Technische Daten
RP2040-Mikrocontroller-Chip, entwickelt von Raspberry Pi in Großbritannien
Dual-Core ARM Cortex M0+ Prozessor mit flexiblem Takt von bis zu 133 MHz
264 kB SRAM und 2 MB on-board Flash-Speicher
Gegossenes Modul ermöglicht direktes Löten auf Trägerplatinen
USB 1.1 Host- und Device-Unterstützung
Stromsparende Sleep- und Dormant-Modi
Drag-and-Drop-Programmierung mit Massenspeicher über USB
26x multifunktions-GPIO-Pins
2x SPI, 2x I²C, 2x UART, 3x 12-bit ADC, 16x steuerbare PWM-Kanäle
Genaue Uhr und Timer auf dem Chip
Temperatursensor
Beschleunigte Fließkomma-Bibliotheken auf dem Chip
8x programmierbare IO (PIO) Zustandsautomaten für eigene Peripherie
Warum ein Raspberry Pi Pico?
Einen eigenen Mikrocontroller zu entwerfen, anstatt einen bestehenden zu kaufen, bringt eine Reihe von Vorteilen mit sich. Laut Raspberry Pi selbst kommt kein einziges der dafür erhältlichen Produkte auch nur annähernd an das Preis-/Leistungsverhältnis heran.
Außerdem hat Raspberry Pi mit dem Raspberry Pi Pico die Möglichkeit, einige innovative und leistungsstarke eigene Funktionen hinzuzufügen. Diese Features sind nirgendwo anders verfügbar.
Ein dritter Grund ist, dass der Raspberry Pi Pico dem Raspberry Pi die Möglichkeit gegeben hat, leistungsstarke Software um das Produkt herum zu erstellen. Um diesen Software-Stack herum gibt es eine umfangreiche Dokumentation. Die Software und die Dokumentation entsprechen dem hohen Standard der Kernprodukte von Raspberry Pi (wie dem Raspberry Pi 400, Pi 4 Model B und Pi 3 Model A+).
Für wen ist dieser Mikrocontroller geeignet?
Der Raspberry Pi Pico ist sowohl für Fortgeschrittene als auch für Einsteiger geeignet. Von der Steuerung eines Displays bis hin zur Steuerung vieler verschiedener Geräte, die Sie jeden Tag benutzen. Die Automatisierung von alltäglichen Abläufen wird durch diese Technologie möglich gemacht.
Einsteiger
Der Raspberry Pi Pico ist in den Sprachen C und MicroPython programmierbar und kann für eine Vielzahl von Geräten angepasst werden. Darüber hinaus ist der Pico so einfach zu bedienen wie das Ziehen und Ablegen von Dateien. Damit ist dieser Mikrocontroller ideal für den Einsteiger geeignet.
Fortgeschrittene
Für fortgeschrittene Anwender ist es möglich, die Vorteile der umfangreichen Peripherie des Pico zu nutzen. Zu den Peripherien gehören SPI, I²C und acht programmierbare I/O (PIO)-State-Maschinen.
Was macht den Raspberry Pi Pico so besonders?
Das Besondere am Pico ist, dass er von Raspberry Pi selbst entwickelt wurde. Der RP2040 verfügt über einen Dual-Core ARM Cortex-M0+ Prozessor mit 264 KB internem RAM und Unterstützung für bis zu 16 MB Off-Chip Flash.
Der Raspberry Pi Pico ist aus mehreren Gründen einzigartig:
Das Produkt hat das beste Preis-/Leistungsverhältnis auf dem Markt der Mikrocontroller-Boards.
Der Raspberry Pi Pico wurde von Raspberry Pi selbst entwickelt.
Der Software-Stack, der dieses Produkt umgibt, ist von hoher Qualität und kommt gepaart mit einer umfangreichen Dokumentation.
ESP32-C3-DevKitM-1 ist ein Einstiegs-Entwicklungsboard, das auf ESP32-C3-MINI-1 basiert, einem Modul, das nach seiner geringen Größe benannt ist. Dieses Board integriert vollständige Wi-Fi- und Bluetooth LE-Funktionen.
Die meisten I/O-Pins des ESP32-C3-MINI-1-Moduls sind auf die Stiftleisten auf beiden Seiten des Boards aufgeteilt, um die Anbindung zu erleichtern. Entwickler können Peripheriegeräte entweder mit Jumper-Drähten anschließen oder ESP32-C3-DevKitM-1 auf einem Breadboard montieren.
Technische Daten
ESP32-C3-MINI-1
ESP32-C3-MINI-1 ist ein Wi-Fi- und Bluetooth-LE-Kombimodul für allgemeine Zwecke, das mit einer PCB-Antenne geliefert wird. Der Kern dieses Moduls ist ESP32-C3FN4, ein Chip mit integriertem Flash von 4 MB. Da der Flash im ESP32-C3FN4-Chip verpackt und nicht in das Modul integriert ist, hat ESP32-C3-MINI-1 eine kleinere Gehäusegröße.
5 V to 3,3 V LDO
Leistungsregler, der eine 5-V-Versorgung in einen 3,3-V-Ausgang umwandelt.
5 V Power On LED
Leuchtet auf, wenn die USB-Stromversorgung an das Board angeschlossen ist.
Pin-Header
Alle verfügbaren GPIO-Pins (außer dem SPI-Bus für Flash) sind auf die Stiftleisten auf der Platine ausgebrochen. Einzelheiten finden Sie unter Header-Block.
Boot-Button
Download-Button. Wenn Sie Boot gedrückt halten und dann Reset drücken, wird der Firmware-Download-Modus zum Herunterladen von Firmware über die serielle Schnittstelle gestartet.
Micro-USB Port
USB-Interface. Stromversorgung für das Board sowie die Kommunikationsschnittstelle zwischen einem Computer und dem ESP32-C3FN4-Chip.
Reset-Button
Drücken Sie diese Taste, um das System neu zu starten.
