Der Raspberry Pi 400 bietet einen Quad-Core-64-Bit-Prozessor, 4 GB RAM, drahtloses Netzwerk, Dual-Display-Ausgabe, 4K-Videowiedergabe und einen 40-Pin-GPIO-Header. Es handelt sich um einen leistungsstarken, kompakten Computer mit integrierter tragbarer Tastatur.
Technische Daten
Prozessor
Broadcom BCM2711 quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1,8 GHz
RAM
4 GB LPDDR4-3200
Konnektivität
Dual-band (2.4 GHz und 5.0 GHz) IEEE 802.11b/g/n/ac wireless LANBluetooth 5.0, BLEGigabit Ethernet2 × USB 3.0 und 1 × USB 2.0
GPIO
Horizontaler 40-Pin GPIO-Header
Video & Sound
2 × micro HDMI-Eingänge (bis zu 4Kp60)
Multimedia
H.265 (4Kp60 Dekodierung)H.264 (1080p60 Dekodierung, 1080p30 Enkodierung)OpenGL ES 3.0 Grafik
SD-Karte
MicroSD-Kartenslot für Betriebssystem und Datenspeicher
Tastatur
Tastatur mit deutschem Layout (QWERTZ)
Stromversorgung
5 V DC via USB
Betriebstemperatur
0°C bis +40°C
Abmessungen (max.)
286 × 122 × 23 mm
Lötstation für Präzisionslöten mit aktiv beheizter Lötspitze
Die Lötstation AE970D ist ein 80-W-Hochleistungswerkzeug zum schnellen Aufheizen und Löten. Sein großer Temperaturbereich von 150-550°C kann alle Ihre Lötanforderungen erfüllen. Dank seiner leistungsstarken, integrierten Plug-and-Play-Aktivspitze kann der AE970D den Schmelzpunkt innerhalb von 9 Sekunden erreichen. Die patentierte Technologie zur automatischen Konstanttemperaturregelung mit geschlossenem Regelkreis gewährleistet ein Löten mit hoher Stabilität, hervorragender Leistung und präziser Genauigkeit.
Features
80 W hohe Leistung für schnelles Aufheizen.
Größerer Temperaturbereich von 150–550°C, um alle Ihre Lötanforderungen zu erfüllen.
Hochleistungsfähige integrierte Plug-and-Play-Aktivspitze, die den Schmelzpunkt innerhalb von 9 Sekunden erreichen kann.
Patentierte Technologie zur automatischen Konstanttemperaturregelung mit geschlossenem Regelkreis für hohe Stabilität, hervorragende Leistung und präzise Genauigkeit
Technische Daten
Leistung
80 W
Eingangsspannung
110 VAC / 230 VAC
Ausgangsspannung
25 VAC
Temperaturbereich
150-550°C (302-1022°F)
Heizelement
Integrierte Aktivheizung der T80-Serie
Temperaturstabilität
±1°C/±1,8°F (bei einer Temperatur von >200°C/400°F)
Spitze zum Erdungswiderstand
<2 Ω
Spannung zwischen Spitze und Erde
<2 mV
Netzkabellänge
1 m
Kabellänge berücksichtigen
1,2 m
Abmessungen
148 x 120 x 85 mm
Gewicht (Haupteinheit)
1,33 kg
Lieferumfang
Haupteinheit
Lötkolben inkl. Lötspitze T80-D24
Lötkolbenhalter
Messingwolle
Manual
Extra: Lötspitze T80-BC3 gratis on top
Der LCR45 bietet die gleichen Funktionen wie der beliebte LCR40, verfügt jedoch über einige bedeutende Verbesserungen. Der LCR45 verfügt über einen neuen Mikroprozessor mit hoher Kapazität und hochauflösende ADCs.
Der LCR45 verfügt über eine fortschrittliche Mathematik, die auf der Analyse komplexer Impedanzen basiert. Dies ermöglicht eine verbesserte Messung der Komponentenwerte sowie eine umfassende und detaillierte Impedanzanzeige.
Features
Lieferung erfolgt mit vergoldeten, abnehmbaren Hakensonden
Flüssigkeitsmessungen mit Hold-Funktion
Automatischer oder manueller Komponententyp
Automatische oder manuelle Testfrequenz, DC, 1 kHz, 15 kHz oder 200 kHz
Verbesserte Messauflösung: 0,2 µH, 0,2 pF und 0,2 Ohm
Einfaches Menüsystem für Benutzereinstellungen
Verbesserte Kompensation für Komponentenparasiten und -verluste (wie Kernverluste usw.)
