragend für bildliche Darstellungen. Auch Videosequenzen können wiedergegeben werden.
Das Modul wird mit den notwendigen Kabeln geliefert. Es eignet sich hervorragend in Kombinationen mit Einplatinencomputern wie den Raspberry Pi, Arduino, BBC Microbit und vielen mehr.
Technische Daten
Display-Typ
RGB-LED
Auflösung
64 x 64
Anzahl
4096 LEDs
LED Größe
3 mm Pitch
Versorgungsspannung
5 V
Max. Leistungsaufnahme
40 W
Ansteurung
1/32 Scan
Betriebstemperatur
-20 °C - 55 °C
Sichtwinkel
140°
Pixeldichte
111111 Pixel / m²
Abmessungen
192 mm x 192 mm x 14 mm
Gewicht
246 g
Lieferumfang
LED-Matrix, Kabel
Downloads
Datasheet
Manual