USB-to-UART Bridge
Ein einzelner USB-UART-Bridge-Chip bietet Übertragungsraten von bis zu 3 Mbit/s.
RGB LED
Adressierbare RGB-LED, angesteuert von GPIO 8.
Downloads
ESP32-C3 Datasheet
ESP32-C3-MINI-1 Datasheet
ESP32-C3-DevKitM-1 Schematic
ESP32-C3-DevKitM-1 PCB Layout
ESP32-C3-DevKitM-1 Dimensions
Der nRF52840-Dongle ist ein kleiner, kostengünstiger USB-Dongle, der die proprietären Protokolle Bluetooth 5.3, Bluetooth Mesh, Thread, ZigBee, 802.15.4, ANT und 2,4 GHz unterstützt. Der Dongle ist die perfekte Hardware für die Verwendung mit nRF Connect for Desktop, da er kostengünstig ist und dennoch alle drahtlosen Nahbereichsstandards unterstützt, die mit Nordic-Geräten verwendet werden.
Der Dongle wurde entwickelt, um zusammen mit nRF Connect for Desktop als drahtloses HW-Gerät verwendet zu werden. Für andere Anwendungsfälle beachten Sie bitte, dass es keine Debug-Unterstützung auf dem Dongle gibt, sondern nur Unterstützung für die Programmierung des Geräts und die Kommunikation über USB.
Es wird von den meisten nRF Connect for Desktop-Apps unterstützt und bei Bedarf automatisch programmiert. Darüber hinaus können benutzerdefinierte Anwendungen kompiliert und auf den Dongle heruntergeladen werden. Es verfügt über eine benutzerprogrammierbare RGB-LED, eine grüne LED, eine benutzerprogrammierbare Taste sowie 15 GPIO, die über kronenförmige Lötpunkte entlang der Kante zugänglich sind. Beispielanwendungen sind im nRF5 SDK unter dem Boardnamen PCA10059 verfügbar.
Der nRF52840-Dongle wird von nRF Connect for Desktop sowie von der Programmierung über nRFUtil unterstützt.
Features
Bluetooth 5.2-fähiges Multiprotokoll-Funkgerät
2 Mbit/s
Lange Reichweite
Werbeerweiterungen
Kanalauswahlalgorithmus 2 (CSA #2)
IEEE 802.15.4-Funkunterstützung
Thread
ZigBee
Arm Cortex-M4 mit Gleitkommaunterstützung
DSP-Befehlssatz
ARM CryptoCell CC310-Kryptografiebeschleuniger
15 GPIO über Edge-Castellation verfügbar
USB-Schnittstelle direkt zum nRF52840 SoC
Integrierte 2,4-GHz-PCB-Antenne
1 Programmierbare Taste
1 Programmierbare RGB-LED
1 Programmierbare LED
1,7-5,5 V Betrieb über USB oder extern
Downloads
Datasheet
Hardware Files
Der Coral USB Accelerator fügt Ihrem System einen Edge-TPU-Coprozessor hinzu und ermöglicht High-Speed-Inferenzen durch maschinelles Lernen auf einer Vielzahl von Systemen, indem er einfach an einen USB-Port angeschlossen wird.
Features
Unterstütztes Host-Betriebssystem: Debian Linux, macOS, Windows 10
Kompatibel mit Raspberry Pi-Boards
Unterstütztes Framework: TensorFlow Lite
Führt High-Speed-ML-Inferenzen durch
Der integrierte Edge TPU-Coprozessor kann 4 Billionen Operationen (Tera-Operationen) pro Sekunde (TOPS) ausführen, wobei 0,5 Watt für jede TOPS (2 TOPS pro Watt) verbraucht werden. Beispielsweise kann es hochmoderne mobile Vision-Modelle wie MobileNet v2 mit fast 400 FPS auf energieeffiziente Weise ausführen.
Unterstützt alle wichtigen Plattformen
Verbindet sich über USB mit jedem System, auf dem Debian Linux (einschließlich Raspberry Pi), macOS oder Windows 10 ausgeführt wird.
Unterstützt TensorFlow Lite
Modelle müssen nicht von Grund auf neu erstellt werden. TensorFlow Lite-Modelle können für die Ausführung auf der Edge-TPU kompiliert werden.
Unterstützt AutoML Vision Edge
Mit AutoML Vision Edge können Sie ganz einfach schnelle, hochpräzise benutzerdefinierte Bildklassifizierungsmodelle erstellen und auf Ihrem Gerät bereitstellen.
