YDLIDAR X4PRO ist ein zweidimensionaler 360-Grad-Entfernungsmesser. Basierend auf dem Triangulationsprinzip ist es mit entsprechender Optik, Elektrizität und Algorithmendesign ausgestattet, um eine hochfrequente und hochgenaue Entfernungsmessung zu erreichen. Die mechanische Struktur dreht sich um 360 Grad, um während der Entfernungsmessung kontinuierlich die Winkelinformationen sowie die Punktwolkendaten der Scanumgebung auszugeben.
Features
360-Grad-Omnidirektional-Scanning-Entfernungsmessung
Kleiner Distanzfehler, stabile Leistung und hohe Genauigkeit
Große Reichweite
Starke Beständigkeit gegen Umgebungslichtstörungen
Geringer Stromverbrauch, geringe Größe und lange Lebensdauer
Laserleistung entspricht den Sicherheitsstandards für Laser der Klasse I
Einstellbare Motorgeschwindigkeit, Scanfrequenz beträgt 6-12 Hz
Hochgeschwindigkeits-Bereichswahl, Bereichsfrequenz bis zu 5 kHz
Applikationen
Roboternavigation und Hindernisvermeidung
Roboter-ROS-Lehre und Forschung
Regionale Sicherheit
Umweltscan und 3D-Rekonstruktion
Navigation und Hindernisvermeidung des Roboterstaubsaugers/ROS-Lernroboters
Technische Daten
Frequenzbereich
5000 Hz
Scanfrequenz
6-12 Hz
Reichweite
0,12 10 m
Scanwinkel
360°
Winkelauflösung
0,43-0,85°
Abmessungen
110,6 x 71,1 x 52,3 mm
Downloads
Datasheet
User Manual
Development Manual
SDK
Tool
ROS
Mit diesem FeatherWing können Sie ganz einfach Datenprotokollierung zu jedem Feather Board hinzufügen. Sie erhalten sowohl eine I²C-Echtzeituhr (PCF8523) mit 32-kHz-Quarz und Batterie-Backup als auch einen microSD-Sockel, der an die SPI-Port-Pins (+ zusätzlicher Pin für CS) angeschlossen wird.
Hinweis: FeatherWing wird ohne microSD-Karte geliefert.
Zur Nutzung der RTC-Batterie-Backup-Funktionen ist eine CR1220-Knopfzelle erforderlich. Wenn Sie den RTC-Teil des FeatherWing nicht verwenden, ist keine Batterie erforderlich.
Zur Kommunikation mit dem microSD-Kartensteckplatz wird die Standard-SD-Bibliothek von Arduino empfohlen. Zum Anbringen der Header am Wing sind leichte Lötarbeiten erforderlich.
Pinbelegung
Stromanschlüsse
In der unteren Reihe werden der 3,3-V-Pin (zweiter von links) und der GND- Pin (vierter von links) verwendet, um die SD-Karte und RTC mit Strom zu versorgen (um die Knopfzellenbatterie zu entlasten, wenn Netzstrom verfügbar ist).
RTC- und I²C-Pins
Oben rechts werden SDA (ganz rechts) und SCL (links von SDA) verwendet, um mit dem RTC-Chip zu kommunizieren.
SCL - I²C-Taktpin zum Anschluss an die I²C -Taktleitung Ihres Mikrocontrollers. Dieser Pin verfügt über einen 10 kΩ Pull-Up-Widerstand gegen 3,3 V
SDA - I²C-Datenpin zum Anschluss an die I²C -Datenleitung Ihres Mikrocontrollers. Dieser Pin verfügt über einen 10 kΩ Pull-Up-Widerstand gegen 3,3 V
Es gibt auch einen Breakout für INT , den Ausgangspin der RTC. Er kann als Interrupt-Ausgang oder auch zum Erzeugen einer Rechteckwelle verwendet werden. Beachten Sie, dass dieser Pin ein Open Drain ist. Sie müssen den internen Pull-Up an dem digitalen Pin aktivieren, mit dem er verbunden ist.
SD- und SPI-Pins
Von links beginnend haben Sie
SPI-Takt (SCK) - Ausgabe von der Feder zum Flügel
SPI Master Out Slave In (MOSI) - Ausgabe von der Feder zum Flügel
SPI Master In Slave Out (MISO) - Eingabe vom Flügel zur Feder
Diese Pins befinden sich bei jedem Feather an der gleichen Stelle. Sie werden für die Kommunikation mit der SD-Karte verwendet. Wenn die SD-Karte nicht eingelegt ist, sind diese Pins völlig frei. MISO wird immer dann in den Tri-State-Zustand versetzt, wenn der SD CS-Pin (Chip Select) hochgezogen wird.
Dieses Trägerboard kombiniert ein 2,4"-TFT-Display, sechs adressierbare LEDs, einen Onboard-Spannungsregler, einen 6-poligen IO-Anschluss und einen microSD-Steckplatz mit dem M.2-Steckplatz, sodass es mit kompatiblen Prozessorboards in unserem MicroMod-Ökosystem verwendet werden kann. Außerdem haben wir dieses Trägerboard mit dem ATtiny84 von Atmel mit 8kb programmierbarem Flash bestückt. Dieser kleine Kerl ist vorprogrammiert, um mit dem Prozessor über I2C zu kommunizieren und Tastendrücke zu lesen.
Features
M.2 MicroMod-Anschluss
240 x 320 Pixel, 2,4" TFT-Display
6 adressierbare APA102 LEDs
Magnetischer Buzzer
USB-C-Anschluss
3,3 V 1 A Spannungsregler
Qwiic-Anschluss
Boot/Reset-Tasten
RTC-Backup-Batterie & Ladeschaltung
microSD
Phillips #0 M2,5 x 3 mm Schraube enthalten
Merkmale
Plug & Play (kein Treiber erforderlich), kompatibel mit Windows 10/8/7, Mac, Linux und Android, die OTG unterstützen.
