Das Arduino Student Kit ist ein hands-on, Schritt-für-Schritt Fernlernwerkzeug für Schüler ab 11 Jahren: Lerne die Grundlagen der Elektronik, Programmierung und Codierung von Zuhause aus. Keine Vorkenntnisse oder Erfahrungen sind nötig, da das Kit dich durch alle Schritte führt. Lehrkräfte können ihre Klassen mit Hilfe der Kits auch von Fernunterricht aus unterrichten und Eltern können das Kit als homeschooling Werkzeug verwenden, damit ihr Kind in eigenem Tempo lernen kann. Jeder wird durch geführte Lektionen und offene Experimente Selbstvertrauen in der Programmierung und Elektronik gewinnen.
Lerne die Grundlagen der Programmierung, Codierung und Elektronik, einschließlich Strom, Spannung und digitaler Logik. Keine Vorkenntnisse oder Erfahrungen sind nötig, da das Kit dich durch alle Schritte führt.
Du bekommst alle notwendigen Hardware- und Softwarekomponenten für eine Person, sodass es ideal für Fernunterricht, homeschooling und Selbstlernen ist. Es gibt Schritt-für-Schritt Lektionen, Übungen und für ein vollständiges und gründliches Erlebnis gibt es auch zusätzliche Inhalte wie Erfindungshighlights, Konzepte und interessante Fakten über Elektronik, Technologie und Programmierung.
Lektionen und Projekte können je nach individuellen Fähigkeiten angepasst werden, sodass Schüler von Zuhause aus auf ihrem eigenen Niveau lernen können. Das Kit kann auch in verschiedene Fächer wie Physik, Chemie und sogar Geschichte integriert werden. Tatsächlich gibt es genug Inhalt für ein gesamtes Semester.
Wie Lehrkräfte das Kit für den Fernunterricht verwenden können
Die Online-Plattform enthält alle Inhalte, die man für den Fernunterricht benötigt: exklusive Lerninhalte, Tipps für den Fernunterricht, neun 90-minütige Lektionen und zwei offene Projekte. Jede Lektion baut auf der vorherigen auf und bietet eine weitere Gelegenheit, um die bereits gelernten Fähigkeiten und Konzepte anzuwenden. Schüler erhalten auch ein Logbuch, das sie bei der Arbeit an den Lektionen ausfüllen.
Der Anfang jeder Lektion bietet eine Übersicht, geschätzte Fertigstellungszeiten und Lernziele. Während jeder Lektion gibt es Tipps und Informationen, die das Lernerlebnis erleichtern werden. Wichtige Antworten und Erweiterungsideen werden ebenfalls bereitgestellt.
Wie das Kit Eltern hilft, ihre Kinder zu Hause zu unterrichten
Dies ist Ihr praktisches, schrittweises Fernlernwerkzeug, mit dem Ihr Kind die Grundlagen der Programmierung, des Codierens und der Elektronik zu Hause lernen kann. Als Eltern benötigen Sie keine Vorkenntnisse oder Erfahrungen, da Sie schrittweise angeleitet werden. Das Kit ist direkt in den Lehrplan eingebunden, so dass Sie sicher sein können, dass Ihre Kinder das lernen, was sie sollten, und es bietet die Möglichkeit, dass sie selbstbewusst in Programmierung und Elektronik werden. Sie helfen ihnen auch dabei, wichtige Fähigkeiten wie kritisches Denken und Problemlösung zu erlernen.
Selbstlernen mit dem Arduino Student Kit
Schüler können dieses Kit nutzen, um sich die Grundlagen der Elektronik, Programmierung und Codierung selbst beizubringen. Da alle Lektionen schrittweise Anweisungen folgen, ist es einfach für sie, sich durchzuarbeiten und selbstständig zu lernen. Sie können in ihrem eigenen Tempo arbeiten, Spaß an allen realen Projekten haben und ihr Selbstvertrauen dabei steigern. Sie benötigen keine Vorwissen, da alles klar erklärt wird, die Codierung vorgeschrieben ist und es ein Vokabular von Konzepten gibt, auf das sie sich beziehen können.
Das Arduino Student Kit wird mit mehreren Teilen und Komponenten geliefert, die während des Kurses zum Bau von Schaltungen verwendet werden.
Im Kit enthalten
Zugangscode zu exklusivem Online-Inhalt, einschließlich Lernanleitungen, schrittweisen Lektionen und zusätzlichem Material wie Ressourcen, Erfindungsschwerpunkten und einem digitalen Logbuch mit Lösungen.
1x Arduino Uno
1x USB-Kabel
1x Board-Montagebasis
1x Multimeter
1x 9 V Batterieclip
1x 9 V Batterie
20x LEDs (5x rot, 5x grün, 5x gelb und 5x blau)
5x Widerstände 560 Ω
5x Widerstände 220 Ω
1x Breadboard 400 Punkte
1x Widerstand 1 kΩ
1x Widerstand 10 kΩ
1x kleiner Servomotor
2x Potentiometer 10 kΩ
2x Knopf-Potentiometer
2x Kondensatoren 100 uF Solid-Core-Jumper-Drähte
5x Drucktasten
1x Fototransistor
2x Widerstände 4,7 kΩ
1x Jumper-Draht schwarz
1x Jumper-Draht rot
1x Temperatursensor
1x Piezo
1x Jumper-Draht weiblich zu männlich rot
1x Jumper-Draht weiblich zu männlich schwarz
3x Muttern und Bolzen
Das LoRa-E5 Development Kit ist ein benutzerfreundliches, kompaktes Entwicklungs-Toolset, mit dem Sie die leistungsstarke Leistung des LoRa-E5 STM32WLE5JC nutzen können. Es besteht aus einem LoRa-E5-Entwicklungsboard, einer Antenne (EU868), einem USB-Typ-C-Kabel und einem 2 AA 3-V-Batteriehalter. LoRa-E5-Entwicklungsplatine mit eingebettetem LoRa-E5-STM32WLE5JC-Modul, das die weltweit erste Kombination aus LoRa-HF- und MCU-Chip in einem einzigen winzigen Chip ist und FCC- und CE-zertifiziert ist. Es wird von einem ARM Cortex-M4-Kern und einem Semtech SX126X LoRa-Chip angetrieben und unterstützt sowohl das LoRaWAN- als auch das LoRa-Protokoll auf der weltweiten Frequenz sowie (G)FSK-, BPSK-, (G)MSK- und LoRa-Modulationen. Das LoRa-E5-Entwicklungsboard zeichnet sich durch eine extrem lange Übertragungsreichweite, einen extrem niedrigen Stromverbrauch des Chips und benutzerfreundliche Schnittstellen aus. Das LoRa-E5-Entwicklungsboard hat eine Langstrecken-Übertragungsreichweite von LoRa-E5 von bis zu 10 km in einem offenen Bereich. Der Ruhestrom der LoRa-E5-Module an Bord beträgt nur 2,1 uA (WOR-Modus). Es wurde nach Industriestandards mit einem breiten Arbeitstemperaturbereich von -40℃ ~ 85℃, hoher Empfindlichkeit zwischen -116,5 dBm bis -136 dBm und einer Ausgangsleistung von bis zu +20,8 dBm bei 3,3 V entwickelt. LoRa-E5 Dev Board hat auch umfangreiche Schnittstellen. Entwickelt, um die volle Funktionalität des LoRa-E5-Moduls freizuschalten, hat das LoRa-E5-Entwicklungsboard volle 28 Pins von LoRa-E5 herausgeführt und bietet umfangreiche Schnittstellen, darunter Grove-Anschlüsse, RS-485-Anschluss, männliche/weibliche Stiftleisten für Sie Verbinden Sie Sensoren und Module mit verschiedenen Anschlüssen und Datenprotokollen und sparen Sie Zeit beim Löten von Drähten. Sie können das Board auch einfach mit Strom versorgen, indem Sie den Batteriehalter mit 2 AA-Batterien verbinden, was eine vorübergehende Verwendung ermöglicht, wenn keine externe Stromquelle vorhanden ist. Es ist ein benutzerfreundliches Board für einfaches Testen und schnelles Prototyping. Technische Daten Abmessungen LoRa-E5 Dev Board: 85,6 x 54 mm Spannung (Versorgung) 3-5 V (Batterie) / 5 V (USB-C) Spannung (Ausgang) EN 3V3 / 5 V Leistung (Ausgang) Bis zu +20,8 dBm bei 3,3 V Frequenz EU868 Protokoll LoRaWAN Empfindlichkeit -116,5 dBm ~ -136 dBm Schnittstellen USB-C / JST2.0 / 3x Grove (2x I²C/1x UART) / RS485 / SMA-K / IPEX Modulation LoRa, (G)FSK, (G)MSK, BPSK Betriebstemperatur -40℃ ~ 85℃ Strom LoRa-E5-Modul mit nur 2,1 uA Ruhestrom (WOR-Modus) Lieferumfang 1x LoRa-E5 Dev Board 1x Antenne (EU868) 1x USB-C-Kabel (20 cm) 1x 2 AA 3-V-Batteriehalter
Der XL741-Bausatz wird als einfach zu bauender Lötbausatz verkauft. Es enthält die Leiterplatte, Widerstände, Transistoren und Kondensatoren, aus denen der Stromkreis besteht, sowie eine gedruckte Montageanleitung. Das Kit wird außerdem komplett mit dem „IC Leg“-Ständer und acht farbcodierten Rändelschrauben-Anschlussklemmen geliefert.