Technische Daten
ML Accelerator
Google Edge TPU Coprozessor:4 TOPS (int8); 2 TOPS pro Watt
Anschluss
USB 3.0 Typ-C (Daten/Stromversorgung)
Abmessungen
65 x 30 mm
Downloads/Dokumentation
Datasheet
Get started with the USB Accelerator
Model compatibility on the Edge TPU
Edge TPU inferencing overview
Run multiple models with multiple Edge TPUs
Pipeline a model with multiple Edge TPUs
PyCoral API (Python)
Libcoral API (C++)
Libedgetpu API (C++)
Edge TPU compiler
Pre-compiled models
All software downloads
Merkmale
RP2040 Mikrocontroller mit 2 MB Flash
Dual-Core Cortex M0+ mit bis zu 133 MHz
264 KB Multibank-Hochleistungs-SRAM
Externer Quad-SPI-Flash mit eXecute In Place (XIP)
Hochleistungsfähiges Crossbar-Buchsengewebe 30 multifunktionale Allzweck-E/A (4 können für ADC verwendet werden) 1,8-3,3 V IO-Spannung (HINWEIS: Die Pico-IO-Spannung ist auf 3,3 V festgelegt)
12-Bit 500 ksps Analog-Digital-Wandler (ADC)
Verschiedene digitale Peripheriegeräte
2× UART, 2× I²C, 2× SPI, 16× PWM-Kanäle
1× Timer mit 4 Alarmen, 1× Echtzeitzähler
2× Programmierbare IO (PIO)-Blöcke, insgesamt 8 Zustandsmaschinen
Flexible, vom Benutzer programmierbare Hochgeschwindigkeits-IO
Kann Schnittstellen wie SD-Karte und VGA emulieren
Beinhaltet W5100S
Unterstützt festverdrahtete Internetprotokolle: TCP, UDP, WOL über UDP, ICMP, IGMPv1/v2, IPv4, ARP, PPPoE
Unterstützt 4 unabhängige Hardware-SOCKETs gleichzeitig
Interner 16-KB-Speicher für TX/RX-Puffer
SPI-Schnittstelle
Micro-USB-B-Anschluss für Strom und Daten (und zum Neuprogrammieren des Flashs)
40-polige 21x51-DIP-Leiterplatte mit 1 mm Dicke und 0,1-Zoll-Durchgangsstiften, auch mit Randzinnen
3-poliger ARM Serial Wire Debug (SWD)-Anschluss
10/100 Ethernet PHY eingebettet
Unterstützt automatische Aushandlung
Voll-/Halbduplex
10/100 Basierend
Integrierter RJ45 (RB1-125BAG1A)
Integrierter LDO (LM8805SF5-33V)
Downloads
RP2040 Datenblatt
W5100S Datenblatt
Schaltplan & Teileliste & Gerber-Datei
C/C++-Beispiele
CircuitPython-Beispiele
Arduino Uno ist ein Open-Source-Mikrocontroller-Board basierend auf einem ATmega328P. Es hat 14 digitale Ein-/Ausgangs-Pins (von denen 6 als PWM-Ausgänge verwendet werden können), 6 analoge Eingänge, einen 16-MHz-Keramik-Resonator (CSTCE16M0V53-R0), einen USB-Anschluss, eine Stromversorgungsbuchse, einen ICSP-Header und einen Reset-Taster. Es enthält alles, was für den Betrieb des Mikrocontrollers benötigt wird; schließen Sie es einfach mit einem USB-Kabel an einen Computer an oder versorgen Sie es mit einem AC-zu-DC-Adapter oder einer Batterie, um loszulegen. Sie können mit Ihrem Uno basteln, ohne sich allzu große Sorgen machen zu müssen, etwas falsch zu machen. Im schlimmsten Fall können Sie den Chip für ein paar Dollar austauschen und noch einmal von vorne anfangen.
"Uno" bedeutet auf Italienisch "eins" und wurde gewählt, um die Veröffentlichung der Arduino-Software (IDE) 1.0 zu markieren. Das Uno-Board und die Version 1.0 der Arduino Software (IDE) waren die Referenzversionen von Arduino, die nun zu neueren Versionen weiterentwickelt wurden. Das Uno-Board ist das erste in einer Reihe von USB-Arduino-Boards und das Referenzmodell für die Arduino-Plattform; eine umfangreiche Liste aktueller, vergangener oder veralteter Boards finden Sie im Arduino-Index der Boards.
Technische Daten
Mikrocontroller
ATmega328P
Betriebsspannung
5 V
Eingangsspannung (empfohlen)
7-12 V
Eingangsspannung (maximal)
6-20 V
Digitale I/O-Pins
14 (davon 6 mit PWM-Ausgang)
Digitale I/O-Pins mit PWM
6
Analoge Eingänge
6
DC-Strom pro I/O-Pin
20 mA
DC-Strom für 3,3 V Pin
50 mA
Flashspeicher
32 KB (ATmega328P), davon 0,5 KB vom Bootloader belegt
SRAM
2 KB (ATmega328P)
EEPROM
1 KB (ATmega328P)
Taktgeschwindigkeit
16 MHz
LED_BUILTIN
13
Abmessungen
68,6 x 53,4 mm
Gewicht
25 g
Wenn Sie schnell und einfach in die Welt der Programmierung einsteigen wollen, ist JOY-iT Mega 2560 R3 das richtige Board für Sie. Dank den zahlreichen Tutorials und Anleitungen für diesen Mikrocontroller können Sie ohne Komplikationen mit der Programmierung beginnen.
Der ATmega2560 bietet mit seinen 54 digitalen Ein- und Ausgängen und 16 analogen Eingängen genügend Leistung für Ihre Projekte und Ideen.Um mit der Programmierung Ihres JOY-iT Mega 2560 R3 zu beginnen, müssen Sie die Entwicklungsumgebung und natürlich die Treiber auf Ihrem Computer installieren.
Die Arduino IDE eignet sich am besten für den Einsatz mit dem Mega 2560. Diese IDE ist vollständig kompatibel mit diesem Board und bietet Ihnen alle Treiber, die Sie für einen schnellen Start benötigen.
Mikrocontroller
ATmega2560
Taktfrequenz
16 MHz
Betriebsspannung
5 V/DC
Digitale Ein-/Ausgang-Pins
54 (of which 15 with PWM)
Analoge Eingang-Pins
16
Analoge Ausgang-Pins
15
Flash Speicher
256 KB
EEPROM
4 KB
SRAM
8 KB
Die Anleitung für JOY-it Mega2560R3 ist hier erhältlich.
Das Uno-Board ist der richtige Mikrocontroller für die, die schnell und unkompliziert in die Programmierwelt einsteigen wollen. Sein ATmega328-Mikrocontroller bietet Ihnen genügend Leistung für Ihre Ideen und Projekte.
Das Uno-Board hat einen USB-Typ-B-Anschluss, damit Sie diesen schnell und einfach mit Programmen versorgen können - natürlich über die bekannte Programmierumgebung Arduino IDE. Stecksystem und Schaltung lassen sich sowohl über den USB-Anschluss als auch alternativ über den eigenen Stromanschluss versorgen.
Bitte beachten, damit der Uno von der Arduino IDE erkannt wird, muss vorher der Schnittstellentreiber CH341 installiert werden.