Sprachaufnahmegerät, Fernfeld-Sprachaufnahme bis zu 5 m und unterstützt 360°-Aufnahmemuster
Akustische Algorithmen implementiert:
DOA (Ankunftsrichtung),
AEC (Automatische Echounterdrückung),
AGC (Automatische Verstärkungsregelung),
NS (Rauschunterdrückung)
Integrierte Audiobuchse, die das Anschließen von Kopfhörern oder Lautsprechern ermöglicht (Lautsprecher nicht im Lieferumfang enthalten)
Anwendungen
Sprachaufnahmegerät
Heim-/Büroautomatisierungsgerät
Sprachassistent im Auto
Gesundheitsgerät
Sprachinteraktionsroboter
Andere Anwendungen
Technische Spezifikationen
XVF-3000 von XMOS
4 Hochleistungs-Digitalmikrofone Unterstützt Fernfeld-Sprachaufzeichnung
Sprachalgorithmen auf dem Chip
12 programmierbare RGB-LED-Anzeigen
Mikrofone: MEMS MSM261D4030H1CPM
Empfindlichkeit: -26 dBFS (omnidirektional)
Akustischer Überlastungspunkt: 120 dB SPL
SNR: 63 dB
Stromversorgung: 5 V DC über Micro-USB oder Erweiterungs-Header
Abmessungen: 77 mm (Durchmesser)
3,5-mm-Audio-Klinkenausgangsbuchse
Entdecken Sie grenzenlose Kreativität mit dem Universal Maker Sensor Kit, das für Raspberry Pi, Pico W, Arduino und ESP32 entwickelt wurde. Dieses vielseitige Kit ist mit gängigen Entwicklungsplattformen kompatibel, darunter Arduino Uno R4 Minima/WiFi, Uno R3, Mega 2560, Raspberry Pi 5, 4, 3B+, 3B, Zero, Pico W und ESP32.
Mit über 35 Sensoren, Aktoren und Displays eignet es sich perfekt für Projekte von Umweltüberwachung und Smart-Home-Automatisierung bis hin zu Robotik und interaktivem Gaming. Schritt-für-Schritt-Tutorials in C/C++, Python und MicroPython führen Anfänger und erfahrene Maker gleichermaßen durch 169 spannende Projekte.
Features
Umfassende Kompatibilität: Vollständige Unterstützung für Arduino (Uno R3, Uno R4 Minima/WiFi, Mega 2560), Raspberry Pi (5, 4, 3B+, 3B, Zero, Pico W) und ESP32. Dies ermöglicht umfassende Flexibilität auf zahlreichen Entwicklungsplattformen. Enthält Anleitungen für 169 Projekte.
Umfassende Komponenten: Mehr als 35 Sensoren, Aktoren und Anzeigemodule für vielfältige Projekte wie Umweltüberwachung, Smart Home-Automatisierung, Robotik und interaktive Spielesteuerungen.
Ausführliche Tutorials: Klare Schritt-für-Schritt-Anleitungen für Arduino, Raspberry Pi, Pico W, ESP32 und alle enthaltenen Komponenten. Es stehen Tutorials in C/C++, Python und MicroPython zur Verfügung, die sowohl für Anfänger als auch für erfahrene Maker geeignet sind.
Für alle Kenntnisstufen geeignet: Bietet strukturierte Projekte, die Benutzer nahtlos vom Anfänger zum Fortgeschrittenen in Elektronik und Programmierung führen und so Kreativität und technisches Know-how fördern.
Lieferumfang
Breadboard
Tastenmodul
Kapazitives Bodenfeuchtemodul
Flammensensormodul
Gas-/Rauchsensormodul (MQ2)
Gyroskop & Beschleunigungssensormodul (MPU6050)
Hall-Sensormodul
Infrarot-Geschwindigkeitssensormodul
IR-Hindernisvermeidungssensormodul
Joystickmodul
PCF8591 ADC/DAC-Wandlermodul
Fotowiderstandsmodul
PIR-Bewegungssensormodul (HC-SR501)
Potentiometermodul
Pulsoximeter- und Herzfrequenzsensormodul (MAX30102)
Regentropfenerkennungsmodul
Echtzeituhrmodul (DS1302)
Drehgebermodul
Temperatursensormodul (DS18B20)
Temperatur- und Feuchtigkeitssensormodul (DHT11)
Temperatur, Luftfeuchtigkeit und Drucksensor (BMP280)
Time-of-Flight-Mikro-LIDAR-Distanzsensor (VL53L0X)
Berührungssensormodul
Ultraschallsensormodul (HC-SR04)
Vibrationssensormodul (SW-420)
Wasserstandssensormodul
I²C LCD 1602
OLED-Displaymodul (SSD1306)
RGB-LED-Modul
Ampelmodul
5-V-Relaismodul
Kreiselpumpe
L9110-Motortreibermodul
Passives Summermodul
Servomotor (SG90)
TT-Motor
ESP8266 Modul
JDY-31 Bluetooth-Modul
Stromversorgungsmodul
Dokumentation
Online-Tutorial
Das hochauflösende kapazitive 10,1" Touch-Display von Waveshare ist ein universeller Touchscreen mit einer Auflösung von 1920 x 1200, der mit den meisten HDMI-Standardgeräten kompatibel ist. Es zeichnet sich durch ein dünnes und leichtes Design, eine robuste Hartglasabdeckung für Langlebigkeit, eine hervorragende Anzeigeleistung und ein reibungsloses Multi-Touch-Erlebnis aus. Darüber hinaus sorgt die integrierte Metallrückplatte für Stabilität und erleichtert Benutzern die Integration des Displays in All-in-One-Projekte.
Features
10,1-Zoll-IPS-Bildschirm mit 1920 x 1200 Pixeln
Kapazitive 10-Punkt-Berührung mit gehärteter Glasscheibe mit einer Härte von bis zu 6H
Vollständig laminierte Panel-Technologie für besseren Anzeigeeffekt
Bei Verwendung mit Raspberry Pi unterstützt es Raspberry Pi OS, Ubuntu, Kali und RetroPie
Als Computermonitor unterstützt er Windows 7 und höher.