Automatisches oder manuelles Ausschalten
Technische Daten
Analysertyp
LCR und Komponentenimpedanz
Komponententypen
Auto/Manuell für L,C & R
Messungstypen
Induktivität, Kapazität und Widerstand
Andere Messungen
Komplexe Impedanz/Admittanz
Weitere Messungen
Größe und Phase der Impedanz
Induktivitätsbereich
0uH bis 2H
Kapazitätsbereich
0pF bis 10000uF
Widerstandsbereich
0R bis 2MR
Testhäufigkeit
Automatisch und manuell: Gleichstrom, 1 kHz, 15 kHz, 200 kHz
Anzeigetyp
Alphanumerisches LCD (nicht hintergrundbeleuchtet)
Messschema
Kontinuierlich (mit optionaler Sperre)
Batterie
GP23 (12 V/55 mAH Typ), ~700 Operationen
Lieferumfang
LCR45 Passivkomponenten-Impedanzmessgerät
2-mm-Stecker und -Buchsen und abnehmbare Hakensonden
Umfassende bebilderte Bedienungsanleitung
2 Batterien, eine eingebaut und eine Ersatzbatterie. GP23 Alkalibatterie. (12 V/55 mAH)
Downloads
Datasheet (EN)
User Guide (DE)
Die Raspberry Pi AI Camera ist ein kompaktes Kameramodul, das auf dem Sony IMX500 Intelligent Vision Sensor basiert. Der IMX500 kombiniert einen 12-MP-CMOS-Bildsensor mit integrierter Inferenz-Beschleunigung für verschiedene gängige neuronale Netzwerkmodelle, so dass Benutzer anspruchsvolle bildverarbeitungsbasierte KI-Anwendungen entwickeln können, ohne einen separaten Beschleuniger zu benötigen.
Die AI-Kamera wertet aufgenommene Bilder oder Videos mit Tensor-Metadaten auf, während der Prozessor des Raspberry Pi für andere Aufgaben frei bleibt. Die Unterstützung von Tensor-Metadaten in den Bibliotheken libcamera und Picamera2 sowie in der Anwendungssuite rpicam-apps gewährleistet eine einfache Bedienung für Anfänger und bietet gleichzeitig eine unvergleichliche Leistung und Flexibilität für fortgeschrittene Benutzer.
Die Raspberry Pi AI Camera ist mit allen Raspberry Pi-Modellen kompatibel.
Features
12 MP Sony IMX500 Intelligent Vision Sensor
Sensormodi: 4056 x 3040 (@ 10fps), 2028 x 1520 (@ 30fps)
1,55 x 1,55 µm Zellgröße
78°-Sichtfeld mit manuell einstellbarem Fokus
Integriertes RP2040 für neuronales Netzwerk und Firmware-Management
Technische Daten
Sensor
Sony IMX500
Auflösung
12,3 MP (4056 x 3040 Pixel)
Sensorgröße
7,857 mm (Typ 1/2,3)
Pixelgröße
1,55 x 1,55 μm
IR-Sperrfilter
Integriert
Autofokus
Manuell einstellbarer Fokus
Fokusbereich
20 cm – ∞
Brennweite
4,74 mm
Horizontales Sichtfeld
66 ±3°
Vertikales Sichtfeld
52,3 ±3°
Brennweitenverhältnis (Blende)
F1.79
Ausgabe
Bild (Bayer RAW10), ISP-Ausgabe (YUV/RGB), ROI, Metadaten
Maximale Größe des Eingabetensors
640 x 640 (H x V)
Framerate
• 2x2-Binning: 2028x1520 10-Bit 30fps• Volle Auflösung: 4056x3040 10-Bit 10fps
Flachbandkabellänge
20 cm
Kabelstecker
15 x 1 mm FPC oder 22 x 0,5 mm FPC
Abmessungen
25 x 24 x 11,9 mm
Downloads
Datasheet
Documentation
Der PTS200 ist ein leistungsstarker, ESP32-gesteuerter tragbarer Smart-Lötkolben mit einer regulierbaren Ausgangsleistung von 18 bis 100 W. In Verbindung mit einem 100-Watt-Netzteil und einer 4-Ohm-Lötspitze macht dieser Lötkolben eine herkömmliche Lötstation überflüssig und erfüllt die Anforderungen verschiedener Lötaufgaben. Es verfügt über 4 einstellbare Betriebsspannungen und kann so für verschiedene Stromquellen konfiguriert werden.
Features
100-W-Ausgangsleistung: Erleben Sie schnelles Aufheizen mit einer leistungsstarken 100-W-Ausgangsleistung, die in nur 8 Sekunden 450°C erreicht, für schnelles und effizientes Löten.