Mikrocontroller
ATmega 328
Taktfrequenz
16 MHz
Betriebsspannung
5 V
Empfohlene Eingangsspannung
5-10 V
Digitale I/O Pins
14
mit PWM
6
USB
1x
SPI
1x
I2C
1x
ICSP
1x
Flash-Speicher
32 KB
EEPROM
1x
Datenblatt
Bedienungsanleitung
WCH CH32V307 RISC-V-Entwicklungsboard verfügt über 8 UART-Ports, die über Ethernet gesteuert werden
Der CH32V307 ist ein vernetzter Mikrocontroller auf Basis eines 32-Bit-RISC-V-Kerns mit Hardware-Stack-Bereich und schnellem Interrupt-Einstieg. Im Vergleich zu Standard-RISC-V wurde die Interrupt-Reaktionsgeschwindigkeit deutlich verbessert. Mit hinzugefügten Single-Precision-Float-Point-Instruktionssätzen und erweiterter Stack-Fläche bietet der CH32V307 eine höhere Leistung, erweitert die Anzahl der U(S)ARTs auf 8 und die Anzahl der Motor-Timer auf 4.
Der CH32V307 bietet eine USB-2.0-Hochgeschwindigkeitsschnittstelle (480 Mbps) und verfügt über einen integrierten PHY-Transceiver. Die Ethernet-MAC wurde auf GbE aufgerüstet und integriert ein 10M-PHY-Modul.
Features
RISC-V4F-Prozessor, maximaler Systemtakt von 144 MHz
Einkreis-Multiplikation und Hardware-Division, Hardware-Fließkommaeinheit (FPU)
64 KB SRAM, 256 KB Flash
Versorgungsspannung: 2,5 V/3,3 V, GPIO-Einheit wird unabhängig versorgt
Mehrere Niedrigleistungsmodi: Schlaf-/Stopp-/Standby-Modus
Power-on/Power-down-Reset (POR/PDR), programmierbarer Spannungsdetektor (PVD)
2 allgemeine DMA-Controller, insgesamt 18 Kanäle
4 Verstärker
Einzelner echter Zufallszahlengenerator (TRNG)
2x 12-Bit-DAC
2 Einheiten mit 16 Kanälen und 12-Bit-ADC, 16-Kanal-TouchKey
10 Timer
USB-2.0-Full-Speed-OTG-Schnittstelle
USB-2.0-Hochgeschwindigkeits-Host/Device-Schnittstelle (integrierter 480 Mbps PHY)
3 USARTs, 5 UARTs
2 CAN-Schnittstellen (2.0B aktiv)
SDIO-Schnittstelle, FSMC-Schnittstelle, DVP
2x I²C, 3x SPI, 2x I²S
80 I/O-Ports, können 16 externen Interrupts zugeordnet werden
CRC-Berechnungseinheit, 96-Bit-eindeutige Chip-ID
Serielle 2-Draht-Debug-Schnittstelle
Pakete: LQFP64M, LQFP100
Downloads
Datenblatt
GitHub
Mit dem NodeMCU ESP32 ist komfortables Prototyping durch eine einfache Programmierung per Lua-Skript oder die Arduino-IDE und den Breadboard-kompatiblen Aufbau möglich. Dieses Board verfügt über 2,4 GHz Dual-Mode Wifi und eine BT-Funkverbindung. Zusätzlich sind auf dem Mikrocontroller-Entwicklungsboard ein 512 KB SRAM und ein 4 MB Speicher integriert. Das Board hat 21 Pins zur Schnittstellenanbindung darunter sind I²C, SPI, UART, DAC und ADC.
Technische Daten
Typ
ESP32
Prozessor
Tensilica LX6 Dual-Core
Taktfrequenz
240 MHz
SRAM
512 kB
Speicher
4 MB
Wireless Lan
802.11 b/g/n
Frequenz
2.4 GHz
Bluetooth
Classic / LE
Datenschnittstellen
UART / I²C / SPI / DAC / ADC
Betriebsspannung
3,3 V (operable via 5 V microUSB)
Betriebstemperatur
–40°C – 125°C
Abmessungen
48 x 26 x 11,5 mm
Gewicht
10 g
Downloads
Manual
LILYGO T-Display-S3 ESP32-S3 1.9-Zoll ST7789 LCD-Display Entwicklungsboard WiFi Bluetooth 5.0 Wireless Modul 170x320 Auflösung
T-Display-S3 ist ein Entwicklungsboard, dessen Hauptsteuerchip ESP32-S3 ist. Es ist mit einem 1,9-Zoll-LCD-Farbbildschirm und zwei programmierbaren Tasten ausgestattet. Kommunikation über die I8080-Schnittstelle behält das gleiche Layout-Design wie T-Display. Sie können den ESP32-S3 direkt für die USB-Kommunikation oder Programmierung verwenden.
Technische Daten
MCU
ESP32-S3R8 Dual-Core LX7 Mikroprozessor
Wireless-Konnektivität
Wi-Fi 802.11, BLE 5 + BT Mesh
Programmierplattform
Arduino IDE Micropython
Flash
16 MB
PSRAM
8 MB
Bat-Spannungserkennung
IO04
Onboard functions
Boot + Reset + IO14 Button
LCD
1.9" diagonal, Full-color TFT Display
Drive Chip
ST7789V
Resolution
170(H)RGB x320(V) 8-Bit Parallel Interface
Working power supply
3.3 V
Support
STEMMA QT / Qwiic
Connector
JST-GH 1.25 mm 2-pin
Downloads
Pinout
GitHub
Unterschiede zwischen micro:bit v1 und micro:bit v2
Der BBC micro:bit v2 ist mit BLE Bluetooth 5.0 ausgestattet
Es verfügt über eine Ausschalttaste (Einschalttaste gedrückt halten)
MEMS-Mikrofon mit LED-Anzeige
Integrierter Lautsprecher
Berührungsempfindlicher Logo-Pin
LED-Betriebsanzeige
Ein gekerbter Kantenverbinder für einfachere Verbindungen.