OSD-Menü (kann zur Leistungssteuerung, Anpassung von Helligkeit/Lautstärke/Bilddrehung usw. verwendet werden)
HDMI-Audioausgang, integrierte 3,5-mm-Kopfhörerbuchse und hochwertige 4-Pin-Lautsprecher
Technische Daten
Display
10,1" IPS
Blickwinkel
178°
Auflösung
1920 x 1200 Pixel
Touchscreen-Bereich
217,2 x 135,6 mm
Abmessungen
239 x 147 mm
Farbraum
65% NTSC
Maximale Helligkeit
300 cd/m²
Kontrast
1000:1
Einstellung der Hintergrundbeleuchtung
Tastendimmung
Aktualisierungsrate
60 Hz
Display-Schnittstelle
Standard-HDMI
Stromversorgung
5 V (USB-C)
Maximaler Stromverbrauch
6 W
Lieferumfang
1x 10,1" hochauflösendes kapazitives Touch-Display (10.1EP-CAPLCD)
1x HDMI-Flachkabel (1 m)
1x USB-A-auf-USB-C-Kabel (1 m)
1x Micro-HDMI-Adapter
1x HDMI-Adapter
1x HDMI-auf-Micro-HDMI-Adapter
1x PH1,25 4-poliges auf Typ-A-Kabel
1x Kapazitiver Touch-Stift
1x 3-poliges Kabel
1x HDMI-Kabel 120 mm (2 Stück)
1x Reinigungstuch
1x 5 V/3A Netzteil (EU)
1x Schraubenset
Downloads
Wiki
Das iCEBreaker FPGA-Board ist ein Open-Source-FPGA-Entwicklungsboard für den Bildungsbereich.
Der iCEBreaker eignet sich hervorragend für Kurse und Workshops, in denen die Verwendung des Open-Source-FPGA-Designflows durch Yosys, nextpnr, IceStorm, Icarus Verilog, Amaranth HDL und andere vermittelt wird. Dies bedeutet, dass das Board kostengünstig ist und über eine Reihe nützlicher Funktionen verfügt, die die Gestaltung interessanter Kurse und Workshop-Übungen ermöglichen. Gleichzeitig ermöglicht es dem Benutzer, die proprietären Tools des Anbieters zu verwenden, wenn er dies wünscht.
Nach dem Workshop können die Platinen problemlos als Entwicklungsplatine verwendet werden, da die meisten GPIOs freigelegt, herausgebrochen und über Jumper auf der Rückseite der Platine konfigurierbar sind. Es gibt nur eine minimale Anzahl an Tasten und LEDs, die nicht abgenommen und für eigene Zwecke verwendet werden können.
Dokumentation
Workshop
Das Sparkfun Qwiic GPIO ist ein I²C-Gerät, das auf dem TCA9534 I/O Expander IC von Texas Instruments basiert. Das Board fügt acht IO-Pins hinzu, die Sie wie jeden anderen digitalen Pin an Ihrem Controller lesen und schreiben können. Um die Details der I²C-Schnittstelle kümmert sich eine Arduino-Bibliothek, so dass Sie ähnliche Funktionen wie pinMode und digitalWrite von Arduino aufrufen können, so dass Sie sich auf Ihre Kreation konzentrieren können!
Die Pins des TCA9534 sind auf einfach zu bedienende Latch-Klemmen aufgeteilt; schrauben Sie nie wieder einen Draht an! Die Klemmen sind relativ geräumig, so dass Sie mehrere Drähte in eine Masse- oder Stromklemme einrasten lassen können. Mit drei anpassbaren Adress-Jumpern können Sie bis zu acht Qwiic-GPIO-Karten an einen einzigen Bus anschließen und so bis zu 64 zusätzliche GPIO-Pins nutzen! Die Voreinstellung für I²C ist 0x27 und kann über die Jumper auf der Rückseite der Karte geändert werden.
Features
Acht konfigurierbare GPIO-Pins verfügbar
I2C Adresse: 0x27 (Standard)
Hardware-Adresspins ermöglichen bis zu acht Karten an einem Bus
Register zur Invertierung der Eingangspolarität
Steuern Sie jeden I/O-Pin einzeln oder alle auf einmal
Open-Drain Active-Low Interrupt Ausgang
2 x Qwiic-Stecker
Abmessungen: 60,96 mm x 38,10 mm
Das LILYGO T-Display-S3 Long ist ein vielseitiges Entwicklungsboard mit dem ESP32-S3R8 Dual-Core-LX7-Mikroprozessor. Es verfügt über ein kapazitives 3,4" Touch-TFT-LCD mit einer Auflösung von 180 x 640 Pixeln und bietet eine reaktionsschnelle Schnittstelle für verschiedene Anwendungen.
Dieses Board ist ideal für Entwickler, die eine kompakte und dennoch leistungsstarke Lösung für Projekte suchen, die Touch-Eingabe und drahtlose Kommunikation erfordern. Die Kompatibilität mit gängigen Programmierumgebungen sorgt für ein reibungsloses Entwicklungserlebnis.