Universelle Spitzenkompatibilität: Kompatibel mit T12/TS100/TS101-Spitzen, wodurch der PTS200 an eine Vielzahl von Lötaufgaben anpassbar ist.
Schnellladeprotokolle: Unterstützt PD3.0 und QC2.0/QC3.0 und ermöglicht die Stromversorgung über Schnellladeadapter oder Powerbanks, ideal zum Löten unterwegs.
Automatische Sleep-Funktion: Verlängert die Lebensdauer der Lötspitzen. Die superschnelle Aufwachfunktion sorgt dafür, dass der Lötkolben immer bereit ist, wenn er gebraucht wird.
Ergonomisches Design: Der PTS200 besteht aus einem CNC-gefrästen Metallgehäuse und bietet sowohl ergonomischen Komfort als auch zuverlässige Wärmeableitung.
Technische Daten
Ausgangsleistung
18-100 W
Eingangsspannung (einstellbar)
• 9 V/2 A• 12 V/1,5 A• 15 V/3 A• 20 V/5 A
Temperaturbereich
50-450°C
Heizzeit
8 Sekunden
Temperaturstabilität
±2 %
Mikrocontroller
ESP32-S2
Display
0,96" OLED (128 x 64 Pixel)
Stromversorgung
USB-C
Besondere Features
• Automatischer Ruhezustand• CNC-Metallgehäuse• Kompatibel mit T12/TS101/TS100/Pinecil-Lötspitzen• 20 V/5 A (100 W maximale Leistung)
Lieferumfang
PTS200 Lötkolben
Lötspitze BC2 (4 Ω)
Lötspitze K (4 Ω)
Lötspitze B2 (4 Ω)
Lötspitze I (4 Ω)
100-W-Netzteil (EU)
USB-C Kabel
Software
Firmware
Dieses vielseitige Mikroskop deckt mit 3 Linsen einen großen Vergrößerungsbereich ab (60-240x, 18-720x, 1560-2040x). Mit diesem Digital-Mikroskop können Sie Pflanzen, Insekten, Edelsteine und Münzen untersuchen oder elektronische Arbeiten wie Reparaturen oder die Herstellung von Leiterplatten durchführen.
Technische Daten
AD246S-M
AD249S-M
Vergrößerung
Linse A
18-720
18-720
Fokusbereich
12-320 mm
12-320 mm
Linse D
1800-2040
1800-2040
Fokusbereich
4-5 mm
4-5 mm
Linse L
60-240
60-240
Fokusbereich
90-300 mm
90-300 mm
Bildschirmgröße
7 inch (17,8 cm)
10 inch (25,7 cm)
Videoauflösung (max.)
UHD 2880x2160 (24fps)
UHD 2880x2160 (24fps)
Videoformat
MP4
MP4
Bildformat
JPG
JPG
Bildauflösung
5600x2400 (mit Interpolation)
5600x2400 (mit Interpolation)
Bildrate
Max. 120fps
Max. 120fps
HDMI-Ausgang
Ja (unterstützt Dual-Screen-Anzeige)
Ja (nur HDMI-Monitor)
PC-Ausgang
Ja
Ja
Standfußgröße
20 x 18 x 30 cm
20 x 18 x 30 cm
Lieferumfang
1x Andonstar AD249S-M Digital-Mikroskop
3x Linsen (A, D & L)
1x Objektträgerhalter
1x 32 GB microSD-Karte
1x USB-Kabel
1x Schaltkabel
1x HDMI-Kabel
1x Fernbedienung
5x Vorbereitete Objektträger
1x Beobachtungsbox
1x Pinzette
1x Manual
Downloads
Manual
Software
Mit der Universalfernbedienung TV-B-Gone können Sie praktisch jeden Fernseher ein- oder ausschalten. Sie bestimmen, wann Sie fernsehen, und nicht, was Sie sehen. Die TV-B-Gone-Schlüsselanhänger-Fernbedienung ist so klein, dass sie problemlos in Ihre Tasche passt, sodass Sie sie jederzeit und überall griffbereit haben: Bars, Restaurants, Waschsalons, Baseballstadien, Arenen usw.
Das TV-B-Gone-Kit ist eine großartige Möglichkeit, etwas über Elektronik zu unterrichten. Wenn es zusammengelötet ist, können Sie fast jeden Fernseher im Umkreis von 150 Fuß oder mehr ausschalten. Es funktioniert mit insgesamt über 230 Stromcodes – 115 amerikanischen/asiatischen und weiteren 115 europäischen Codes. Sie können beim Zusammenbau des Bausatzes die gewünschte Zone auswählen.