Dieses ESP32-Terminal ist ein Mikrocontroller, der auf dem ESP32-Master basiert. Es verwendet einen Xtensa 32-Bit LX7 Dual-Core-Prozessor mit einer Hauptfrequenz von bis zu 240 Mhz, unterstützt 2,4 GHz Wi-Fi und Bluetooth 5 (LE) und kann problemlos gängige Anwendungsszenarien für Edge-Terminals bewältigen, wie z. B. industrielle Steuerung, Erkennung und Verarbeitung der landwirtschaftlichen Produktionsumgebung, intelligente Logistiküberwachung, Smart-Home-Szenarien und mehr.
Das ESP32-Modul verfügt außerdem über einen kapazitiven 3,5-Zoll-Touchscreen mit paralleler RGB-Schnittstelle und einer Auflösung von 320x480, um eine perfekte Bildausgabe mit einer Bildrate von 60 FPS zu gewährleisten. Die 4 Crowtail-Schnittstellen auf der Rückseite dieses Terminals können mit Sensoren der Crowtail-Serie verwendet werden, Plug and Play, und erstellen Sie weitere interessante Projekte schnell und bequem. Darüber hinaus ist es auch mit einem SD-Kartensteckplatz für erweiterte Speicherung (SPI-Leitungen) und einer Buzzer-Funktion ausgestattet.
Der ESP32-Touchscreen unterstützt die ESP-IDF- und Arduino-IDE-Entwicklung und ist mit Python/MicroPython/Arduino kompatibel. Es unterstützt auch LVGL, die beliebteste kostenlose und quelloffene eingebettete Grafikbibliothek, um schöne Benutzeroberflächen für alle MCUs, MPUs und Anzeigetypen zu erstellen. Jetzt hat es auch die offizielle Zertifizierung von LVGL erhalten. Das Board-Zertifikat von LVGL zeigt, dass die Boards problemlos mit LVGL verwendet werden können und über eine gute Leistung für UI-Anwendungen verfügen. Die integrierte Ladeschaltung und die Lithium-Batterie-Schnittstelle können die Typ-C-Stromversorgungsschnittstelle nutzen, um gleichzeitig Strom zu liefern und die Batterie aufzuladen, was mehr Möglichkeiten zur Erweiterung bietet.
Features
Integriertes ESP32-S3-Modul, das 2,4-GHz-WLAN und Bluetooth 5 (LE) unterstützt.
LCD 3,5 Zoll paralleles TFT-LCD mit einer Auflösung von 320 x 480
Kompatibel mit Arduino/Python/MicroPython
Unterstützung für ausgereifte Software, Unterstützung für ESP-IDF und Arduino IDE-Entwicklung
Unterstützung der Open-Source-Grafikbibliothek LVGL
Unterstützt den 1T1R-Modus, Datenrate bis zu 150 Mbps, Wireless Multimedia (WMM)
Perfekter Sicherheitsmechanismus, Unterstützung von AES-128/256, Hash, RSA, HMAC, digitalen Signaturen und sicherem Booten
Integrierter Ladechip und Schnittstelle, verwenden Sie zum Laden die Typ-C-Schnittstelle
Mit 4 Crowtail-Schnittstellen (HY2.0-4P-Anschluss), Plug-and-Play mit verschiedenen Crowtail-Sensoren
Applikationen
Smart Home
Industrielle Kontrolle
Medizinischer Monitor
Haushaltsgeräte-Display
Logistiküberwachung
Technische Daten
ESP32-S3 Modul mit 16 MB Flash und 8 MB PSRAM
Wi-Fi-Protokoll: 802.11b/g/n (802.11n bis zu 150 Mbps) Wi-Fi-Frequenzbereich: 2,402-2,483 GHz
Unterstützt Bluetooth 5
Mit 4 Crowtail-Schnittstellen (HY2.0-4P-Anschluss) und integriertem Micro-TF-Kartensteckplatz
3,5-Zoll-TFT-LCD-RGB-True-Color-LCD-Bildschirm mit einer Auflösung von 320 x 480
Treiberchip: ILI9488 (16-Bit-Parallelleitung)
Kapazitiver Touchpanel-Controller IC FT6236-Serie
Betriebsspannung: DC 5 V-500 mA
Ruhestrom:
USB-Stromversorgung: 6,86 mA
Lithiumbatterie-Stromversorgung: 3,23 mA
LiPo-Akku-Schnittstelle: PH2.0
Betriebstemperatur: -10-65 °C
Aktiver Bereich: 73,63 x 49,79 mm (L x B)
Abmessungen: 106 x 66 x 13 mm (L x B x H)
Lieferumfang
1x 3,5-Zoll-ESP-RGB-Display mit Acrylgehäuse
1x USB-C-Kabel
Downloads
Wiki
Schematic Diagram
16 learning Lessons for LVGL
Source code
Lesson code
LVGL Reference
ESP32-S3 Datasheet
ILI9488 Datasheet
Capacitive Touch Display Data
T-PicoC3 ist das erste Motherboard von LILYGO mit zwei Mikrocontrollern - ausgestattet mit dem Raspberry Pi RP2040 und dem ESP32-C3-Chip (mit WiFi- und Bluetooth-Unterstützung).