Technische Daten
MCU
ESP32-S3R8 Dual-Core LX7 Mikroprozessor
Drahtlose Konnektivität
Wi-Fi 802.11, BLE 5 + BT Mesh
Programmierplattform
Arduino IDE, VS-Code
Flash
16 MB
PSRAM
8 MB
Bat-Spannungserkennung
IO02
Onboard-Funktionen
Boot + Reset-Taste, Batterieschalter
Anzeige
3,4" kapazitives Touch-TFT-LCD
Farbtiefe
565, 666
Auflösung
180 x 640 (RGB)
Funktionierendes Netzteil
3,3 V
Schnittstelle
QSPI
Lieferumfang
1x T-Display S3 Long
1x Stromkabel
2x STEMMA QT/Qwiic-Schnittstellenkabel (P352)
1x Female Pin (zweireihig)
Downloads
GitHub
Das Power Delivery Board verwendet einen eigenständigen Controller, um mit den Stromadaptern zu verhandeln und auf eine höhere Spannung als nur 5V umzuschalten. Dies verwendet den gleichen Stromadapter für verschiedene Projekte, anstatt sich auf mehrere Stromadapter zu verlassen, die unterschiedliche Ausgangsspannungen bereitstellen. Das Board kann als Teil des Qwiic-Connect-Systems von SparkFun geliefert werden, so dass Sie keine Lötarbeiten durchführen müssen, um herauszufinden, wie die Dinge ausgerichtet sind.
Das SparkFun Power Delivery Board nutzt die Vorteile des Power-Delivery-Standards mit einem Standalone-Controller von STMicroelectronics, dem STUSB4500. Der STUSB4500 ist ein USB-Power-Delivery-Controller, der Senkengeräte anspricht. Er implementiert einen proprietären Algorithmus zur Aushandlung eines Stromversorgungsvertrags mit einer Quelle (d. h. einer Steckdose oder einem Netzteil), ohne dass ein externer Mikrocontroller erforderlich ist. Sie benötigen jedoch einen Mikrocontroller, um die Karte zu konfigurieren. PDO-Profile werden in einem integrierten nichtflüchtigen Speicher konfiguriert. Der Controller übernimmt die ganze Arbeit der Leistungsaushandlung und bietet eine einfache Möglichkeit zur Konfiguration über I2C.
Um die Karte zu konfigurieren, benötigen Sie einen I2C-Bus. Das Qwiic-System macht es einfach, das Power Delivery Board mit einem Mikrocontroller zu verbinden. Je nach Anwendung können Sie den I2C-Bus auch über die durchkontaktierten SDA- und SCL-Löcher anschließen.
Merkmale
Eingangs- und Ausgangsspannungsbereich von 5-20V
Ausgangsstrom bis zu 5A
Drei konfigurierbare Stromabgabeprofile
Automatischer Type-C™- und USB-PD-Sink-Controller
Zertifizierter USB Type-C™ rev 1.2 und USB PD rev 2.0 (TID #1000133)
Integrierte VBUS-Spannungsüberwachung
Integrierte VBUS-Switch-Gate-Treiber (PMOS)
LuckFox Pico Mini ist ein kompaktes Linux-Mikro-Entwicklungsboard, das auf dem Rockchip RV1103-Chip basiert und eine einfache und effiziente Entwicklungsplattform für Entwickler bietet. Es unterstützt eine Vielzahl von Schnittstellen, einschließlich MIPI CSI, GPIO, UART, SPI, I²C, USB usw., was für eine schnelle Entwicklung und Fehlerbehebung praktisch ist.
Features
Single-Core ARM Cortex-A7 32-Bit-Kern mit integriertem NEON und FPU
Eingebaute, von Rockchip selbst entwickelte NPU der 4. Generation, zeichnet sich durch hohe Rechenpräzision aus und unterstützt die Hybridquantisierung int, int8 und int16. Die Rechenleistung von int8 beträgt 0,5 TOPS und bis zu 1,0 TOPS mit int4
Integrierter, selbst entwickelter ISP3.2 der dritten Generation, unterstützt 4 Megapixel, mit mehreren Bildverbesserungs- und Korrekturalgorithmen wie HDR, WDR, mehrstufiger Rauschunterdrückung usw.
Verfügt über eine leistungsstarke Kodierungsleistung, unterstützt den intelligenten Kodierungsmodus und das adaptive Stream-Speichern je nach Szene, spart mehr als 50% Bitrate im Vergleich zum herkömmlichen CBR-Modus, sodass die Bilder von der Kamera hochauflösende Bilder mit geringerer Größe und doppelt so viel Speicherplatz bieten Leerzeichen
Die integrierte RISC-V-MCU unterstützt einen geringen Stromverbrauch und einen schnellen Start, unterstützt eine schnelle Bildaufnahme von 250 ms und lädt gleichzeitig die Al-Modellbibliothek, um die Gesichtserkennung "in einer Sekunde" zu realisieren.
Eingebauter 16-Bit-DRAM DDR2, der anspruchsvolle Speicherbandbreiten bewältigen kann
Integriert mit integriertem POR, Audio-Codec und MAC PHY
Technische Daten
Prozessor
ARM Cortex-A7, Single-Core-32-Bit-CPU, 1,2 GHz, mit NEON und FPU
NPU
Rockchip NPU der 4. Generation, unterstützt int4, int8, int16; bis zu 1,0 TOPS (int4)
ISP
ISP3.2 der dritten Generation, bis zu 4 MP-Eingang bei 30fps, HDR, WDR, Rauschunterdrückung
RAM
64 MB DDR2
Speicher
128 MB SPI NAND Flash
USB
USB 2.0-Host/Gerät über Typ-C
Kameraschnittstelle
MIPI CSI 2-spurig
GPIO-Pins
17 GPIO-Pins
Stromverbrauch
RISC-V-MCU mit geringem Stromverbrauch für schnellen Start
Abmessungen
28 x 21 mm
Downloads
Wiki
Nach dem Einschalten beginnt der YDLIDAR G4 sich zu drehen und die Umgebung um sich herum zu scannen. Die Scandistanz beträgt 16 m und das Gerät bietet eine Scanrate von 9.000 Mal pro Sekunde.
Es macht detaillierte Untersuchungen seiner Umgebung und kann die kleinsten Objekte um sich herum lokalisieren. Mit einem hochpräzisen bürstenlosen Motor und einem Encoder-Disc, der auf Lagern montiert ist, dreht es sich reibungslos und hat eine Betriebsdauer von bis zu 500.000 Stunden.