Dies ist ein unmontierter Bausatz, der Löten und Zusammenbauen erfordert – aber er ist sehr einfach und bietet einen guten Einstieg in das Löten im Allgemeinen. Mit diesem Kit macht die beliebte TV-B-Gone-Fernbedienung noch mehr Spaß, weil Sie sie mit ein paar einfachen Löt- und Montagearbeiten selbst erstellt haben! Zeigen Sie Ihren Freunden und Ihrer Familie, wie technisch versiert Sie sind, und unterhalten Sie sie mit der Leistung des TV-B-Gone!
Das Kit wird mit 2x AA-Batterien betrieben und die Ausgabe erfolgt über 2x engstrahlende IR-LEDs und 2x breitstrahlende IR-LEDs.
Inbegriffen
Alle benötigten Teile/Komponenten
Erforderlich
Werkzeuge, Lötkolben und Batterien
Downloads
GitHub
Spezifikationen
Klemmleiste, Ankerpunkt 630
Verteilerleisten, Ankerpunkt 200
Lötfreies Steckbrett (MB-102)
Drahtgröße: Geeignet für 20–29 AWG-Drähte, Überbrückungsdraht mit 0,8 mm Durchmesser
Material: ABS. Transparentes Material
Größe: 16,5 x 5,3 x 0,85 cm
Brandneu und hochwertig
Sie ermöglichen die Verbindung elektronischer Komponenten auf nahezu unendlich viele Arten, um funktionierende Schaltkreise zu erzeugen
Da kein Löten erforderlich ist, können Änderungen oder Überarbeitungen der Schaltungen ganz einfach durchgeführt werden
Das Steckbrett besteht aus einem Satz geformter Metallbuchsen, die in ein robustes Kunststoffgehäuse eingesetzt sind
Mit Phosphorbronze vernickelte Federklemmen Klebefolie auf der Unterseite der Platine
For Speed, Area, Power, and Reliability
This book teaches the fundamentals of FPGA operation, covering basic CMOS transistor theory to designing digital FPGA chips using LUTs, flip-flops, and embedded memories. Ideal for electrical engineers aiming to design large digital chips using FPGA technology.
Discover:
The inner workings of FPGA architecture and functionality.
Hardware Description Languages (HDL) like Verilog and VHDL.
The EDA tool flow for converting HDL source into a functional FPGA chip design.
Insider tips for reliable, low power, and high performance FPGA designs.
Example designs include:
Computer-to-FPGA UART serial communication.
An open-source Sump3 logic analyzer implementation.
A fully functional graphics controller.
What you need:
Digilent BASYS3 or similar FPGA eval board with an AMD/Xilinx FPGA.
Vivado EDA tool suite (available for download from AMD website free of charge).
Project source files available from author’s GitHub site.
Understanding and Using Them Effectively
What happens in electronics is invisible to the naked eye. The instrument that allows to accurately visualize electrical signals, the one through which the effects of electronics become apparent to us, is the oscilloscope.
Alas, when one first ventures into electronics, it is often without an oscilloscope. And one is left fumbling, both physically and mentally. Observing an electrical signal on a screen for the first time is a revelation. Nobody wishes to forgo that marvel again. There is no turning back.
In electronics, if one wishes to progress with both enjoyment and understanding, an oscilloscope is essential. This marks the beginning of a period of questioning: how to choose one? And no sooner is that question answered than a whole string of others arises, which can be summed up in just one: how does one use the oscilloscope in such a way that what it displays truly reflects the reality of the signals?
Rémy Mallard is a passionate communicator with a gift for making complex technical subjects understandable and engaging. In this book, he provides clear answers to essential questions about using an oscilloscope and offers a wealth of guidance to help readers explore and understand the electrical signals behind electronic systems. With his accessible style and practical insights, this book is a valuable tool for anyone eager to deepen their understanding of electronics.
Der Throwing Star LAN Tap Pro ist ein passiver Ethernet-Tap, der für den Betrieb keinen Strom benötigt. Es gibt aktive Methoden, um Ethernet-Verbindungen anzuzapfen (z. B. ein Mirror-Port an einem Switch), aber keine kann passive Anzapfungen in Sachen Portabilität übertreffen. Für das Zielnetz sieht der Throwing Star LAN Tap wie ein Kabelstück aus, aber die Drähte im Kabel reichen bis zu den Überwachungsports und verbinden einen Zielport mit dem anderen.
Die Überwachungsports (J3 und J4) sind reine Empfangsports; sie werden mit den Empfangsdatenleitungen der Überwachungsstation verbunden, nicht aber mit den Sendeleitungen der Station. Dadurch ist es unmöglich, dass die Überwachungsstation versehentlich Datenpakete in das Zielnetzwerk überträgt.