Spezifikationen
MCU
RP2040 Dual ARM Cortex-M0+
Flash
4 MB
Programmiersprache
C/C++, MicroPython
Unterstützte Machine-Learning-Bibliothek
TensorFlow Lite
Onboard-Funktionen
Tasten: IO06+IO07, Batteriestromerkennung
1,14-Zoll ST7789V IPS-LCD
Auflösung
135 x 240
Display
Vollfarbiges TFT
Schnittstelle
4-Wire SPI
Stromversorgung
3,3 V
Betriebstemperatur
-20~70°C
Abmessungen
2,4 x 5,3 cm (B x H)
Downloads
GitHub
Das LoRa-E5 Development Kit ist ein benutzerfreundliches, kompaktes Entwicklungs-Toolset, mit dem Sie die leistungsstarke Leistung des LoRa-E5 STM32WLE5JC nutzen können. Es besteht aus einem LoRa-E5-Entwicklungsboard, einer Antenne (EU868), einem USB-Typ-C-Kabel und einem 2 AA 3-V-Batteriehalter. LoRa-E5-Entwicklungsplatine mit eingebettetem LoRa-E5-STM32WLE5JC-Modul, das die weltweit erste Kombination aus LoRa-HF- und MCU-Chip in einem einzigen winzigen Chip ist und FCC- und CE-zertifiziert ist. Es wird von einem ARM Cortex-M4-Kern und einem Semtech SX126X LoRa-Chip angetrieben und unterstützt sowohl das LoRaWAN- als auch das LoRa-Protokoll auf der weltweiten Frequenz sowie (G)FSK-, BPSK-, (G)MSK- und LoRa-Modulationen. Das LoRa-E5-Entwicklungsboard zeichnet sich durch eine extrem lange Übertragungsreichweite, einen extrem niedrigen Stromverbrauch des Chips und benutzerfreundliche Schnittstellen aus. Das LoRa-E5-Entwicklungsboard hat eine Langstrecken-Übertragungsreichweite von LoRa-E5 von bis zu 10 km in einem offenen Bereich. Der Ruhestrom der LoRa-E5-Module an Bord beträgt nur 2,1 uA (WOR-Modus). Es wurde nach Industriestandards mit einem breiten Arbeitstemperaturbereich von -40℃ ~ 85℃, hoher Empfindlichkeit zwischen -116,5 dBm bis -136 dBm und einer Ausgangsleistung von bis zu +20,8 dBm bei 3,3 V entwickelt. LoRa-E5 Dev Board hat auch umfangreiche Schnittstellen. Entwickelt, um die volle Funktionalität des LoRa-E5-Moduls freizuschalten, hat das LoRa-E5-Entwicklungsboard volle 28 Pins von LoRa-E5 herausgeführt und bietet umfangreiche Schnittstellen, darunter Grove-Anschlüsse, RS-485-Anschluss, männliche/weibliche Stiftleisten für Sie Verbinden Sie Sensoren und Module mit verschiedenen Anschlüssen und Datenprotokollen und sparen Sie Zeit beim Löten von Drähten. Sie können das Board auch einfach mit Strom versorgen, indem Sie den Batteriehalter mit 2 AA-Batterien verbinden, was eine vorübergehende Verwendung ermöglicht, wenn keine externe Stromquelle vorhanden ist. Es ist ein benutzerfreundliches Board für einfaches Testen und schnelles Prototyping. Technische Daten Abmessungen LoRa-E5 Dev Board: 85,6 x 54 mm Spannung (Versorgung) 3-5 V (Batterie) / 5 V (USB-C) Spannung (Ausgang) EN 3V3 / 5 V Leistung (Ausgang) Bis zu +20,8 dBm bei 3,3 V Frequenz EU868 Protokoll LoRaWAN Empfindlichkeit -116,5 dBm ~ -136 dBm Schnittstellen USB-C / JST2.0 / 3x Grove (2x I²C/1x UART) / RS485 / SMA-K / IPEX Modulation LoRa, (G)FSK, (G)MSK, BPSK Betriebstemperatur -40℃ ~ 85℃ Strom LoRa-E5-Modul mit nur 2,1 uA Ruhestrom (WOR-Modus) Lieferumfang 1x LoRa-E5 Dev Board 1x Antenne (EU868) 1x USB-C-Kabel (20 cm) 1x 2 AA 3-V-Batteriehalter
Das ESP32-S3-DevKitC-1 ist ein Entwicklungsboard der Einstiegsklasse, das mit dem ESP32-S3-WROOM-1U ausgestattet ist, einem universellen Wi-Fi + Bluetooth Low Energy MCU-Modul, das vollständige Wi-Fi- und Bluetooth Low Energy-Funktionen integriert.
Die meisten E/A-Pins des Moduls sind auf die Stiftleisten auf beiden Seiten des Boards verteilt, um eine einfache Anbindung zu ermöglichen. Entwickler können entweder Peripheriegeräte mit Jumper-Drähten anschließen oder ESP32-S3-DevKitC-1 auf einem Breadboard montieren.
Features
Integriertes Modul: ESP32-S3-WROOM-1U-N8R8
Flash: 8 MB QD
PSRAM: 8 MB OT
SPI-Spannung: 3,3 V
Technische Daten
ESP32-S3-WROOM-1U
ESP32-S3-WROOM-1U ist ein leistungsstarkes, generisches Wi-Fi + Bluetooth Low Energy MCU-Modul, das über eine umfangreiche Auswahl an Peripheriegeräten verfügt. Es bietet Beschleunigung für neuronale Netzwerk-Computing- und Signalverarbeitungs-Workloads. ESP32-S3-WROOM-1U wird mit einem externen Antennenanschluss geliefert.
5 V bis 3,3 V LDO
Leistungsregler, der eine 5-V-Versorgung in einen 3,3-V-Ausgang umwandelt.
Pin-Header
Alle verfügbaren GPIO-Pins (mit Ausnahme des SPI-Busses für Flash) sind zur einfachen Anbindung und Programmierung auf die Pin-Header auf der Platine verteilt.
USB-zu-UART-Anschluss
Ein Micro-USB-Anschluss, der für die Stromversorgung der Platine, für Flash-Anwendungen auf dem Chip sowie für die Kommunikation mit dem Chip über die integrierte USB-zu-UART-Brücke verwendet wird.