Der G4 ist eine kostengünstige Lösung für Projekte, die Hinderniserkennung, Hindernisvermeidung und/oder simultane Lokalisierung und Kartierung (SLAM) erfordern. Alle YDLIDAR-Produkte sind ROS-ready.
Features
360 Grad 2D-Reichweiten-Scanning
Stabile Leistung, hohe Präzision
16 m Reichweite
Starke Widerstandsfähigkeit gegenüber Umgebungslichtinterferenzen
Bürstenloser Motorantrieb, stabile Leistung
FDA-Lasersicherheitsstandard Klasse I
360 Grad omnidirektionales Scanning, 5-12 Hz adaptive Scanning-Frequenz
OptoMagnetic-Technologie
Drahtlose Datenkommunikation
Scanrate von 9000 Hz
Dokumentation
ROS-Treiber
Ydlidar-Download-Seite
Unten im Abschnitt "Downloads" finden Sie das Datenblatt sowie die Benutzer- und Entwicklungsanleitungen.
Der kapazitive Fingerabdruck-Scanner/Sensor von Grove basiert auf dem Fingerabdruck-Erkennungsmodul KCT203 Semiconductor, das eine leistungsstarke MCU, einen vertikalen RF-Push-Fingerabdrucksensor und einen Berührungsfühler umfasst. Dieses Modul bietet viele Vorteile, wie z.B. geringe Größe, kleines Fingerabdruck-Template, geringer Stromverbrauch, hohe Zuverlässigkeit, schnelle Fingerabdruckerkennung, etc. Darüber hinaus ist es erwähnenswert, dass das Modul von einem schönen RGB-Licht umgeben ist, das anzeigt, ob die Fingerabdruckerkennung erfolgreich war. Das System ist mit einem leistungsstarken Fingerabdruck-Algorithmus ausgestattet, und die Selbstlernfunktion ist bemerkenswert. Nach jeder erfolgreichen Erkennung von Fingerabdrücken können die neuesten Werte der Herausforderungsmerkmale in die Fingerabdruckdatenbank integriert werden, um die Fingerabdruckmerkmale kontinuierlich zu verbessern und so die Erfahrung zu verbessern. Anwendungen Fingerabdruck-Schließgeräte: Türschlösser, Tresore, Lenkradschlösser, Vorhängeschlösser, Waffenschlösser usw. Fingerabdruck-Sign-in, Zugangskontrollsystem Spezifikationen CPU GD32 Speicherung von Fingerabdruckvorlagen Max. 100 Anschluss Grove UART Sensor-Auflösung 508 DPI Sensor Pixel 160x160 Falsche Ablehnungsrate Falschakzeptanzrate Ansprechzeit (1:N-Modus) Ansprechzeit (1:1-Modus) Sensor Größe Φ14.9mm Rahmen Größe Φ 19mm Stromverbrauch Volle Geschwindigkeit: ≤40 mA; Ruhezustand: ≤12 uA Betriebsspannung 3.3 V / 5 V Betriebstemperatur -20 ~ 70 ℃ ESD-Schutz Berührungslos 15 KV, Kontakt 8 KV Lieferumfang 1x KCT203 Halbleiter-Fingerabdruck-Erkennungsmodul 1x Sensorkabel 1x Grove-Kabel 1x Grove-Treiberplatine Downloads Grove Capacitive Fingerprint Scanner/Sensor eagle file Grove Capacitive Fingerprint Scanner/Sensor code Wiki
Der SDS011-Sensor ermittelt die Feinstaub-Partikelkonzentration in der Luft mit Hilfe des Streulichtverfahrens.
Durch den USB-UART-Adapter lässt sich der Sensor zusätzlich direkt an einem Computer auslesen.
Technische Daten
Schnittstelle
UART (3,3 V Pegel)
Auflösung
0,3 µg/m3
Reaktionszeit
Weitere Besonderheit
Integrierter Lüfter
Strom in Ruhezustand
Versorgungsstrom
70 mA
Betriebsspannung
5 V
Abmessungen
70 x 70 x 24 mm
Gewicht
70 g
Lieferumfang
1x SDS011 Feinstaubsensor
1x Anschlusskabel
1x USB-UART-Adapter
Downloads
Datenblatt
Handbuch
YDLIDAR T-mini Pro ist ein 360-Grad-2D-LiDAR, das auf dem Prinzip der ToF basiert. Es ist mit entsprechender Optik, Elektrizität und Algorithmus-Design ausgestattet, um eine hochpräzise Laser-Abstandsmessung zu erreichen. Während der Abstandsmessung dreht sich die mechanische Struktur um 360 Grad, um kontinuierlich Winkelinformationen zu erhalten, wodurch eine 360-Grad-Scan-Abstandsmessung und die Ausgabe von Punktwolkendaten der Scan-Umgebung realisiert wird.
Features
Es nutzt das ausgereifte ToF-Erkennungsprinzip und kann bei geringer Größe einfach in das gesamte Gerät integriert werden, wodurch der Roboter eine zweidimensionale 360°-Umgebung mit starker Stabilität und hoher Präzision erhält.
Selbstadaptive Scanfrequenz von 6-12 Hz, die Geschwindigkeit kann unabhängig an die funktionalen Anforderungen angepasst werden. Die mechanische Struktur dreht sich um 360°, erfasst kontinuierlich Winkelinformationen, scannt und misst in alle Richtungen und gibt Punktwolken aus.
Kleineres Erscheinungsbild und geringerer Stromverbrauch, wodurch die räumliche Struktur von Anwendungsprodukten erheblich optimiert werden kann und für mehr Szenarien geeignet ist.
Der bürstenlose Motor arbeitet effizient und hat eine längere Lebensdauer von 10.000 Stunden.