Der Throwing Star LAN Tap Pro ist für die Überwachung von 10BASET- und 100BASETX-Netzwerken konzipiert. Eine Überwachung von 1000BASET (Gigabit Ethernet) Netzwerken ist mit einem stromlosen Tap nicht möglich, daher verschlechtert der Throwing Star LAN Tap absichtlich die Qualität von 1000BASET Zielnetzwerken und zwingt sie, eine niedrigere Geschwindigkeit (typischerweise 100BASETX) auszuhandeln, die passiv überwacht werden kann. Dies ist der Zweck der beiden Kondensatoren (C1 und C2).
Wie alle passiven LAN-Taps verschlechtert auch der Throwing Star LAN Tap Pro die Signalqualität in gewissem Maße. Außer wie oben für Gigabit-Netzwerke beschrieben, verursacht dies selten Probleme im Zielnetzwerk. In Situationen, in denen sehr lange Kabel verwendet werden, kann die Signalverschlechterung die Netzwerkleistung beeinträchtigen. Es ist eine gute Praxis, Kabel zu verwenden, die nicht länger als nötig sind.
Downloads
Open source design files
Der ESP32-C3-Chip verfügt über branchenführende Leistung bei geringem Stromverbrauch und Hochfrequenzleistung und unterstützt das Wi-Fi IEEE802.11b/g/n-Protokoll und BLE 5.0. Der Chip ist mit einem RISC-V 32-Bit-Single-Core-Prozessor mit einer Arbeitsfrequenz von bis zu 160 MHz ausgestattet. Unterstützen Sie die Sekundärentwicklung, ohne andere Mikrocontroller oder Prozessoren zu verwenden. Der Chip verfügt über integriertes 400 KB SRAM, 384 KB ROM, 8 KB RTC SRAM, integrierter 4 MB Flash unterstützt auch externen Flash. Der Chip unterstützt eine Vielzahl von Arbeitszuständen mit geringem Stromverbrauch, die den Stromverbrauchsanforderungen verschiedener Anwendungsszenarien gerecht werden können. Durch die einzigartigen Funktionen des Chips wie die Feintakt-Gating-Funktion, die Funktion zur dynamischen Anpassung der Spannungstaktfrequenz und die Funktion zur Anpassung der HF-Ausgangsleistung kann das beste Gleichgewicht zwischen Kommunikationsentfernung, Kommunikationsrate und Stromverbrauch erzielt werden.
Das ESP-C3-12F-Modul bietet eine Fülle von Peripherieschnittstellen, darunter UART, PWM, SPI, I²S, I²C, ADC, Temperatursensor und bis zu 15 GPIOs. Merkmale
Unterstützt Wi-Fi 802.11b/g/n, 1T1R-Modus-Datenrate bis zu 150 Mbit/s
Unterstützt BLE5.0, unterstützt kein klassisches Bluetooth, Ratenunterstützung: 125 Kbit/s, 500 Kbit/s, 1 Mbit/s, 2 Mbit/s
RISC-V 32-Bit-Single-Core-Prozessor, unterstützt eine Taktfrequenz von bis zu 160 MHz, verfügt über 400 KB SRAM, 384 KB ROM, 8 KB RTC SRAM
Unterstützt UART/PWM/GPIO/ADC/I²C/I²S-Schnittstelle, unterstützt Temperatursensor, Impulszähler
Die Entwicklungsplatine verfügt über RGB-Drei-in-Eins-Lampenperlen, was für die zweite Entwicklung von Kunden praktisch ist.
Unterstützt mehrere Schlafmodi, der Tiefschlafstrom beträgt weniger als 5 uA
Serielle Portrate bis zu 5 Mbit/s
Unterstützt den STA/AP/STA+AP-Modus und den Promiscuous-Modus
Unterstützt Smart Config (APP)/AirKiss (WeChat) von Android und iOS, Netzwerkkonfiguration mit einem Klick
Unterstützt lokales Upgrade der seriellen Schnittstelle und Remote-Firmware-Upgrade (FOTA)
Allgemeine AT-Befehle können schnell verwendet werden
Unterstützt sekundäre Entwicklung, integrierte Windows- und Linux-Entwicklungsumgebung Über die Flash-Konfiguration ESP-C3-12F nutzt standardmäßig den integrierten 4 MB Flash des Chips und unterstützt die externe Flash-Version des Chips.
Der Elektor Super Servo Tester kann Servos steuern und Servosignale messen. Es können bis zu vier Servokanäle gleichzeitig getestet werden.