Für den Bau des XL741-Bausatzes sind grundlegende Kenntnisse und Werkzeuge im Bereich elektronisches Löten erforderlich. Lötwerkzeuge sind nicht im Lieferumfang enthalten und Sie müssen Ihre eigenen verwenden.
Sie benötigen: einen Lötkolben, Lötzinn und eine kleine („bündige“) Drahtschere sowie einen Kreuzschlitzschraubendreher
Der Bausatz lässt sich leicht zusammenbauen und sollte etwa eine Stunde in Anspruch nehmen.
Kit-Größe
Die Leiterplatte des XL741-Kits hat eine Fläche von 5,215' x 3,175' (13,25 cm x 8,06 cm) und eine (nominelle) Dicke von 0,100' (2,54 mm).
Einschließlich des „Integrated Circuit Legs“-Ständers und der Anschlusspfosten beträgt die Gesamtgröße des zusammengebauten Bausatzes 5,215' x 3,9' x 1,70' (13,25 cm x 9,9 cm x 4,3 cm).
Materialien und Konstruktion
Der dekorative Ständer fühlt sich glatt an und besteht aus eloxiertem Aluminium. Die Leiterplatte im Kit ist aus Gründen der Steifigkeit besonders dick und mit einer mattschwarzen Lötmaskenoberfläche versehen. Es ist mit acht 8-32-Gewindeeinsätzen für die Anschlusspfosten vormontiert.
Alle Materialien (einschließlich Platine und Ständer) sind RoHS-konform (bleifrei).
Bei den mitgelieferten Anschlussklemmenschrauben handelt es sich um Rändelschrauben aus Edelstahl mit farbcodierten Kunststoffkappen (1 rot, 1 schwarz, 6 grau).
BeagleY-AI ist ein kostengünstiger, quelloffener und leistungsstarker 64-Bit-Quad-Core-Einplatinencomputer, ausgestattet mit einer GPU, DSP und Vision-/Deep-Learning-Beschleunigern, der für Entwickler und Maker entwickelt wurde.
Benutzer können die von BeagleBoard.org bereitgestellten Debian-Linux-Software-Images nutzen, die eine integrierte Entwicklungsumgebung enthalten. Dies ermöglicht die nahtlose Ausführung von KI-Anwendungen auf einem dedizierten 4 TOPS-Coprozessor, während gleichzeitig Echtzeit-I/O-Aufgaben mit einem 800 MHz-Mikrocontroller erledigt werden.
BeagleY-AI wurde entwickelt, um die Anforderungen sowohl professioneller Entwickler als auch von Bildungsumgebungen zu erfüllen. Es ist erschwinglich, benutzerfreundlich und Open Source und beseitigt Innovationshindernisse. Entwickler können ohne Einschränkungen vertiefende Lektionen erkunden oder praktische Anwendungen bis an ihre Grenzen ausreizen.
Technische Daten
Prozessor
TI AM67 mit Quad-Core 64-Bit Arm Cortex-A53, GPU, DSP, und Vision/Deep-Learning-Beschleuniger
RAM
4 GB LPDDR4
WLAN
BeagleBoard BM3301-Modul basierend auf TI CC3301 (802.11ax Wi-Fi)
Bluetooth
Bluetooth Low Energy 5.4 (BLE)
USB
• 4x USB-A 3.0 unterstützen gleichzeitigen 5-Gbit/s-Betrieb• 1x USB-C 2.0 unterstützt USB 2.0-Geräte
Ethernet
Gigabit-Ethernet mit PoE+ Unterstützung (erfordert separaten PoE+ HAT)
Kamera/Display
1x 4-Wege MIPI-Kamera/Display-Transceiver, 1x 4-Wege MIPI-Kamera
Ausgabe anzeigen
1x HDMI-Display, 1x OLDI-Display
Echtzeituhr (RTC)
Unterstützt eine externe Knopfbatterie zur Erhaltung der Stromausfallzeit. Es wird nur bei EVT-Proben ausgefüllt.
UART debuggen
1x 3-Pin-Debug-UART
Stromversorgung
5 V/5 A Gleichstrom über USB-C, mit Power Delivery-Unterstützung
Power-Taste
Ein/Aus inklusive
PCIe-Schnittstelle
PCI-Express Gen3 x1-Schnittstelle für schnelle Peripheriegeräte (erfordert separaten M.2 HAT oder anderen Adapter)
Erweiterungsanschluss
40-Pin-Header
Lüfteranschluss
1x 4-poliger Lüfteranschluss, unterstützt PWM-Geschwindigkeitssteuerung und Geschwindigkeitsmessung
Speicher
microSD-Kartensteckplatz mit Unterstützung für den Hochgeschwindigkeits-SDR104-Modus
Tag Connect
1x JTAG, 1x Tag Connect für PMIC NVM-Programmierung
Downloads
Pinout
Documentation
Quick start
Software
Merkmale
NFC-Chipmaterial: PET + Ätzantenne
Chip: NTAG216 (kompatibel mit allen NFC-Telefonen)
Frequenz: 13,56 MHz (Hochfrequenz)
Lesezeit: 1 - 2 ms
Speicherkapazität: 888 Byte
Lese- und Schreibvorgänge: > 100.000 Mal
Leseabstand: 0 - 5 mm
Datenaufbewahrung: > 10 Jahre
NFC-Chipgröße: Durchmesser 30 mm
Berührungslos, keine Reibung, geringe Ausfallrate, geringe Wartungskosten
Leserate, Verifizierungsgeschwindigkeit, die effektiv Zeit sparen und die Effizienz verbessern kann
Wasserdicht, staubdicht, vibrationshemmend
Keine Stromversorgung mit Antenne, eingebetteter Verschlüsselungssteuerungslogik und Kommunikationslogikschaltung
Inbegriffen
1x NFC-Sticker (6-Farben-Set)
LWL01 wird mit einer CR2032-Knopfbatterie betrieben und kann bei guter LoRaWAN-Netzwerkabdeckung bis zu 12.000 Uplink-Pakete übertragen (basierend auf SF 7, 14 dB). Bei schlechter LoRaWAN-Netzwerkabdeckung können ~ 1.300 Uplink-Pakete übertragen werden (basierend auf SF 10, 18,5 B). Das Designziel für eine Batterie beträgt bis zu 2 Jahre. Der Benutzer kann die CR2032-Batterie zur Wiederverwendung einfach austauschen.
Der LWL01 sendet regelmäßig Daten jeden Tag sowie bei Wasserleckereignissen. Außerdem werden die Zeiten von Wasserleckereignissen gezählt und die Dauer des letzten Wasserlecks berechnet.
Jeder LWL01 ist mit einem Satz eindeutiger Schlüssel für die LoRaWAN-Registrierung vorinstalliert. Registrieren Sie diese Schlüssel beim lokalen LoRaWAN-Server und er stellt nach dem Einschalten automatisch eine Verbindung her.