Technische Daten
Reichweite: 0,02-12 m
Bereichsfrequenz: 4000 Hz
Winkelauflösung: 0,54 Grad
Scanfrequenz: 6-12 Hz
Scanwinkel: 360 Grad
Schnittstelle: UART
Anwendungen
Roboternavigation und Hindernisvermeidung
Roboter-ROS-Lehre und Forschung
Regionale Sicherheit
Umweltscan und 3D-Rekonstruktion
Navigation und Hindernisvermeidung von Haushaltsrobotern/Staubsaugrobotern
Downloads
Datasheet
User Manual
Development Manual
SDK
Tool
ROS
Die Motorino-Platine ist eine Erweiterungsplatine zur Ansteuerung und Verwendung von bis zu 16 PWM-gesteuerten 5-V-Servomotoren.
Der eigene Taktgeber auf dem Motorino sorgt für ein sehr genaues PWM-Signal und somit eine genaue Positionierung.
Die Platine verfügt über 2 Eingänge für Spannung von 4,8-6 V, über die zusammen bis zu 11 A eingespeist werden können, sodass eine optimale Versorgung der Motoren stets gewährleistet ist und somit auch größere Projekte mit ausreichend Strom beliefert werden können.
Die Versorgung läuft zentral über den Motorino, der für jeden Motor separat einen Anschluss für Spannung, Masse und die Steuerleitung zur Verfügung stellt.
Durch den eingebauten Kondensator wird der Strom zusätzlich gepuffert, hierdurch wird das Einbrechen der Spannung bei kurzzeitiger Mehrbelastung reduziert, die sonst zum Ruckeln führen könnte. Zusätzlich hat man noch die Möglichkeit, einen weiteren Kondensator anzuschließen.
Die Ansteuerung und Programmierung der Motoren kann (wie gewohnt) weiterhin bequem über den Arduino bedient werden. Anleitung und Codebeispiele erlauben auch Einsteigern, schnell Ergebnisse zu erzielen.
Besonderheiten
16 Kanäle, eigener Taktgeber für Servomotoren (PWM)
Eingang 1
Hohlstecker 5,5 / 2,1 mm , 4,8-6 V / 5 A max
Eingang 2
Schraubklemme, 4,8-6 V / 6 A max
Kommunikation
16 x PWM
Kompatibel mit
Arduino Uno, Mega und viele weitere Mikrovontroller mit Arduino-kompatiblem Pinout
Maß (BxHxT)
69 x 24 x 56 mm
Lieferumfang
Platine, Bedienungsanleitung, Retail-Verpackung
Dieses Kit enthält alles, was man braucht, um auf einfache und zugängliche Weise Elektronik an den Micro:bit anzuschließen. Alles wird mit den mitgelieferten Alligatorclips verbunden, es ist kein Löten erforderlich.
Lieferumfang
MonkMakes Lautsprecher für micro:bit
MonkMakes Schalter für micro:bit
MonkMakes Sensor Board für micro:bit
Set mit Alligatorclips (10 Clips)
Kleiner Motor mit Lüfter
Einzelne AA-Batteriebox (Batterie nicht enthalten)
Glühbirne und Fassung
Anleitungsbuch (A5)
Downloads
Anleitungen
Datenblatt
Lektionspläne
Dieses Kit basiert auf ESP32 und LoRa. Das ESP32 3,5-Zoll-Display ist die Konsole für das System, es empfängt die LoRa-Nachricht von LoRa-Feuchtigkeitssensoren (unterstützt bis zu 8 Sensoren in der Standard-Firmware). Es sendet Steuerbefehle an LoRa 4-Kanal-MOSFET (2 4-Kanal-MOSFET unterstützt, mit insgesamt 8 Kanälen), um die angeschlossenen Ventile zu öffnen/schließen und somit die Bewässerung für mehrere Punkte zu steuern.
Merkmale
Einsatzbereit: Firmware sind für alle Module vor der Auslieferung vorprogrammiert, der Benutzer kann sie nur einschalten und die ID auf der Konsole einstellen, und beginnen zu verwenden. Geeignet für Nicht-Programmierer, in 3 Minuten zu erstellen eingereicht Anwendung.
Mit Lora drahtlose Verbindung: Der Überwachungs- und Kontrollbereich kann bis zu einigen Kilometern betragen, geeignet für Garten/Kleinbauernhof.Bodenfeuchtesensor mit guter Korrosionsbeständigkeit, kann mindestens ein halbes Jahr mit 2 AAA-Batterien verwendet werden.
Einfach zu installieren: Im Vergleich zu billigen Lösung mit Drähten, die schwer in Dateien Anwendung zu implementieren ist, gibt die Verbindung Drähte nicht benötigt, die gesamte Installation sauber und einfach; Die Ventile können Lora MOSFET leicht angeschlossen werden.
Hardware & Software offen: Lora & FreeRTOS zu studieren. Die ESP32-Display-Konsole/Lora-Bodenfeuchtesensor/LoRa MOSFE sind alle mit Arduino programmiert. Für Programmierer/Ingenieure, die weitere spezialisierte Anwendungen entwickeln können.
Basierend auf ESP32, mit WiFi-Verbindung, kann die Konsole auch auf das Internet zugreifen, die Schaffung viel mehr Anwendungen, einschließlich der Feuchtigkeitsdaten Aktualisierung an das Internet für die Fernüberwachung, und die Fernbedienung mit MQTT.