Der Super Servo Tester wird als Bausatz geliefert. Alle zum Zusammenbau des Super Servo Testers erforderlichen Teile sind im Bausatz enthalten. Für den Zusammenbau des Bausatzes sind grundlegende Lötkenntnisse erforderlich. Der Mikrocontroller ist bereits programmiert.
Der Super Servo Tester verfügt über zwei Betriebsmodi: Steuerung/Manuell und Messen/Eingänge.
Im Control/Manual Modus generiert der Super Servo Tester an seinen Ausgängen Steuersignale für bis zu vier Servos oder für den Flugregler oder ESC. Die Signale werden über die vier Potentiometer gesteuert.
Unter Measure/Inputs misst der Super Servo Tester die an seine Eingänge angeschlossenen Servosignale. Diese Signale können beispielsweise von einem Regler, einem Flugregler, dem Empfänger oder einem anderen Gerät stammen. Die Signale werden auch an die Ausgänge weitergeleitet, um die Servos oder den Flugregler bzw. ESC zu steuern. Die Ergebnisse werden auf dem Display angezeigt.
Technische Daten
Betriebsmodi
Control/Manual & Measure/Inputs
Kanäle
3
Servosignaleingänge
4
Servosignalausgänge
4
Alarm
Summer & LED
Anzeige
0,96' OLED (128 x 32 Pixel)
Eingangsspannung an K5
7-12 VDC
Eingangsspannung an K1
5-7,5 VDC
Eingangsstrom
30 mA (9 VDC an K5, nichts an K1 und K2 angeschlossen)
Abmessungen
113 x 66 x 25 mm
Gewicht
60 g
Lieferumfang
Widerstände (0,25 W)
R1, R3
1 kΩ, 5%
R2, R4, R5, R6, R7, R9, R10
10 kΩ, 5%
R8
22 Ω, 5%
P1, P2, P3, P4
10 kΩ, lin/B, vertikales Potentiometer
Kondensatoren
C1
100 µF 16 V
C2
10 µF 25 V
C3, C4, C7
100 nF
C5, C6
22 pF
Halbleiter
D1
1N5817
D2
LM385Z-2.5
D3
BZX79-C5V1
IC1
7805
IC2
ATmega328P-PU, programmiert
LED1
LED, 3 mm, rot
T1
2N7000
Außerdem
BUZ1
Piezo-Summer mit Oszillator
K1, K2
2-reihiger, 12-poliger Pinheader, 90°
K5
Barrel jack
K4
1-reihige, 4-polige Stiftbuchse
K3
2-reihiger, 6-fach geschachtelter Pinheader
S1
Slide Switch DPDT
S2
Slide Switch SPDT
X1
Crystal, 16 MHz
28-polige DIP-Buchse für IC2
Elektor Platine
OLED-Display, 0,96', 128 x 32 Pixel, 4-pin I²C-Interface
Links
Elektor Magazine
Elektor Labs
Unterschiede zwischen micro:bit v1 und micro:bit v2
Der BBC micro:bit v2 ist mit BLE Bluetooth 5.0 ausgestattet
Es verfügt über eine Ausschalttaste (Einschalttaste gedrückt halten)
MEMS-Mikrofon mit LED-Anzeige
Integrierter Lautsprecher
Berührungsempfindlicher Logo-Pin
LED-Betriebsanzeige
Ein gekerbter Kantenverbinder für einfachere Verbindungen.
ESP32-DevKitC ist ein Low-Footprint- und Einsteiger-Entwicklungsboard, das zur ESP32-Serie gehört. Dieses Board verfügt über ein reichhaltiges Peripherie-Set. Die integrierte ESP32-Pinbelegung ist für problemloses Prototyping optimiert!
WLAN & Bluetooth-Konnektivität
Dieses Minimalsystem-Entwicklungsboard wird von einem ESP32-Modul angetrieben. Es integriert Wi-Fi- und Bluetooth-Funktionen und bietet einen umfangreichen Peripheriesatz für schnelles Prototyping!
Rapid Prototyping
ESP32-DevKitC erreicht optimale HF-Leistung. Sie können direkt mit dem Anwendungsdesign und der Anwendungsentwicklung beginnen, ohne sich Gedanken über die HF-Leistung und das Antennendesign machen zu müssen. ESP32-DevKitC deckt Ihre grundlegenden Systemanforderungen bereits ab. Schließen Sie einfach das USB-Kabel an und schon kann es losgehen!
Flexibel und funktionsreich
ESP32-DevKitC enthält die gesamte Unterstützungsschaltung der Module der Serien ESP32-WROOM, ESP32-WROVER und ESP32-SOLO, außerdem eine USB-UART-Brücke, Reset- und Boot-Modus-Tasten, einen LDO-Regler und einen Micro-USB-Anschluss. Alle wichtigen GPIOs stehen dem Entwickler zur Verfügung.