Merkmale
LoRaWAN v1.0.3 Klasse A
SX1262 LoRa-Kern
Wasserleckerkennung
CR2032-Batteriebetrieben
AT-Befehle zum Ändern von Parametern
Uplink in regelmäßigen Abständen und Wasserleck-Ereignis
Downlink zum Ändern der Konfiguration
Anwendungen
Drahtlose Alarm- und Sicherheitssysteme
Haus- und Gebäudeautomation
Industrielle Überwachung und Steuerung
Verwenden Sie Schallwellen, um Proben wie Wasser, Ameisen oder winzige elektrische Bauteile in der Luft zu halten. Diese Technologie war bisher auf einige wenige Forschungslabors beschränkt, aber jetzt können Sie sie auch zu Hause einsetzen.
Lieferumfang
76x 10 mm 40 kHz Wandler
1x Arduino Nano
1x L298N Doppelmotor-Antriebsplatine
1x Netzschalter
1x DC-Adapter 9 V
1x Überbrückungsdrähte
6x schwarzes und rotes Kabel
Einige freiliegende Drähte
1x 3D-gedruckter TinyLev
Downloads
Anleitungen
Wissenschaftliche Informationen
Arduboy ist ein Miniatur-Spieleentwicklungssystem in Kreditkartengröße, basierend auf der beliebten Open-Source-Arduino-Plattform. Lernen Sie das Programmieren/Codieren mit vielen Tutorials und einer aktiven Community von Entwicklern, entwickeln und teilen Sie Ihre eigenen Spiele mit Hilfe der Arduino-Software über das USB-Kabel. Verwenden Sie Ihren PC/Mac/Linux-Rechner, um über 200 einzigartige Spiele herunterzuladen, die von Mitgliedern der Arduboy-Community erstellt wurden.
Funktionen
Prozessor: ATmega32u4 (gleich wie Arduino Leonardo & Micro)
Speicher: 32 KB Flash, 2,5 KB RAM, 1 KB EEPROM
Eingänge: 6 Momentan-Tastschalter
Ausgänge: 128 x 64 1-Bit-OLED, 4 Ch. Piezo-Lautsprecher & blinkende LED
Batterie: 180 mAh dünner Lithium-Polymer-Akku
Konnektivität: Micro-USB 2.0 mit eingebautem HID-Profil
Programmierung: Arduino-IDE, Arduboy Game Loader, GCC & AVRDude
Open-Source-Gaming
Jeder kann Spiele für den Arduboy erstellen! Kostenlose Online-Tutorials führen Sie durch einen Schritt-für-Schritt-Prozess, wie Sie Ihre eigene Software entwickeln können! Es gibt bereits viele Beispiele zum Lernen. Wollten Sie schon immer ein Level oder eine Karte für Ihr Lieblingsspiel erstellen oder Ihren Lieblingscharakter höher springen lassen? Jetzt haben Sie die Chance!
Super Retro
Entworfen, um Sie an eine einfachere Zeit in der Welt des Spielens zu erinnern, bringt der Arduboy echtes 8-Bit-Gaming mit Stil ins 21. Jahrhundert. Der Schwarz-Weiß-Bildschirm lädt Sie ein, Ihre Vorstellungskraft beim Spielen wieder einzubeziehen.
Langlebige Konstruktion
Eine Polycarbonat-Front, eine ultradünne Leiterplatte und eine gestanzte Aluminium-Rückseite sind die ultimative Kombination. Ein wiederaufladbarer Lithium-Polymer-Akku bietet über 8 Stunden Akkulaufzeit, und das gleiche Kabel, das Sie zum Laden verwenden, kann auch zum Hochladen neuer Spiele verwendet werden! Mit einer Dicke von nur 5 mm kann der Arduboy in Ihrer Tasche (oder sogar Brieftasche) leben und ist dünner als fast jedes Mobiltelefon!
Downloads
Schaltpläne
GitHub
Dokumentation
Dieses Bundle enthält die beliebte Elektor Sanduhr für Raspberry Pi Pico und das neue Elektor Laserkopf-Upgrade und bietet damit noch mehr Möglichkeiten zur Zeitanzeige. Sie können die aktuelle Uhrzeit nicht nur in Sand "gravieren", sondern sie jetzt auch alternativ auf eine im Dunkeln leuchtende Folie schreiben oder grüne Zeichnungen erstellen.
Inhalt des Bundles
Elektor Sanduhr für Raspberry Pi Pico (Einzelpreis: 50 €)
NEU: Elektor Laserkopf-Upgrade für Sanduhr (Einzelpreis: 35 €)
Elektor Sanduhr für Raspberry Pi Pico (Raspberry Pi-basierter Eyecatcher)
Eine handelsübliche Sanduhr zeigt nur, wie die Zeit verrinnt. Dagegen zeigt diese Raspberry Pi Pico-gesteuerte Sanduhr die genaue Uhrzeit an, indem die vier Ziffern für Stunde und Minute in die Sandschicht "eingraviert" werden. Nach einer einstellbaren Verzögerung wird der Sand durch zwei Vibrationsmotoren flachgedrückt und der Zyklus beginnt von vorne.
Das Herzstück der Sanduhr sind zwei Servomotoren, die über einen Pantographenmechanismus einen Schreibstift antreiben. Ein dritter Servomotor hebt den Stift auf und ab. Der Sandbehälter ist mit zwei Vibrationsmotoren ausgestattet, um den Sand zu glätten. Der elektronische Teil der Sanduhr besteht aus einem Raspberry Pi Pico und einer RTC/Treiberplatine mit Echtzeituhr, plus Treiberschaltungen für die Servomotoren.
Eine ausführliche Bauanleitung steht zum Download bereit.
Features
Abmessungen: 135 x 110 x 80 mm
Bauzeit: ca. 1,5 bis 2 Stunden
Lieferumfang
3x vorgeschnittene Acrylplatten mit allen mechanischen Teilen
3x Mini-Servomotoren
2x Vibrationsmotoren
1x Raspberry Pi Pico
1x RTC/Treiberplatine mit montierten Teilen
Muttern, Bolzen, Abstandshalter und Drähte für die Baugruppe
Feinkörniger weißer Sand
Elektor Laserkopf-Upgrade für Sanduhr
Der neue Elektor-Laserkopf verwandelt die Elektor Sanduhr in eine Uhr, die die Zeit auf eine im Dunkeln leuchtende Folie statt auf Sand schreibt. Neben der Anzeige der Zeit können damit auch flüchtige Zeichnungen erstellt werden. Der 5-mW-Laserpointer mit einer Wellenlänge von 405 nm erzeugt leuchtend grüne Zeichnungen auf der im Dunkeln leuchtenden Folie. Um optimale Ergebnisse zu erzielen, verwenden Sie das Kit in einem schwach beleuchteten Raum. Achtung: Schauen Sie niemals direkt in den Laserstrahl!
Der Bausatz enthält alle notwendigen Komponenten, es ist jedoch das Anlöten von drei Drähten erforderlich.
Hinweis: Dieses Kit ist auch mit der originalen Arduino-basierten Sanduhr aus dem Jahr 2017 kompatibel. Weitere Einzelheiten finden Sie unter Elektor 1-2/2017 und Elektor 1-2/2018.
Beim EggBot handelt es sich um einen netten und künstlerisch begabten Roboter, der dadurch beeindruckt, dass er auf sphärischen bzw. eierförmigen Objekten von der Größe eines Tischtennisballs bis hin zu einer (kleinen) Grapefruit mit Durchmessern zwischen 3 cm bis etwa 10 cm drucken kann.
EggBot kommt mit vielerlei Arten sphärischer Objekten klar. Man kann damit besonders eindrucksvolle Ostereier gestalten, Spezial-Christbaumkugeln produzieren, Golfbälle und sogar die Kolben von Lampen bedrucken. EggBot ist aber nicht nur ein cooles Gadget, sondern eignet sich prima als Einführung in die CNC-Technik und in (selbst gebaute) Robotik. Die komplette Elektronik und die Software sind „hackbar“ und für beliebige andere Anwendungen zweckentfremdbar. Man könnte beispielsweise eine Zaubertafel im Stil von „Etch-a-Sketch“ steuern oder etwas noch nie Dagewesenes realisieren.
Die Software von EggBot erlaubt die Steuerung durch Inkscape – ein tolles freies Illustrationsprogramm – sowohl unter OS X, Windows als auch Linux. Man kann damit direkt Bilder drucken, ein Foto in eine Zeichnung verwandeln oder auch Vorlagen aus anderen Programmen verarbeiten. Man kann EggBot direkt von vielen anderen Programmen aus ansteuern, denn man kann ihm Befehle via USB schicken.