Lieferumfang
1x ESP32 3.5" Display (ohne Kamera)
1x Lora Erweiterung für ESP32 Display
2x Lora Feuchtigkeits-Sensor
1x Lora 4-Kanal MOSFET
1x 12 V Stromversorgung
Wasserleitung (5 m)
1x 1-Eingang & 4-Ausgang Pipe Joint
Downloads
Instructable: Soil Monitoring & Irrigation with LoRa
GitHub
Ein stromsparendes, open source, 2,7-Zoll-IoT-Display, das mit einem ESP32-S2-Modul betrieben wird und über SHARPs Memory-in-Pixel (MiP)-Bildschirmtechnologie verfügt. Der Newt ist ein batteriebetriebenes, immer aktives, an der Wand montierbares Display, das online Wetter, Kalender, Sportergebnisse, To-Do-Listen, Zitate … eigentlich alles aus dem Internet abrufen kann! Es beinhaltet einen ESP32-S2-Mikrocontroller, den Sie mit Arduino, CircuitPython, MicroPython oder ESP-IDF Entwicklungsumgebung programmieren können. Es ist perfekt für Maker: Die Memory-in-Pixel (MiP)-Technologie von Sharp vermeidet die von E-Ink-Displays bekannten langsamen Aktualisierungszeiten Eine Echtzeituhr (RTC) wurde hinzugefügt, um Timer und Alarme zu unterstützen Der Newt wurde unter Berücksichtigung eines Batteriebetriebs entwickelt. Jede Komponente auf der Platine wurde aufgrund geringer Leistungsaufnahme ausgewählt. Newt wurde entwickelt, um 'unverkabelt' zu arbeiten, was bedeutet, dass es an Orten montiert werden kann, an denen ein Netzkabel unpraktisch wäre, z. B. eine Wand, ein Kühlschrank, ein Spiegel oder Whiteboard. Mit dem optionalen Ständer sind Schreibtische, Regale und Nachttische ebenfalls gute Aufstelloptionen. Newt ist Open Source und damit stehen alle Designdateien und Bibliotheken zur Verfügung um überprüft, verwendet oder abgeändert werden zu können. Dies sollte jedoch nicht erforderlich sein. Jeder Newt wird mit funktionierendem Code und folgenden Funktionen geliefert: Aktuelle Wetterdetails Stündliche und tägliche Wettervorhersage Alarm Zeitschaltuhr Inspirierende Zitate Vorhersage der Luftqualität Gewohnheitskalender Kurzzeit Timer (Pomodoro-Technik) Oblique Strategiekarten Um loszulegen, befolgen Sie nur die Anweisungen zur WLAN-Konfiguration. Es sind keine App-Downloads erforderlich. Leistungsbeschreibung Display Sharp Memory LCD-Anzeige Bildschirmgröße 2,7 Zoll Auflösung 240 x 400 Ruhestrom 30 µA Aktualisierungsrate Regelmäßige Bildschirmaktualisierung erforderlich Nein Eingabetasten 10 kapazitive Felder, 1 Druckknopf RTC inklusive Ja Lautsprecher inklusive Ja Spannungsversorgung USB Type-C Batterie im Lieferumfang enthalten Nein Programmiersprachen Arduino, CircuitPython, ESP IDF, MicroPython Abmessungen 91 x 61 x 9 mm Mikrocontroller Espressif ESP32-S2-WROVER Modul mit 4 MB Flash und 2 MB PSRAM Wi-Fi-fähig Unterstützt Arduino, MicroPython, CircuitPython und ESP-IDF Ruhestrom bis zu 25 μA Display 2,7 Zoll, 240 x 400 Pixel MiP-LCD Liefert kontrastreiche, hochauflösende Inhalte mit geringer Latenz und extrem niedrigem Stromverbrauch Der reflektierende Modus nutzt das Umgebungslicht und macht damit eine separate Hintergrundbeleuchtung unnötig Zeitmessung, Timer und Alarm RV-3028-C7 RTC Optimiert für extrem niedrigen Stromverbrauch (45 μA) Kann gleichzeitig einen periodischen Timer, einen Countdown-Timer und einen Alarm verwalten Hardware-Interrupt für Timer und Alarm 43 Byte nichtflüchtiger Benutzerspeicher, 2 Byte Benutzer-RAM Separater UNIX-Zeitzähler Summer Lautsprecher bzw. Summer mit Mini-Class-D-Verstärker am DAC-Ausgang A0 kann Töne oder Lo-Fi-Audioclips abspielen Benutzereingabe Netzschalter Zwei programmierbare Tasten für Reset und Boot 10 kapazitive Felder Power Newt ist für den Betrieb von ein bis zwei Monaten bis zum erneuten Ladevorgang mit einem 500mAh LiPo-Akku ausgelegt. Die genaue Laufzeit variiert. (Insbesondere reduziert starke Wi-Fi-Nutzung die Batterieladung schneller.) USB-Typ-C-Anschluss für Programmierung, Stromversorgung und Aufladen Spannungsregler mit niedrigem Ruhestromverbrauch (TOREX XC6220), der 1 A Strom ausgeben und mit nur bis zu 8 μA Eigenbedarf arbeiten kann. JST-Stecker für einen Lithium-Ionen-Akku Batterieladeregelschaltung (MCP73831) Anzeige für niedrigen Batteriestand (1 μA Ruhestrom) Software Newt-Hardware ist kompatibel mit Open-Source-Arduino-Bibliotheken für ESP32-S2, Adafruit GFX (Schriftarten), Adafruit Sharp Memory Display (Display Writing) und RTC RV-3028-C7 (RTC) Arduino-Bibliotheken und Beispielprogramme befinden sich in der Entwicklung und werden vor dem Start in unserem GitHub-Repository verfügbar sein CircuitPython-Bibliotheken und Registrierung stehen auf der Roadmap, mit der Entwicklung einer CircuitPython-Bibliothek für die RV-3028-Echtzeituhr als Hauptmeilenstein. Lieferumfang Phambili Newt – Komplett montiert mit vorinstallierter Firmware Lasergeschnittener Tischständer Mini-Magnetfüße Erforderliche Schrauben Support & Dokumentation Vollständige Gebrauchsanweisung (Auf Englisch) GitHub: Arduino-Bibliothek und Codebasis (Auf Englisch) GitHub: Board-Schaltpläne (Auf Englisch) Videos von Prototypen oder Demos (Aufgenommen auf dem „Hackaday“. Auf Englisch)
Arduino-, MicroPython- und CircuitPython-kompatibles, kompaktes Entwicklungsboard mit Raspberry Pi RP2040
RP2040-0.42LCD ist ein leistungsstarkes Entwicklungsboard mit integriertem 0.42" LCD (70x40 Auflösung) mit flexiblen digitalen Schnittstellen.