Breadboard-freundlich
Die ESP32-DevKitC-Pinbelegung ist optimiert, um Prototyping auf einem Steckbrett zu ermöglichen. Der integrierte LDO-Ausgang ist herausgeführt, um zusätzliche externe Elektronik mit Strom zu versorgen. Peripherieausgänge werden für ein problemloses Prototyping zusammengefasst.
Technische Daten
Board
ESP32-DevKitC-32E
Verwandtes Modul
ESP32-WROOM-32E
Flashspeicher
4 MB
Antenne
PCB
Downloads
Datasheet
Die ETH-USB-Hub-Box ist ein Hub-Kit mit darin enthaltenem ETH/USB-Hub-HAT (B). Es ist auf die Raspberry Pi Zero-Serie zugeschnitten, hat eine geringe Größe und jede Aussparung im Gehäuse ist genau auf den Anschluss ausgerichtet. Das Gehäuse ist in der klassischen Rot-Weiß-Farbkombination des Raspberry Pi gehalten und verfügt über eine hochwertige mattpolierte Oberfläche, die den Zero effektiv vor Staub schützt. Diese Hub-Box bietet einen RJ45-Ethernet-Anschluss und mehr USB-Funktionalität für Ihren Zero und erleichtert die Verbindung mit dem Internet und verschiedenen USB-Geräten.
Features
Entwickelt für Raspberry Pi Zero, kompatibel mit Boards der Zero-Serie
3x erweiterte USB-Anschlüsse, kompatibel mit USB 2.0 / 1.1
Enthält einen RTL8152B-Ethernet-Chip, unterstützt 1x RJ45-Ethernet-Port und 10/100M automatische Aushandlung
Pogo-Pin-Design für den direkten Anschluss an Raspberry Pi Zero/Zero W/Zero WH
Abgerundetes Winkeldesign, angenehmes Handgefühl, „einfach einrastender“ Gehäusedeckel
Hochwertiges ABS-Material, matt polierte Oberfläche, Anti-Fingerabdrücke
Kommt mit zwei verschiedenen Deckeln, die Sie nach Belieben wechseln können
Lieferumfang
1x ETH/USB-Hub HAT (B)
1x ABS-Gehäuse
4x Gummifüße
1x Schraubenpaket
1x Schraubendreher
Downloads
Dokumentation
Der Raspberry Pi Pico 2 W ist ein Mikrocontroller-Board auf Basis des RP2350 mit 2,4 GHz 802.11n Wireless LAN und Bluetooth 5.2. Es gibt Ihnen noch mehr Flexibilität bei Ihren IoT- oder Smart-Produktdesigns und erweitert die Möglichkeiten für Ihre Projekte.
Der RP2350 bietet eine umfassende Sicherheitsarchitektur rund um Arm TrustZone für Cortex-M. Es umfasst signiertes Booten, 8 KB Antifuse-OTP für die Schlüsselspeicherung, SHA-256-Beschleunigung, einen Hardware-TRNG und schnelle Glitch-Detektoren.
Die einzigartige Dual-Core- und Dual-Architektur-Fähigkeit des RP2350 ermöglicht Benutzern die Wahl zwischen einem Paar ARM Cortex-M33-Kernen nach Industriestandard und einem Paar Hazard3 RISC-V-Kernen mit offener Hardware. Der Raspberry Pi Pico 2 W ist in C/C++ und Python programmierbar und wird durch eine ausführliche Dokumentation unterstützt. Er ist das ideale Mikrocontroller-Board sowohl für Enthusiasten als auch für professionelle Entwickler.