Im Lieferumfang ist auch ein universelles Netzteil (mit US-EU-Adapter) enthalten.
Aus Licht wird Bewegung
Der solarbetriebene Mendocino-Motor schwebt scheinbar in der Luft. Auf den ersten Blick erkennt man nicht, warum der Rotor überhaupt dreht. Darin liegt die Magie des Motors.
Die Lorentzkraft ist eine sehr kleine elektrische Kraft. In der Schule wird sie durch eine stromdurchflossene Schaukel im Magnetfeld nachgewiesen. Mit dem Mendocino-Motor ist es gelungen, eine schöne Applikation zu entwickeln, die diese schwache Kraft zum Antrieb nutzt. Durch die verdeckte Anordnung des Basismagneten gewinnt der Motor eine Faszination, der sich ein technisch Interessierter mit Interesse zuwendet.
In hellem Sonnenlicht kann der Motor eine Drehzahl von bis zu 1.000 U/min erreichen. Wesentlich eindrucksvoller ist allerdings, dass schon das schwache Leuchten eines großen Teelichtes (D= 6 cm mit einer Flammenhöhe von etwa 2 cm) ausreicht, um den Motor anzutreiben. Der Motor ist bisher keine alternative Energiequelle, auch wenn er noch so verlockend danach ausschaut. Vermutlich wird er ein attraktives Modell bleiben – bis ein findiger Geist diese Vermutung widerlegt.
Abmessungen
Alle Solarzellen 65 x 20 mm
Spiegeldurchmesser: 25 mm
Gewicht des Rotors: ca. 150 g
Länge des Modells: 160 mm
Breite des Modells: 85 mm
Rahmenhöhe: ca. 85 mm
Rahmenmaterial: schwarzes Acryl
Rohr aus hochglanzpoliertem Aluminium
Spiegelfarbe: silber
Die mit über siebzig Bildern umfangreich illustrierte Bauanleitung zeigt eindeutige und nachvollziehbare Schritte. Sie beschreibt einen sicher gangbaren Weg, lässt aber auch Freiheit für eigene Lösungen.
Bausatz teilweise vormontiert
Einige wenige Montageschritte sind bereits vormontiert. Das Verkleben der Borsilikat-Glasscheibe auf die Acryloberfläche verlangt besondere Kenntnisse und Hilfsmittel. Das wollen wir dem Bastler nicht zumuten. Auch die genaue Befestigung des Basismagneten im Aluminiumrohr zählt dazu. Als Bastler benötigt man etwas Geschicklichkeit und entsprechende Werkzeuge: Teppichmesser, Lötkolben und Zinn, Heißkleber, Zangen und eine Klammer oder Zwinge zur Fixierung der mitgelieferten Montagehilfe. Viel Spaß ist garantiert!
Der Raspberry Pi Pico ist eine großartige Lösung für die Steuerung von Servos. Mit der Hardware-PIO kann der Pico die Servos per Hardware steuern, ohne die Verwendung von Zeiten/Interrupts und die Nutzung der MCU zu begrenzen.
Die Ansteuerung der sechs Servos in diesem Roboterarm beansprucht nur sehr wenig MCU-Kapazität, so dass die MCU problemlos mit anderen Aufgaben betraut werden kann. Dieser 6 DOF-Roboterarm ist ein praktisches Werkzeug zum Lehren und Lernen von Robotik und Pico-Nutzung. Es gibt fünf MG996 (vier werden in der Baugruppe und einer als Reserve benötigt) und drei 25-kg-Servos (zwei werden in der Baugruppe und einer als Reserve benötigt). Beachten Sie, dass der Winkel der Servos von 0° bis 180° reicht. Alle Servos müssen vor dem Zusammenbau auf 90° voreingestellt werden (mit logisch hohem Tastverhältnis von 1,5 ms), um Schäden an den Servos während der Bewegung zu vermeiden.
Dieses Produkt enthält alle notwendigen Teile, um einen Roboterarm auf Basis von Pico und Micropython zu erstellen.
Lieferumfang
1 x Raspberry Pi Pico
1 x Raspberry Pi Pico Servo-Treiber
1 x Satz "6 DOF Roboterarm"
1 x 5 V/5 A Stromversorgung
2 x Ersatz-Servo
Downloads
GitHub
Wiki
Anleitung
Zusammenbau Video
Der Elektor Laserkop verwandelt die Elektor Sanduhr in eine Uhr, die die Zeit auf eine im Dunkeln leuchtende Folie statt auf Sand schreibt. Neben der Anzeige der Zeit können damit auch flüchtige Zeichnungen erstellt werden. Der 5-mW-Laserpointer mit einer Wellenlänge von 405 nm erzeugt leuchtend grüne Zeichnungen auf der im Dunkeln leuchtenden Folie. Um optimale Ergebnisse zu erzielen, verwenden Sie das Kit in einem schwach beleuchteten Raum. Achtung: Schauen Sie niemals direkt in den Laserstrahl!
Der Bausatz enthält alle notwendigen Komponenten, es ist jedoch das Anlöten von drei Drähten erforderlich.
Hinweis: Dieses Kit ist auch mit der originalen Arduino-basierten Sanduhr aus dem Jahr 2017 kompatibel. Weitere Einzelheiten finden Sie unter Elektor 1-2/2017 und Elektor 1-2/2018.
Der AxiDraw ist ein einfacher, moderner, präziser und vielseitiger Stiftplotter, der auf fast jeder ebenen Fläche schreiben oder zeichnen kann. Er kann mit Ihren Lieblingsfüllern, Permanentmarkern und anderen Schreibgeräten schreiben, um eine endlose Vielfalt von Anwendungen zu bewältigen. Sein einzigartiges Design zeichnet sich durch einen Schreibkopf aus, der über das Gerät hinausragt und es ermöglicht, auf Objekten zu zeichnen, die größer sind als das Gerät selbst.
Entwickelt für hohe Leistung
AxiDraw V3 ist eine völlig neue Version des AxiDraw, die von Grund auf für hohe Leistung neu entwickelt wurde. Es verfügt über leichtgängige Räder auf speziellen Aluminiumprofilen, die speziell für hohe Steifigkeit und geringes Gewicht entwickelt wurden. Seine robuste, steife Konstruktion sorgt für eine feinere Ausgabequalität und ermöglicht in den meisten Anwendungen eine bis zu doppelt so hohe Geschwindigkeit wie der bisherige AxiDraw.
Entwickelt für Langlebigkeit
AxiDraw V3 verfügt über ein neues, hochgradig reparierbares, vor Ort wartbares Design für eine lange Lebensdauer. Während bei AxiDraw keine Teile regelmäßig ausgetauscht werden müssen, ist diese neue Maschine durchgängig nach dem Prinzip Schrauben statt Kleben konstruiert, bei dem im Wesentlichen jede Komponente vom Endanwender ausgetauscht werden kann, falls dies jemals notwendig werden sollte.
Anwendungen
Der AxiDraw ist ein äußerst vielseitiges Gerät, das für eine Vielzahl von alltäglichen und speziellen Zeichen- und Schreibanforderungen konzipiert wurde. Sie können es für fast alle Aufgaben verwenden, die typischerweise mit einem handgeführten Stift ausgeführt werden können.
Es ermöglicht Ihnen, mit Ihrem Computer eine Schrift zu erzeugen, die wie handgeschrieben aussieht, mit dem unverwechselbaren Aussehen eines echten Stiftes (im Gegensatz zu einem Tintenstrahl- oder Laserdrucker), um einen Umschlag zu adressieren oder seinen Namen zu unterschreiben. Und das mit einer Präzision, die der eines geübten Künstlers nahe kommt, und – was ebenso wichtig ist – mit einem Arm, der nicht müde wird.
Formelle Einladungen
Tischkarten für formelle Anlässe
Unterschreiben von Diplomen und anderen Urkunden
Adressieren von Briefumschlägen und Kartons
Handgeschriebene Weinkarten und Speisekarten in Restaurants
Dekorieren von Lunchpaketen
Computergenerierte Kunstwerke
Technisches Zeichnen
Dankesschreiben und Karten
Schreiben von Unterschriften
Technische Daten
Leistung
Nutzbarer Stiftabstand (Zoll): 11,81 × 8,58 Zoll (knapp über US-Letter-Format)
Nutzbarer Stiftabstand (Millimeter): 300 × 218 mm (knapp über A4-Format)
Vertikaler Stiftweg: 0,7 Zoll (17 mm)
Maximale XY-Verfahrgeschwindigkeit: 15 Zoll (38 cm) pro Sekunde
Native XY-Auflösung: 2032 Schritte pro Zoll (80 Schritte pro mm)
Reproduzierbarkeit (XY): In der Regel besser als 0,005 Zoll (0,1 mm) bei niedrigen Geschwindigkeiten.