Es enthält den RP2040 Mikrocontroller-Chip des Raspberry Pi. Der RP2040 verfügt über einen Dual-Core Arm Cortex-M0+ Prozessor, der mit 133 MHz getaktet ist, mit 264 KB internem SRAM und 2 MB Flash-Speicher.
Technische Spezifikationen
SoC
Raspberry Pi RP2040 Dual-Core Cortex-M0+ Mikrocontroller mit bis zu 125 MHz, mit 264 KB SRAM
Speicher
2 MB SPI-Flash
Display
0,42-Zoll-OLED
USB
1x USB Typ-C Anschluss für Stromversorgung und Programmierung
Expansion
- Qwiic I²C-Anschluss- 7-polige und 8-polige Stiftleisten mit bis zu 11x GPIOs, 2x SPI, 2x I²C, 4x ADC, 1x UART, 5 V, 3,3 V, VBAT, GND
Misc
- Reset- und Boot-Tasten- RGB-LED, Betriebs-LED
Stromversorgung
- 5 V über USB-C-Anschluss oder Vin- VBAT-Pin für Batterieeingang- 3,3-V-Regler mit 500-mA-Spitzenleistung
Dimensionen
23.5 x 18 mm
Gewicht
2.5 g
Downloads
GitHub
The EC200U-EU C4-P01 development board features the EC200U-EU LTE Cat 1 wireless communication module, offering a maximum data rate of up to 10 Mbps for downlink and 5 Mbps for uplink. It supports multi-mode and multi-band communication, making it a cost-effective solution.
The board is designed in a compact and unified form factor, compatible with the Quectel multi-mode LTE Standard EC20-CE. It includes an onboard USB-C port, allowing for easy development with just a USB-C cable.
Additionally, the board is equipped with a 40-pin GPIO header that is compatible with most Raspberry Pi HATs.
Features
Equipped with EC200U-EU LTE Cat 1 wireless communication module, multi-mode & multi-band support
Onboard 40-Pin GPIO header, compatible with most Raspberry Pi HATs
5 LEDs for indicating module operating status
Supports TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS protocols, etc.
Supports GNSS positioning (GPS, GLONASS, BDS, Galileo, QZSS)
Onboard Nano SIM card slot and eSIM card slot, dual card single standby
Onboard MIPI connector for connecting MIPI screen and is fully compatible with Raspberry Pi peripherals
Onboard camera connector, supports customized SPI cameras with a maximum of 300,000 pixels
Provides tools such as QPYcom, Thonny IDE plugin, and VSCode plugin, etc. for easy learning and development
Comes with online development resources and manual (example in QuecPython)
Technische Daten
Applicable Regions
Europe, Middle East, Africa, Australia, New Zealand, Brazil
LTE-FDD
B1, B3, B5, B7, B8, B20, B28
LTE-TDD
B38, B40, B41
GSM / GPRS / EDGE
GSM: B2, B3, B5, B8
GNSS
GPS, GLONASS, BDS, Galileo, QZSS
Bluetooth
Bluetooth 4.2 (BR/EDR)
Wi-Fi Scan
2.4 GHz 11b (Rx)
CAT 1
LTE-FDD: DL 10 Mbps; UL 5 Mbps
LTE-TDD: DL 8.96 Mbps; UL 3.1 Mbps
GSM / GPRS / EDGE
GSM: DL 85.6 Kbps; UL 85.6 Kbps
USB-C Port
Supports AT commands testing, GNSS positioning, firmware upgrading, etc.
Communication Protocol
TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS
SIM Card
Nano SIM and eSIM, dual card single standby
Indicator
P01: Module Pin 1, default as EC200A-XX PWM0
P05: Module Pin 5, NET_MODE indicator
SCK1: SIM1 detection indicator, lights up when SIM1 card is inserted
SCK2: SIM2 detection indicator, lights up when SIM2 card is inserted
PWR: Power indicator
Buttons
PWK: Power ON/OFF
RST: Reset
BOOT: Forcing into firmware burning mode
USB ON/OFF: USB power consumption detection switch
Antenna Connectors
LTE main antenna + DIV / WiFi (scanning only) / Bluetooth antenna + GNSS antenna
Operating Temperature
−30~+75°C
Storage Temperature
−45~+90°C
Downloads
Wiki
Quectel Resources
Wenn Sie nach einer einfachen Möglichkeit suchen, das Löten zu erlernen, oder einfach nur ein kleines Gerät herstellen möchten, das Sie tragen können, ist dieses Set eine großartige Gelegenheit. Das Spiel „Stop me“ ist ein Lernset, das Ihnen das Löten beibringt und am Ende Ihr eigenes kleines Spiel erhält. Die LEDs bewegen sich auf und ab und Ihr Ziel ist es, die Taste zu drücken, sobald die grüne LED aufleuchtet. Mit jeder richtigen Antwort wird das Spiel etwas schwieriger – die Zeit, die Sie zum Drücken der Taste benötigen, verkürzt sich. Wie viele richtige Antworten können Sie bekommen?
Es basiert auf dem ATtiny404-Mikrocontroller, programmiert in Arduino. Auf der Rückseite befindet sich eine CR2032-Batterie, die das Kit tragbar macht. Es gibt auch einen Schlüsselanhängerhalter. Der Lötvorgang ist anhand der Markierung auf der Leiterplatte recht einfach.
Lieferumfang
1x Platine
1x ATtiny404-Mikrocontroller
7x LEDs
1x Drucktaster
1x Schalter
7x Widerstände (330 Ohm)
1x CR2032-Batteriehalter
1x Batterie CR2032
1x Schlüsselanhängerhalter
Hier finden Sie alle Arten von Teilen, Komponenten und Zubehör, die Sie in verschiedenen Projekten benötigen, angefangen von einfachen Kabeln, Sensoren und Displays bis hin zu bereits vormontierten Modulen und Kits.