Technische Daten
CPU
Dual Arm Cortex-M33 oder Dual RISC-V Hazard3 Prozessoren bei 150 MHz
Wireless
On-Board Infineon CYW43439 Single-Band 2,4 GHz 802.11n Wireless Lan und Bluetooth 5.2
Speicher
520 KB On-Chip-SRAM; 4 MB integrierter QSPI-Flash
Schnittstellen
26 Mehrzweck-GPIO-Pins, darunter 4, die für AD verwendet werden können
Peripherie
2x UART
2x SPI-Controller
2x I²C-Controller
24x PWM-Kanäle
1x USB 1.1-Controller und PHY, mit Host- und Geräteunterstützung
12x PIO-Zustandsmaschinen
Eingangsspannung
1,8-5,5 V DC
Abmessungen
21 x 51 mm
Downloads
Datasheet
Pinout
Schematic
Die WiFi-Module der chinesischen Firma Espressif haben schon längst die Maker-Community erobert, bieten sie doch zu einem konkurrenzlosen Preis MCU- und WiFi-Funktionalität. Mit einfachen Mitteln lässt sich ein Arduino mit einem ESP-Modul um WiFi erweitern. Die globale Bastler-Gemeinde ersetzte schon bald die integrierte Firmware mit eigener Firmware, sodass Entwickler ESP-Boards wie Arduino-Boards programmieren können. Der neue ESP32 geht einen Schritt weiter und ist in jeder Beziehung leistungsfähiger als der ESP8266. Zudem besitzt er nun Bluetooth-Funktionalität. Der ESP32 verfügt über einen 240-MHz-Zweikern-Mikroprozessor mit einer Performanz von 600 DMIPS. Neben 520 KByte SRAM befinden sich 16 MByte Flashspeicher an Board. Zur Kommunikation mit der Außenwelt enthält das System-on-a-Chip die 802.11-b/g/n-WiFi-Komponente HT40 und Bluetooth-Funktionalität. Als Sensoren bietet der ESP32 einen Hall-Sensor, eine zehnfache, kapazitive Touch-Schnittstelle, einen analogen Verstärker für niedrige Signale und einen 32-kHz-Kristallquartz. Der Bestseller-Autor Erik Bartmann hat sich ausführlich mit dem neuen ESP32 beschäftigt. Heraus gekommen ist dabei Das ESP32-Praxisbuch, in dem er die Leser Schritt für Schritt in die Arbeit mit diesem preiswerten WiFi-Mikrocontroller einführt.
Die Standardkonfiguration bietet Platz für ein Mini-Breadboard (im Lieferumfang enthalten), einen SD -Kartenadapter, 2x Micro-SD-Karten, 2x USB-Geräte, ein Micro-USB-Shim und natürlich den Raspberry Pi Zero selbst.
Der Benutzer kann den Micro-USB-Shim-Steckplatz für einen Micro-HDMI-Adapter verwenden oder eine Portsplus- oder ähnliche GPIO-Referenzkarte in den SD-Adaptersteckplatz stecken. Sie können Ihren USB-Micro-SD-Kartenleser oder sogar andere größere USB-Geräte wie den USBDoctor darin unterbringen. Verwenden Sie es so, wie es für Sie am besten funktioniert.
Alle Anschlüsse des Raspberry Pi Zero sind vom ZeroDock aus zugänglich, einschließlich des Kameraanschlusses und der Reset-/Kompositstiftleiste. pHATs werden ebenfalls nicht behindert, so dass Sie mit Ihren bevorzugten Zusatzplatinen Prototypen erstellen können.
Das Gehäuse ist eine elegante Mischung aus klaren und schwarzen Acrylschichten, schwarzen Befestigungen und einem klaren Breadboard, das gut zu den meisten Desktop-PCs/Monitoren passt.
Eine Anleitung zum Zusammenbau finden Sie hier.
Lieferumfang
4 Schichten lasergeschnittenes Acrylgehäuse
Gehäuse- und Raspberry Pi-Befestigungen
Mini-Breadboard
Learn programming for Alexa devices, extend it to smart home devices and control the Raspberry Pi
The book is split into two parts: the first part covers creating Alexa skills and the second part, designing Internet of Things and Smart Home devices using a Raspberry Pi.
The first chapters describe the process of Alexa communication, opening an Amazon account and creating a skill for free. The operation of an Alexa skill and terminology such as utterances, intents, slots, and conversations are explained. Debugging your code, saving user data between sessions, S3 data storage and Dynamo DB database are discussed.
In-skill purchasing, enabling users to buy items for your skill as well as certification and publication is outlined. Creating skills using AWS Lambda and ASK CLI is covered, along with the Visual Studio code editor and local debugging. Also covered is the process of designing skills for visual displays and interactive touch designs using Alexa Presentation Language.
The second half of the book starts by creating a Raspberry Pi IoT 'thing' to control a robot from your Alexa device. This covers security issues and methods of sending and receiving MQTT messages between an Alexa device and the Raspberry Pi.
Creating a smart home device is described including forming a security profile, linking with Amazon, and writing a Lambda function that gets triggered by an Alexa skill. Device discovery and on/off control is demonstrated.
Next, readers discover how to control a smart home Raspberry Pi display from an Alexa skill using Simple Queue Service (SQS) messaging to switch the display on and off or change the color.
A node-RED design is discussed from the basic user interface right up to configuring MQTT nodes. MQTT messages sent from a user are displayed on a Raspberry Pi.
A chapter discusses sending a proactive notification such as a weather alert from a Raspberry Pi to an Alexa device. The book concludes by explaining how to create Raspberry Pi as a stand-alone Alexa device.