Physisch
Die wichtigsten strukturellen Komponenten bestehen aus bearbeitetem und/oder gefaltetem Aluminium.
Hält Stifte und andere Zeichengeräte mit einem Durchmesser von bis zu 5/8" (16 mm).
Gesamtabmessungen: Ungefähr 21,5 × 16 × 4 Zoll (55 × 40,5 × 10 cm)
Maximale Höhe mit Kabelführungen: Ungefähr 8,5 Zoll (22 cm)
Stellfläche: Ungefähr 17 × 3,5 Zoll (43 x 9 cm)
Gewicht: 2,2 kg
Software
Kompatibel mit Mac, Windows und Linux
Ansteuerung direkt aus Inkscape heraus mit der AxiDraw-Erweiterung
Umfassendes Benutzerhandbuch zum Download verfügbar
Treibersoftware kostenlos zum Download und Open Source
Zusätzlich ist die AxiDraw Merge-Software für AxiDraw-Besitzer kostenlos erhältlich
Programmierschnittstellen
Hinweis: Für die Verwendung des AxiDraw ist keine Programmierung erforderlich.
Stand-alone Befehlszeilenschnittstelle (CLI)
AxiDraw Python API steht zur Verfügung.
RESTful-API für vollständige Maschinensteuerung, eigenständig oder durch Ausführen von RoboPaint im Hintergrund zugänglich.
Vereinfachte "GET-only"-API für Programmierumgebungen (z. B. Scratch, Snap), die nur den Abruf von URLs zulassen, ebenfalls verfügbar.
Direktes EiBotBoard (EBB) Befehlsprotokoll zur Verwendung in jeder Programmierumgebung, die die Kommunikation mit USB-basierten seriellen Schnittstellen unterstützt.
Code, der SVG-Dateien erzeugt, kann auch zur (indirekten) Steuerung des Geräts verwendet werden.
Lieferumfang
AxiDraw V3 Schreib- und Zeichenmaschine (komplett montiert, getestet und einsatzbereit)
Multisteckernetzteil mit EU-Adapter
USB-Kabel
Staffelei (Tafel und Klammern) für die Papieraufnahme
Downloads
User Guide
Der Einstieg in die Elektronik ist einfacher, als Sie denken! Mit diesem Bundle – bestehend aus Buch und Experimentierkit – entdecken Sie die Grundlagen der Elektro- und Elektroniktechnik Schritt für Schritt. Anhand spannender Experimente lernen Sie praxisnah und verständlich, ganz ohne komplizierte Fachbegriffe oder langwierige Berechnungen. So sind Sie schon bald in der Lage, Ihre eigenen Elektronikprojekte umzusetzen!
Das Kit enthält alle notwendigen Komponenten, um die meisten im Buch beschriebenen Schaltungen direkt auf dem Steckbrett aufzubauen und praktisch zu erproben.
Das Kit kann selbstverständlich auch ohne das Buch zum Aufbau anderer Schaltkreise und zur Durchführung eigener Experimente verwendet werden.
Inhalt des Kits
1x 39 Ω, 1 W Widerstand
1x 47 Ω Widerstand
1x 180 Ω Widerstand
1x 330 Ω Widerstand
3x 1 kΩ Widerstand
1x 2,2 kΩ Widerstand
1x 3,9 kΩ Widerstand
1x 6,8 kΩ Widerstand
1x 10 kΩ Widerstand
1x 15 kΩ Widerstand
1x 22 kΩ Widerstand
1x 33 kΩ Widerstand
1x 47 kΩ Widerstand
1x 56 kΩ Widerstand
1x 82 kΩ Widerstand
1x 120 kΩ Widerstand
1x 680 kΩ Widerstand
2x 100 kΩ Widerstand
1x 10 kΩ Trimmer
1x 10 kΩ Linearpotentiometer
1x 100 kΩ Linearpotentiometer
1x LDR
1x 1 nF Keramikkondensator
2x 10 nF Keramikkondensator
1x 100 nF Keramikkondensator
1x 1 µF, 25 V Aluminium-Elektrolytkondensator
2x 10 µF, 25 V Aluminium-Elektrolytkondensator
1x 100 µF, 25 V Aluminium-Elektrolytkondensator
1x 470 µF, 25 V Aluminium-Elektrolytkondensator
1x 1000 µF, 25 V Aluminium-Elektrolytkondensator
1x RGB-LED, Common-Cathode (CC)
1x 1N4148 Kleinsignaldiode
1x 1N4733A 5,1 V, 1 W Zenerdiode
3x LED, rot
2x BC337 NPN-Transistor
1x IRFZ44N N-Kanal-MOSFET
2x NE555-Timer
1x LM393-Komparator
1x 74HCT08 Quad-AND-Gatter
3x Tastschalter
2x SPDT-Schalter
1x Relais, SPDT, 9 VDC
1x Aktiver Summer
1x Passiver Summer
50 cm Massivdraht, 16 AWG, ohne Mantel
2x PP3 9 V Batterieclip
1x Steckbrett
20x Überbrückungskabel
Dieses Bundle enthält:
Buch: Schnelleinstieg in die Elektronik (Einzelpreis: 45 €)
Kit: Schnelleinstieg in die Elektronik (Wert: 45 €)
LoRa HAT, ein Datenübertragungsmodul mit geringem Stromverbrauch, verfügt über einen integrierten CH340 USB-zu-UART-Konverter, einen Spannungspegelumsetzer (74HC125V), einen SMA-Antennenanschluss E22-900T22S und E22-400T22S, einen IPEX-Antennenanschluss und die LoRa Spread Spectrum Modulation-Technologie Automatische mehrstufige Wiederholung.
Merkmale
Integriertes 1,14-Zoll-LCD
Spannungspegelumsetzer (74HC125V)
Kommunikationsreichweite bis zu 5 km
Unterstützt automatische Wiederholung, um längere Übertragungen zu ermöglichen
Energieeffizient
Hochsicher
Zur Bewertung der Signalqualität mit dem RSSI oder „Received Signal Strength Indicator“
Unterstützung der drahtlosen Parameterkonfiguration
Unterstützung für Festpunktübertragung
SMA- und IPEX-Antennenanschluss USB-zu-LoRa- und Pico-zu-LoRa-Kommunikation über UART
Wird mit Entwicklungsressourcen und Handbuch geliefert
LED-Anzeigen:
RXD/TXD: UART RX/TX-Anzeige
AUX: Zusatzanzeige
PWR: Betriebsanzeige
Jumper zur Auswahl von Seriell/USB:
A: USB TO UART zur Steuerung des LoRa-Moduls über USB
B: Steuern Sie das LoRa-Modul über Raspberry Pi Pico
Jumper zur Auswahl des Daten-/Befehlsmodus:
Kurz M0, kurz M1: Übertragungsmodus
M0 kurzschließen, M1 öffnen: Konfigurationsmodus
M0 öffnen, M1 kurzschließen: WOR-Modus
Öffnen Sie M0, öffnen Sie M1: Tiefschlafmodus
Spezifikationen
Frequenz: 850,125–930,125 MHz / 410–493 MHz (programmierbarer Bereich)
Leistung: 22 dBm
Entfernung: Bis zu 5 km
Schnittstelle: UART-Kommunikation
Serielles Portmodul: E22-900T22S1B / E22-400T22S
Spannungspegelumsetzer: 74HC125V
Inbegriffen
1x LoRa- Modul
1x Antenne
Hinweis: Raspberry Pi Board ist nicht im Lieferumfang enthalten.
Downloads
GitHub
Wiki
Erstellen Sie mit diesem Kit Ihre ersten IoT-Geräte durch die nahtlose Integration von Hardware und Software, ohne sich in komplexe Theorien zu vertiefen.