Boot-Schaltfläche
Herunterladen-Schaltfläche. Wenn Sie „Boot“ gedrückt halten und dann „Reset“ drücken, wird der Firmware-Download-Modus zum Herunterladen von Firmware über die serielle Schnittstelle gestartet.
Reset-Taste
Drücken Sie diese Taste, um das System neu zu starten.
USB-Anschluss
ESP32-S3 Full-Speed-USB-OTG-Schnittstelle, kompatibel mit der USB 1.1-Spezifikation. Die Schnittstelle wird zur Stromversorgung des Boards, zum Flashen von Anwendungen auf dem Chip, zur Kommunikation mit dem Chip über USB 1.1-Protokolle sowie zum JTAG-Debugging verwendet.
USB-zu-UART-Brücke
Ein einzelner USB-zu-UART-Bridge-Chip bietet Übertragungsraten von bis zu 3 Mbit/s.
RGB-LED
Adressierbare RGB-LED, gesteuert durch GPIO38.
3,3 V Power-On-LED
Schaltet sich ein, wenn die USB-Stromversorgung an die Platine angeschlossen ist.
Downloads
Pinout
GreatFET One ist der beste Freund des Hardware-Hackers. Mit einem erweiterbaren Open-Source-Design, zwei USB-Anschlüssen und 100 Erweiterungspins ist GreatFET One ein unverzichtbares Gadget zum Hacken, Basteln und Reverse Engineering. Durch Hinzufügen von Erweiterungsplatinen, den sogenannten Nachbarn, können Sie GreatFET One in ein USB-Peripheriegerät verwandeln, das fast alles kann.
Ob Sie eine Schnittstelle zu einem externen Chip, einen Logik-Analysator, einen Debugger oder einfach nur eine Menge Pins zum Bit-Bangen benötigen, der vielseitige GreatFET One ist das richtige Werkzeug für Sie. Hi-Speed USB und eine Python API ermöglichen es GreatFET One, Ihre individuelle USB-Schnittstelle zur physikalischen Welt zu werden.
Features
Serielle Protokolle: SPI, I²C, UART und JTAG
Programmierbare digitale E/A
Analoge E/A (ADC/DAC)
Logik-Analyse
Fehlersuche
Datenerfassung
Vier LEDs
Vielseitige USB-Funktionen
Hardware-unterstützte serielle Streaming-Engine mit hohem Durchsatz
Downloads
Documentation
GitHub
Das T-Journal ist ein günstiges ESP32-Kamera-Entwicklungsboard mit einer OV2640-Kamera, einer Antenne, einem 0,91-Zoll-OLED-Display, einigen freiliegenden GPIOs und einer Micro-USB-Schnittstelle. Damit lässt sich Code einfach und schnell auf das Board hochladen.
Spezifikationen
Chipsatz Expressif-ESP32-PCIO-D4 240 MHz Xtensa Single-/Dual-Core 32-Bit LX6 Mikroprozessor
FLASH QSPI-Flash/SRAM, bis zu 4x 16 MB
SRAM 520 kB SRAM Schlüssel zurücksetzen, IO32
Anzeige 0,91' SSD1306
Betriebskontrollleuchte rot
USB auf TTL CP2104
Kamera OV2640, 2 Megapixel
Analoges Servo für den Lenkmotor
Integrierter Taktgeber: 40 MHz Quarzoszillator
Betriebsspannung 2,3-3,6 V
Arbeitsstrom ca. 160 mA
Arbeitstemperaturbereich -40℃ ~ +85℃
Größe 64,57 x 23,98 mm
Netzteil USB 5 V/1 A
Ladestrom 1 A
Batterie 3,7 V Lithiumbatterie
W-lan
Standard FCC/CE/TELEC/KCC/SRRC/NCC (ESP32-Chip)
Protokoll 802.11 b/g/n/e/i (802.11n, Geschwindigkeit bis zu 150 Mbit/s) A-MPDU- und A-MSDU-Polymerisation, unterstützt 0,4 μS Schutzintervall
Frequenzbereich 2,4 GHz~2,5 GHz (2400 M ~ 2483,5 M)
Sendeleistung 22 dBm
Kommunikationsentfernung 300m
Bluetooth
Protokoll entspricht Bluetooth v4.2BR/EDR und BLE-Standard
Radiofrequenz mit -98 dBm Empfindlichkeit NZIF-Empfänger Klasse-1, Klasse-2 und Klasse-3-Sender AFH
Audiofrequenz CVSD- und SBC-Audiofrequenz
Software
WLAN-Modus Station/SoftAP/SoftAP+Station/P2P
Sicherheitsmechanismus WPA/WPA2/WPA2-Enterprise/WPS Verschlüsselungstyp AES/RSA/ECC/SHA
Firmware-Upgrade UART-Download/OTA (Download und Schreiben der Firmware über Netzwerk/Host)
Unterstützung bei der Softwareentwicklung, Cloud-Server-Entwicklung/SDK für die Entwicklung von Benutzer-Firmware
Netzwerkprotokoll IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT
Benutzerkonfiguration AT + Befehlssatz, Cloud-Server, Android/iOS-App
Betriebssystem FreeRTOS
Inbegriffen
1x ESP32-Kameramodul (Fischaugenobjektiv)
1x WLAN-Antenne
1x Stromleitung
Downloads
Kamerabibliothek für Arduino
BeagleY-AI ist ein kostengünstiger, quelloffener und leistungsstarker 64-Bit-Quad-Core-Einplatinencomputer, ausgestattet mit einer GPU, DSP und Vision-/Deep-Learning-Beschleunigern, der für Entwickler und Maker entwickelt wurde.
Benutzer können die von BeagleBoard.org bereitgestellten Debian-Linux-Software-Images nutzen, die eine integrierte Entwicklungsumgebung enthalten. Dies ermöglicht die nahtlose Ausführung von KI-Anwendungen auf einem dedizierten 4 TOPS-Coprozessor, während gleichzeitig Echtzeit-I/O-Aufgaben mit einem 800 MHz-Mikrocontroller erledigt werden.