Plug and Make Kit ist der einfachste Weg, mit Arduino zu beginnen. Es enthält alles, was Sie für Ihre allerersten sieben Projekte benötigen – sowie viele weitere, die unsere Community teilt und die Sie selbst erfinden können!
Wetterbericht: Lassen Sie sich nie wieder vom Regen überraschen, mit einer visuellen Erinnerung, bei Bedarf einen Regenschirm mitzunehmen
Sanduhr: Wer braucht schon eine Eieruhr? Passen Sie Ihre eigene digitale Sanduhr an
Eco Watch: Stellen Sie sicher, dass Ihre Pflanzen bei perfekter Temperatur und Luftfeuchtigkeit gedeihen
Gamecontroller: Steigen Sie mit Ihrem eigenen HID-Gamepad (Human Interface Device) auf ein höheres Level
Sonic Synth: Kommen Sie Ihrem Beruf als Rockstar, DJ oder Toningenieur einen Schritt näher!
Intelligente Lichter: Sorgen Sie mit Ihrer eigenen intelligenten Lampe für Stimmung
Berührungslose Lampe: Steuern Sie Lichter mit einer einfachen Geste
Jede Idee ist Inspiration für eine unterhaltsame Aktivität, die Ihnen nicht nur die Grundlagen der Heimwerkerelektronik vermittelt, sondern Ihnen auch ein großartiges Erfolgserlebnis vermittelt. Sie können auch Technologie machen!
Mit den innovativen Modulino-Knoten verbinden Sie diese einfach nacheinander über den integrierten Qwiic-Anschluss des Arduino Uno R4 WiFi. Durch die Verwendung einer der Arduino-Cloud-Vorlagen können Sie Ihr Konzept schnell in ein voll funktionsfähiges Projekt umwandeln.
Features
Keine zusätzlichen Werkzeuge erforderlich, alles, was Sie brauchen, um Ihre Reise zu beginnen, ist im Kit enthalten.
Kein Steckbrett und kein Löten erforderlich.
Erstellen Sie in weniger als 45 Minuten ein voll funktionsfähiges IoT-Projekt und verstehen Sie dessen Funktionsweise.
Beginnen Sie mit dem Projekt, das Sie interessanter finden. Sie definieren Ihren eigenen Lernpfad.
Lernen Sie weiter und arbeiten Sie an Ihren Projekten von jedem angeschlossenen Computer aus mithilfe des Online-Arduino-Ökosystems.
Modulino
Modulino sind Sensoren und Aktoren, die einfach über den integrierten Qwiic-Anschluss des Uno R4 WiFi verbunden werden. Für komplexere Projekte können Sie mehrere anschließen und müssen sich nie fragen, welche Seite wo hingehört, da der Stecker polarisiert ist.
Modulino Knopf: für superfeine Werteinstellungen
Modulino Pixel: 8 LEDs, die hell leuchten, dimmen oder die Farbe ändern
Modulino Abstand: ein Flugzeit-Näherungssensor zur präzisen Messung von Entfernungen
Modulino Bewegung: zur perfekten Erfassung von Bewegungen wie Nicken, Rollen oder Neigen
Modulino Summer: zum Erzeugen eigener Alarmtöne oder einfacher Melodien
Modulino Thermo: ein Sensor für Temperatur- und Feuchtigkeitsdaten
Modulino Button: 3 Button für die schnelle Projektnavigation
Technische Daten
Board inklusive
Arduino Uno R4 WiFi
Modulino-Knoten
Kommunikation
I²C (über Qwiic-Anschluss)
Betriebsspannung
3,3 V
Modulino-Knoten enthalten
Modulino Bewegung
LSM6DSOXTR
0x6A (0x6B)
Modulino Abstand
VL53L4CDV0DH/1
0x29
Modulino Thermo
HS3003
0x44
Modulino Knopf
PEC11J (STM32C011F4 für I²C-Kommunikation)
0x76 (Adresse kann per Software geändert werden)
Modulino Summer
PKLCS1212E4001-R1 (STM32C011F4 für I²C-Kommunikation)
0x3C (Adresse kann per Software geändert werden)
Modulino Pixel
8 LC8822-2020 (STM32C011F4 für I²C-Kommunikation)
0x6C (Adresse kann per Software geändert werden)
Modulino Button
3 Drucktasten plus 3 gelbe LEDs (STM32C011F4 für I²C-Kommunikation)
0x7C (Adresse kann per Software geändert werden)
Lieferumfang
1x Arduino Uno R4 WiFi
1x Modulino-Basis
7x Modulino-Sensoren
1x USB-C-Kabel
7x Qwiic-Kabel
24x Schrauben M3 (10 mm)
20x Muttern M3
4x Metallabstandshalter
Downloads
Datasheet
Schematics
CrowBot BOLT ist ein ESP32-gesteuertes, intelligentes, einfaches und benutzerfreundliches Open-Source-Roboterauto. Es ist mit den Arduino- und MicroPython-Umgebungen kompatibel und bietet grafische Programmierung über Letscode. Es stehen 16 Lernkurse mit interessanten Experimenten zur Verfügung.
Features
16 Lektionen in drei Sprachen (Letscode, Arduino, Micropython) für schnelles Lernen und unterhaltsame Experimente.
Kompatibel mit Arduino, MicroPython-Entwicklungsumgebung, mit grafischer Letscode-Programmierung.
Starke Skalierbarkeit mit einer Vielzahl von Schnittstellen, erweiterbar und mit Crowtail-Modulen nutzbar.
Eine Vielzahl von Fernbedienungsmodi: Sie können das Auto mit der Infrarot-Fernbedienung und dem Joystick steuern.
Technische Daten
Prozessor
ESP32-Wrover-B (8 MB)
Programmierung
Letscode, Arduino, Micropython
Steuermethode
Bluetooth-Fernbedienung/Infrarot-Fernbedienung
Eingabe
Taste, Lichtsensor, Infrarot-Empfangsmodul, Ultraschallsensor, Linienverfolgungssensor
Ausgabe
Summer, programmierbares RGB-Licht, Motor
WLAN & Bluetooth
Ja
Lichtsensor
Kann die Funktion erfüllen, Licht zu jagen oder Licht zu meiden
Ultraschallsensor
Wenn ein Hindernis erkannt wird, kann die Fahrtroute des Fahrzeugs korrigiert werden, um dem Hindernis auszuweichen
Linienverfolgungssensor
Kann das Auto entlang der dunklen/schwarzen Linien bewegen lassen, den Fahrweg intelligent beurteilen und korrigieren
Summer
Kann das Auto ertönen/pfeifen lassen und so ein direkteres Sinneserlebnis bieten
Programmierbares RGB-Licht
Durch Programmierung können bunte Lichter in verschiedenen Szenen angezeigt werden
Infrarotempfänger
Empfangen Sie Infrarot-Fernbedienungssignale, um die Fernbedienung zu realisieren
Schnittstellen
1x USB-C, 1x I²C, 1x A/D
Motortyp
GA12-N20 Mikro-DC-Getriebemotor
Betriebstemperatur
-10℃~+55℃
Stromversorgung
4x 1,5 V Batterien (nicht im Lieferumfang enthalten)
Akkulaufzeit
1,5 Stunden
Abmessungen
128 x 92 x 64 mm
Gewicht
900 g
Lieferumfang
1x Gehäuse
1x Ultraschallsensor
1x Batteriehalter
2x Räder
4x M3x8 mm Schrauben
2x M3x5 mm Kupfersäule
2x Seitliche Acrylplatten
1x Vordere Acrylplatten
1x Schraubendreher
2x 4-poliges Crowtail-Kabel
1x USB-C Kabel
1x Infrarot-Fernbedienung
1x Anleitung & Linien-Gleiskarte
1x Joystick
Downloads
Wiki
CrowBot-BOLT_Assembly-Instruction
Joystick-for-CrowBot-BOLT_Assembly-Instruction
CrowBot_BOLT_Beginner’s_Guide
Designing Documents of CrowBot
Designing Documents of Joystick
Lesson Code
3D Model
Factory Source Code
Das Robotik-Board verfügt über zwei Dual-H-Brücken-Motortreiber-ICs. Diese können zwei Standardmotoren oder jeweils einen Schrittmotor antreiben und verfügen über eine vollständige Vorwärts-, Rückwärts- und Stoppsteuerung. Es gibt außerdem 8 Servoausgänge, die Standard- und Dauerrotationsservos antreiben können. Sie können alle vom Pico mithilfe des I²C-Protokolls über einen 16-Kanal-Treiber-IC gesteuert werden. Der IO-Breakout bietet Verbindungen zu allen nicht verwendeten Pins auf dem Pico. Über die 27 verfügbaren I/O-Pins können der Platine weitere Geräte wie Sensoren oder ZIP-LEDs hinzugefügt werden. Die Stromversorgung erfolgt entweder über einen Klemmenblock oder einen Servostecker. Die Stromversorgung wird dann über einen Ein-/Aus-Schalter an der Platine gesteuert und es gibt außerdem eine grüne LED, die anzeigt, wenn die Platine mit Strom versorgt wird. Die Platine erzeugt dann eine geregelte 3,3-V-Versorgung, die in die 3-V- und GND-Anschlüsse eingespeist wird, um den angeschlossenen Pico mit Strom zu versorgen. Dadurch entfällt die Notwendigkeit, den Pico separat mit Strom zu versorgen. Auch die 3 V- und GND-Pins sind am Header herausgebrochen, sodass auch externe Geräte mit Strom versorgt werden können.
Um die Robotikplatine verwenden zu können, muss der Pico fest in den zweireihigen Stiftsockel auf der Platine eingesetzt werden. Stellen Sie sicher, dass der Pico so eingesteckt ist, dass sich der USB-Stecker am gleichen Ende befindet wie die Stromanschlüsse auf der Robotikplatine. Dies ermöglicht den Zugriff auf alle Funktionen der Platine und jeder Pin ist herausgebrochen.
Merkmale
Ein kompaktes und dennoch funktionsreiches Board, das als Herzstück Ihrer Raspberry Pi Pico-Robotikprojekte konzipiert ist.
Die Platine kann 4 Motoren (oder 2 Schrittmotoren) und 8 Servos mit vollständiger Vorwärts-, Rückwärts- und Stoppsteuerung antreiben.
Es verfügt außerdem über 27 weitere E/A-Erweiterungspunkte sowie Strom- und Erdungsanschlüsse.
Die I²C-Kommunikationsleitungen sind ebenfalls herausgebrochen, sodass andere I²C-kompatible Geräte gesteuert werden können.
Dieses Board verfügt außerdem über einen Ein-/Ausschalter und eine Betriebsstatus-LED.
Versorgen Sie die Platine entweder über eine Klemmenleiste oder einen Servostecker mit Strom.
Auch die 3V- und GND-Pins sind am Link-Header herausgebrochen, sodass externe Geräte mit Strom versorgt werden können.
Codieren Sie es mit MicroPython oder über einen Editor wie den Thonny-Editor .
1 x Kitronik Compact Robotics Board für Raspberry Pi Pico
Abmessungen: 68 x 56 x 10 mm
Anforderungen
Raspberry Pi Pico-Board
15 Sensor-Module & 21 Tutorials
Das Elecrow All-in-One Starter Kit für Arduino ist die perfekte Wahl für Einsteiger, die die Arduino-Welt auf unterhaltsame und leicht zugängliche Weise erkunden möchten. Das Kit enthält über 20 interaktive Tutorials, von einfach bis fortgeschritten. Diese Schritt-für-Schritt-Anleitungen helfen Ihnen, die Sensornutzung zu meistern, logisches Denken zu entwickeln und Ihre Kreativität zu wecken.
Das Kit enthält insgesamt 15 Sensoren: 14 integrierte Sensoren und einen Feuchtigkeitssensor mit Crowtail-Schnittstelle. Jeder Sensor bietet einzigartige Funktionen und ist somit ideal für Arduino-Einsteiger. Zusätzlich enthält das Kit sechs Crowtail-Schnittstellen, die Kompatibilität mit über 150 Crowtail-Sensortypen ermöglichen und hervorragende Erweiterbarkeit bieten. Diese Funktionen machen es zu einem hervorragenden Einstiegswerkzeug zur Förderung von logischem Denken und Innovation.
Im Gegensatz zu den meisten Starterkits verwendet dieses All-in-One-Kit ein einheitliches Platinendesign – kein Steckbrett, kein Löten und keine Verkabelung erforderlich. So können Sie sich ganz auf das Programmieren und Erlernen von Arduino konzentrieren.
Features
15 Sensoren mit unterschiedlichen Funktionen, 21 kreative Tutorials
Gleiches Platinendesign für Sensoren, kein Löten erforderlich, direkter Einsatz
Tragbarer Koffer (klein und fein)
Reservierte 6 Crowtail-Schnittstellen (3x I/O, 2x I²C, 1x UART)
Visualisierter Siebdruck, entsprechend den Eigenschaften jedes Sensors
Technische Daten
All-in-One-Starterkit für Raspberry Pi Pico 2
All-in-One-Starterkit für Arduino
Hauptprozessor
Raspberry Pi Pico 2 RP2350
ATmega328P
Anzahl der Sensoren
17 Sensoren
15 Sensoren (inkl. 1 Feuchtigkeitssensor)
Sensorplatinen-Design
Integrierte Sensorplatine, kein Löten oder aufwendige Verkabelung erforderlich
Display
2,4" TFT-Vollfarb-Touchscreen
N/A
Umgebungsbeleuchtung
20 Vollfarb-Umgebungslichter, schaltbar über den Touchscreen
N/A
Integrierte Minispiele
Ja
Nein
Erweiterungsschnittstellen
N/A
6 Crowtail-Schnittstellen(3x I/O, 2x I²C, 1x UART)
Programmierumgebung
Basierend auf Arduino-Software
Anzahl der Tutorials
21 kreative Tutorials
Schnittstelle
USB-C
Abmessungen
195 x 170 x 46 mm
Gewicht
380 g
340 g
Lieferumfang
1x Elecrow All-in-One Starter Kit für Arduino
1x Feuchtigkeitssensor mit Kabel
1x IR-Fernbedienung
1x USB-C Kabel
Downloads
Datasheet
Manual
Wiki
Der PicoGo ist ein intelligenter mobiler Roboter, der auf dem Raspberry Pi Pico basiert. Er umfasst ein Ultraschallmodul, ein LCD-Modul, ein Bluetooth-Modul, ein Linienverfolgungsmodul und ein Hindernisvermeidungsmodul. Alle diese Funktionen sind hochintegriert, um eine einfache IR-Hindernisvermeidung, automatische Linienverfolgung, Bluetooth/IR-Fernbedienung und mehr. Mit verschiedenen erweiterten Funktionen hilft es Ihnen, schnell mit dem Design und der Entwicklung intelligenter Roboter zu beginnen.
Merkmale
Standard-Raspberry-Pi-Pico-Header, unterstützt die Raspberry-Pi-Pico-Serie
Batterieschutzschaltung: Überlade-/Entladeschutz, Überstromschutz, Kurzschlussschutz, Verpolungsschutz, stabilerer und sicherer Betrieb
Auflade-/Entladeschaltung, ermöglicht gleichzeitiges Programmieren/Debuggen während des Aufladens
5-Kanal-Infrarotsensor, Analogausgang, kombiniert mit PID-Algorithmus, stabile Linienverfolgung
An Bord sind mehrere intelligente Robotersensoren wie Linienverfolgung und Hindernisvermeidung, keine unordentlichen Verkabelungen mehr
1,14-Zoll-IPS-Farb-LCD-Display, 240 x 135 Pixel, 65.000 Farben Integriert ein Bluetooth-Modul und ermöglicht Teleoperationen wie Roboterbewegung, RGB-LED-Anzeigefarbe, Summer usw. über die Mobiltelefon-APP
N20-Mikrogetriebemotoren, mit Metallgetriebe, geräuscharm, hohe Genauigkeit
Bunte RGB-LED
IR-Hindernisvermeidung
Das Modul sendet einen IR-Strahl und erkennt Objekte durch den Empfang des reflektierten IR-Strahls, um Hindernissen im Weg leicht auszuweichen.
Automatische Linienverfolgung
Verfügt über einen 5-Kanal-IR-Detektor zur Erkennung und Analyse der schwarzen Linie, kombiniert mit einem PID-Algorithmus zur Anpassung der Roboterbewegung, hoher Empfindlichkeit und stabiler Verfolgung.