BeagleY-AI wurde entwickelt, um die Anforderungen sowohl professioneller Entwickler als auch von Bildungsumgebungen zu erfüllen. Es ist erschwinglich, benutzerfreundlich und Open Source und beseitigt Innovationshindernisse. Entwickler können ohne Einschränkungen vertiefende Lektionen erkunden oder praktische Anwendungen bis an ihre Grenzen ausreizen.
Technische Daten
Prozessor
TI AM67 mit Quad-Core 64-Bit Arm Cortex-A53, GPU, DSP, und Vision/Deep-Learning-Beschleuniger
RAM
4 GB LPDDR4
WLAN
BeagleBoard BM3301-Modul basierend auf TI CC3301 (802.11ax Wi-Fi)
Bluetooth
Bluetooth Low Energy 5.4 (BLE)
USB
• 4x USB-A 3.0 unterstützen gleichzeitigen 5-Gbit/s-Betrieb• 1x USB-C 2.0 unterstützt USB 2.0-Geräte
Ethernet
Gigabit-Ethernet mit PoE+ Unterstützung (erfordert separaten PoE+ HAT)
Kamera/Display
1x 4-Wege MIPI-Kamera/Display-Transceiver, 1x 4-Wege MIPI-Kamera
Ausgabe anzeigen
1x HDMI-Display, 1x OLDI-Display
Echtzeituhr (RTC)
Unterstützt eine externe Knopfbatterie zur Erhaltung der Stromausfallzeit. Es wird nur bei EVT-Proben ausgefüllt.
UART debuggen
1x 3-Pin-Debug-UART
Stromversorgung
5 V/5 A Gleichstrom über USB-C, mit Power Delivery-Unterstützung
Power-Taste
Ein/Aus inklusive
PCIe-Schnittstelle
PCI-Express Gen3 x1-Schnittstelle für schnelle Peripheriegeräte (erfordert separaten M.2 HAT oder anderen Adapter)
Erweiterungsanschluss
40-Pin-Header
Lüfteranschluss
1x 4-poliger Lüfteranschluss, unterstützt PWM-Geschwindigkeitssteuerung und Geschwindigkeitsmessung
Speicher
microSD-Kartensteckplatz mit Unterstützung für den Hochgeschwindigkeits-SDR104-Modus
Tag Connect
1x JTAG, 1x Tag Connect für PMIC NVM-Programmierung
Downloads
Pinout
Documentation
Quick start
Software
Dieses Entwicklungsboard (auch bekannt als "Cheap Yellow Display") wird vom ESP-WROOM-32 angetrieben, einem Dual-Core-MCU mit integrierten Wi-Fi- und Bluetooth-Funktionen. Es arbeitet mit einer Hauptfrequenz von bis zu 240 MHz, mit 520 KB SRAM, 448 KB ROM und einem 4 MB Flash-Speicher. Das Board verfügt über ein 2,8" Display mit einer Auflösung von 240x320 und Resistive Touch.
Darüber hinaus enthält die Platine einen Steuerkreis für die Hintergrundbeleuchtung, einen Schaltkreis für die Berührungssteuerung, einen Schaltkreis für die Lautsprecheransteuerung, einen lichtempfindlichen Schaltkreis und einen RGB-LED-Steuerschaltkreis. Es bietet außerdem einen TF-Kartensteckplatz, eine serielle Schnittstelle, eine DHT11-Schnittstelle für Temperatur- und Feuchtigkeitssensoren und zusätzliche E/A-Anschlüsse.
Das Modul unterstützt die Entwicklung in Arduino IDE, ESP-IDE, MicroPython und Mixly.
Anwendungen
Bildübertragung für Smart Home-Gerät
Drahtlose Überwachung
Intelligente Landwirtschaft
QR-Funkerkennung
Signal des drahtlosen Positionierungssystems
Und andere IoT-Anwendungen
Technische Daten
Mikrocontroller
ESP-WROOM-32 (Dual-Core-MCU mit integriertem WLAN und Bluetooth)
Häufigkeit
Bis zu 240 MHz (Rechenleistung bis zu 600 DMIPS)
SRAM
520 KB
ROM
448 KB
Flash
4 MB
Betriebsspannung
5 V
Stromverbrauch
ca. 115 mA
Display
2,8" TFT-Farbbildschirm (240 x 320)
Touch
Resistive Touch
Treiberchip
ILI9341
Abmessungen
50 x 86 mm
Gewicht
50 g
Lieferumfang
1x ESP32 Dev-Board mit 2,8" Display und Acrylgehäuse
1x Touch-Stift
1x Verbindungskabel
1x USB-Kabel
Downloads
GitHub
The LILYGO TTGO T-Display-GD32 is a compact and minimalist development board featuring a powerful GD32VF103CBT6 RISC-V microcontroller.
Ideal for IoT applications, wearables, and rapid prototyping, it provides versatile connectivity options like GPIO, SPI, UART, and I²C interfaces. Thanks to its efficient RISC-V architecture and clear, high-quality screen, this board is perfect for small projects requiring graphical interfaces or data visualization in a space-saving form factor.
Specifications
Chipset
GD32VF103CBT6
FLASH
128 kB
SRAM
32 kB
On-board clock
108 MHz crystal oscillator
Working Voltage
2.7-3.6 V
Button
BOOT - RESET
LCD
ST7789 1.14" IPS 240 x 135
USB to TTL
CP2104
Modular interface
TIMER, UART, SPI, I²C, PWM, ADC, DAC, CAN, USBOTG
Working Temperature Range
−40~85°C
Peripheral
Button, RGB LED, SD slot, LCD
Power Supply Input
USB 5 V @ 1 A
Charging Current
500 mA
Battery Input
3.7-4.2 V
USB
USB-C
Dimensions
51.49 x 25.2 x 10 mm
Weight
10 g
Downloads
GitHub