Ultraschallsensor
Ultraschall ist im Allgemeinen schneller und einfacher zu berechnen, eignet sich für Funktionen wie Echtzeitsteuerung und Hindernisvermeidung und wird aufgrund der industriell praktischen Entfernungsgenauigkeit häufig in der Roboterforschung und -entwicklung eingesetzt.
Objektverfolgung
Der Roboter ist in der Lage, vordere Objekte per Ultraschall oder IR zu erkennen und bewegt sich weiter, um das Ziel automatisch zu verfolgen.
IR-Fernbedienung Integriert einen IR-Empfänger, sodass Sie die Bewegungs- oder Drehrichtung des Roboters steuern können, indem Sie Infrarotlicht von der Fernbedienung senden.
Bluetooth-Fernbedienung
Wird mit einer Mobiltelefon-App geliefert, mit der Sie mit dem Telefon die Bewegung des Roboters oder seine Peripheriegeräte steuern können, z. B. die LED-Farbe ändern, den Summer ertönen lassen usw.
RGB-LED-Steuerung
Inbegriffen
1x PicoGo-Basisplatine
1x PicoGo-Acrylplatte
1x 1,14-Zoll-LCD-Modul
1x Ultraschallsensor x1
1x IR-Fernbedienung
1x USB-A auf Micro-B Kabel 1,2 m
1x PH2.0 8-Pin-Kabel 5 cm gegenüberliegende Seitenleisten
1x Mini-Kreuzschlüsselhülse
1x Schraubendreher
1x Schrauben- und Abstandshalterpaket
Erforderlich
1x Raspberry Pi Pico (vorgelöteter Header)
1x 5V/3A Netzteil
2x 14500 Batterien
Downloads
Wiki
Dieses erschwingliche und leistungsfähige FPGA-Board ist ein idealer Einstieg in die Welt der FPGAs und das Herzstück Ihres nächsten Projekts. Nachdem SparkFun dieses Board entwickelt hat, haben wir schließlich einen Qwiic-Anschluss für eine einfache I²C-Integration hinzugefügt!
Das Alchitry Au verfügt über einen Xilinx Artix 7 XC7A35T-1C FPGA mit über 33.000 Logikzellen und 256 MB DDR3-RAM. Das Au bietet 102 3,3-V-Logikpegel-IO-Pins, von denen 20 auf 1,8 V geschaltet werden können; Neun differenzielle Analogeingänge; Acht Allzweck-LEDs; ein 100-MHz-On-Board-Takt, der intern vom FPGA manipuliert werden kann; ein USB-C-Anschluss zur Konfiguration und Stromversorgung des Boards; und eine USB-zu-Seriell-Schnittstelle zur Datenübertragung. Um den Einstieg noch einfacher zu machen, verfügen alle Alchitry-Boards über vollständige Lucid- Unterstützung, eine integrierte Bibliothek nützlicher Komponenten zur Verwendung in Ihrem Projekt und einen Debugger!
Features
Artix 7 XC7A35T-1C – 33.280 Logikzellen
256 MB DDR3-RAM
102 IO-Pins (3,3 V Logikpegel, 20 davon können für LVDS auf 1,8 V umgeschaltet werden)
Neun differenzielle Analogeingänge (einer dediziert, acht gemischt mit digitalem IO)
USB-C zur Konfiguration und Stromversorgung des Boards
Acht Allzweck-LEDs
Eine Taste (wird normalerweise zum Zurücksetzen verwendet)
100 MHz On-Board-Takt (kann intern durch das FPGA vervielfacht werden)
Stromversorgung mit 5 V über USB-C-Anschluss, 0,1-Zoll-Löcher oder Stiftleisten
USB-zu-seriell-Schnittstelle zur Datenübertragung (bis zu 12 MBaud)
Qwiic-Anschluss
Abmessungen: 65 x 45 mm
Downloads
Datasheet
Schematic
3D Model (IGES File)
Element Eagle Library
17 Sensor-Module & 21 Tutorials
Das Elecrow All-in-One Starter Kit für Raspberry Pi Pico 2 ist die ideale Wahl für Einsteiger, die den RP2040-basierten Pico 2 kennenlernen möchten. Das umfassende Kit integriert 17 verschiedene Sensoren auf einer einzigen Platine und verfügt über einen 2,4" Farb-TFT-Touchscreen. Löten oder Verdrahten ist nicht erforderlich – das Kit ist sofort einsatzbereit und ermöglicht einen schnellen und reibungslosen Start.
Das Kit enthält über 20 kreative Tutorials für Anfänger und Fortgeschrittene. Diese Schritt-für-Schritt-Anleitungen helfen Nutzern, sich schrittweise mit verschiedenen Sensoren vertraut zu machen, logisches Denken zu entwickeln und ihre Kreativität zu fördern. Dank seines kompakten, tragbaren Kofferdesigns lässt es sich leicht transportieren und eignet sich perfekt für das Lernen unterwegs.
Um das Lernerlebnis zu verbessern, verfügt das Set außerdem über 20 programmierbare, vollfarbige Umgebungslichter und integrierte Minispiele, die eine spannende Mischung aus Bildung und Unterhaltung ermöglichen.
Features
Angetrieben von Raspberry Pi Pico 2 (RP2350-Chip)
Enthält 17 integrierte Sensoren mit verschiedenen Funktionen sowie über 20 kreative Tutorials
All-in-One-Sensorboard-Design – kein Löten erforderlich, sofort einsatzbereit, perfekt für schnelles Prototyping
Kompakter und eleganter Koffer – klein, elegant und leicht zu tragen
2,4-Zoll-Vollfarb-TFT-Touchscreen
20 programmierbare Vollfarb-Umgebungslichter für dynamische visuelle Effekte
Integrierte Minispiele – sofort nach dem Start spielbar für einen reibungslosen Übergang zwischen Lernen und Spaß
Sensoren
1x Temperatur & Feuchtigkeitssensor
4x Knöpfe
1x Ultraschall-Entfernungssensor
1x Lichtsensor
1x Linearpotentiometer
3x LEDs
1x Summer
1x 2,4" TFT-Display
1x Infrarot-Fernbedienung
1x Relais
1x Servomotor
1x Schallsensor
1x Beschleunigungsmesser & Gyro
1x Berührungssensor
1x Vibrationsmotor
1x Hall-Sensor
1x Gassensor (MQ2)
Technische Daten
All-in-One-Starterkit für Raspberry Pi Pico 2
All-in-One-Starterkit für Arduino
Hauptprozessor
Raspberry Pi Pico 2 RP2350
ATmega328P
Anzahl der Sensoren
17 Sensoren
15 Sensoren (inkl. 1 Feuchtigkeitssensor)
Sensorplatinen-Design
Integrierte Sensorplatine, kein Löten oder aufwendige Verkabelung erforderlich
Display
2,4" TFT-Vollfarb-Touchscreen
N/A
Umgebungsbeleuchtung
20 Vollfarb-Umgebungslichter, schaltbar über den Touchscreen
N/A
Integrierte Minispiele
Ja
Nein
Erweiterungsschnittstellen
N/A
6 Crowtail-Schnittstellen(3x I/O, 2x I²C, 1x UART)
Programmierumgebung
Basierend auf Arduino-Software
Anzahl der Tutorials
21 kreative Tutorials
Schnittstelle
USB-C
Abmessungen
195 x 170 x 46 mm
Gewicht
380 g
340 g
Lieferumfang
1x Elecrow All-in-One Starterkit für Raspberry Pi Pico 2
1x IR-Fernbedienung
1x USB-C-Kabel
Downloads
Datasheet
Manual
Wiki
Dies ist ein 170 mm langes 868 MHz 50 hm-Antennenset für die Verwendung mit iLabs Challenger LoRa-Produkten.
Die Antenne ist neig- und schwenkbar, was die Installation in verschiedenen Anwendungen erleichtert.
Das Kit enthält außerdem eine HF-Kabelbaugruppe mit einem SMA (Buchse) und JK-IPEX/MHF/U.FL für den Anschluss an die Leiterplatte. Das Koaxialkabel ist ein 1-13 mm starkes 50-Ohm-Kabel und ist 100 mm lang.
In dieser Kategorie steht Ihnen eine große Auswahl an Plattformen zur Verfügung. Sie alle verfügen über unterschiedliche Funktionen und Sie können die Plattform auswählen, die Ihren Anforderungen oder Ihrem Projekt am besten entspricht.