Ready to explore the world around you? By attaching the Sense HAT to your Raspberry Pi, you can quickly and easily develop a variety of creative applications, useful experiments, and exciting games.
The Sense HAT contains several helpful environmental sensors: temperature, humidity, pressure, accelerometer, magnetometer, and gyroscope. Additionally, an 8x8 LED matrix is provided with RGB LEDs, which can be used to display multi-color scrolling or fixed information, such as the sensor data. Use the small onboard joystick for games or applications that require user input. In Innovate with Sense HAT for Raspberry Pi, Dr. Dogan Ibrahim explains how to use the Sense HAT in Raspberry Pi Zero W-based projects. Using simple terms, he details how to incorporate the Sense HAT board in interesting visual and sensor-based projects. You can complete all the projects with other Raspberry Pi models without any modifications.
Exploring with Sense HAT for Raspberry Pi includes projects featuring external hardware components in addition to the Sense HAT board. You will learn to connect the Sense HAT board to the Raspberry Pi using jumper wires so that some of the GPIO ports are free to be interfaced to external components, such as to buzzers, relays, LEDs, LCDs, motors, and other sensors.
The book includes full program listings and detailed project descriptions. Complete circuit diagrams of the projects using external components are given where necessary. All the projects were developed using the latest version of the Python 3 programming language. You can easily download projects from the book’s web page. Let’s start exploring with Sense HAT.
Ready to explore the world around you? By attaching the Sense HAT to your Raspberry Pi, you can quickly and easily develop a variety of creative applications, useful experiments, and exciting games.
The Sense HAT contains several helpful environmental sensors: temperature, humidity, pressure, accelerometer, magnetometer, and gyroscope. Additionally, an 8x8 LED matrix is provided with RGB LEDs, which can be used to display multi-color scrolling or fixed information, such as the sensor data. Use the small onboard joystick for games or applications that require user input. In Innovate with Sense HAT for Raspberry Pi, Dr. Dogan Ibrahim explains how to use the Sense HAT in Raspberry Pi Zero W-based projects. Using simple terms, he details how to incorporate the Sense HAT board in interesting visual and sensor-based projects. You can complete all the projects with other Raspberry Pi models without any modifications.
Exploring with Sense HAT for Raspberry Pi includes projects featuring external hardware components in addition to the Sense HAT board. You will learn to connect the Sense HAT board to the Raspberry Pi using jumper wires so that some of the GPIO ports are free to be interfaced to external components, such as to buzzers, relays, LEDs, LCDs, motors, and other sensors.
The book includes full program listings and detailed project descriptions. Complete circuit diagrams of the projects using external components are given where necessary. All the projects were developed using the latest version of the Python 3 programming language. You can easily download projects from the book’s web page. Let’s start exploring with Sense HAT.
An Introduction to RISC-V
RISC-V is an Instruction Set Architecture (ISA) that is both free and open. This means that the RISC-V ISA itself does not require a licensing fee, although individual implementations may do so. The RISC-V ISA is curated by a non-profit foundation with no commercial interest in products or services that use it, and it is possible for anyone to submit contributions to the RISC-V specifications. The RISC-V ISA is suitable for applications ranging from embedded microcontrollers to supercomputers.
This book will first describe the 32-bit RISC-V ISA, including both the base instruction set as well as the majority of the currently-defined extensions. The book will then describe, in detail, an open-source implementation of the ISA that is intended for embedded control applications. This implementation includes the base instruction set as well as a number of standard extensions.
After the description of the CPU design is complete the design is expanded to include memory and some simple I/O. The resulting microcontroller will then be implemented in an affordable FPGA development board (available from Elektor) along with a simple software application so that the reader can investigate the finished design.
Der intelligente digitale Thermostat-Temperaturregler ist ein kleiner Schalterregler (77 x 51 mm), mit dem Sie Ihren eigenen Thermostat erstellen können. Mit seinem NTC-Sensor und seinen LED-Anzeigen können Sie je nach gemessener Temperatur bis zu 10A 220V schalten.
35 Projekte mit Raspberry Pi und Arduino
Das Internet of Things (Internet der Dinge) ist eine unumkehrbare Entwicklung. Wir möchten gerne alles im Haus mit unserem Smartphone oder Tablet erledigen – von Facebook bis Fernsehen, Lampen steuern oder die Heizungstemperatur einstellen.
In diesem Buch stellen wir 35 interessante und nützliche Projekte vor, die demonstrieren, wie Sie selbst ein Internet-of-Things-System anlegen können. Wir gehen auf die Hardware ein, einer perfekten Symbiose von Raspberry Pi und Arduino, und entwickeln die Software, die eine Steuerung über das Internet verwirklicht. Wir setzen dabei WLAN- und Funkverbindungen ein und vermeiden so einen Kabelsalat im Haus.
Wenn Sie die Projekte aufbauen, verfügen Sie über ein vollständiges Internet-of-Things-System, mit dem Sie alles im Haus bedienen, steuern und überwachen können, zum Beispiel ob Post im Briefkasten steckt oder das Auto in der Garage steht. Sie können bequem vom Sofa aus das Licht einschalten oder die Alarmanlage aktivieren/deaktivieren. Durch die ausführlichen Erläuterungen wird es Ihnen ein Leichtes sein, Projekte anzupassen, um zum Beispiel die Kaffeemaschine oder das Fernsehgerät aus der Ferne ein- und auszuschalten. Über den Index finden Sie leicht kreative Projekte, die Ihnen als Ausgangspunkt für eigene Entwicklungen dienen können, mit denen Sie selber alles, was Sie wollen, mit dem Internet verbinden können.
This book is aimed at practising engineers, students and hobbyists. It is intended as a source of reference for hardware and software associated with instrumentation and control engineering. Examples are presented from a range of industries and applications.
Throughout the book, circuit diagrams and software listings are described, typical of many measurement and control applications. The hardware and software designs may be used as a basis for application by the reader.
The book contains examples of PIC, PLC, PAC and PC programming. All code samples are available to download free of charge from the support website.
After an introductory section on control theory and modelling, the text focus is upon software for control system simulation and implementation, with appropriate reference to interfacing, electronic hardware and computing platforms.
Introduction to Control Engineering is a sourcebook of solutions for control system applications!
Learn RC and RL Filters with Hands-On Circuits and Simulation
Introduction to Electronic Filters is your comprehensive guide to understanding, designing, and applying first-order electronic filters using resistors, capacitors, and inductors. Whether you are a student, maker, or educator, this book demystifies the theory behind RC and RL filters and bridges the gap between concepts and real-world applications through simulation and experimentation.
From the basics of frequency response and phase shift to hands-on breadboard builds and Python-based simulations, this book offers a deeply practical learning experience. You will learn to analyse filters using Bode plots and phasors, and explore applications in audio tone shaping, sensor signal conditioning, noise reduction, and power supply filtering.
As you progress, you’ll build, measure, simulate, and tune filters using modern tools like CircuitLab, Python, and the Analog Discovery 3. Each chapter includes thoughtfully crafted activities that reinforce learning by doing – designing filters for specific tasks, simulating dynamic behaviour, and observing how theory translates into performance.
Inside you’ll find:
A clear introduction to the fundamentals of electronic filters
Detailed explanations of RC and RL filters, cutoff frequency, and phase
Guided activities using both simulation and hardware tools
Real-life applications in audio, sensors, power supplies, and more
A beginner-friendly primer on Python and algebra for electronics
Whether you’re working through simulations or experimenting with real components on your workbench, this book will help you develop a solid understanding of electronic filters and their role in practical circuits.
Learn RC and RL Filters with Hands-On Circuits and Simulation
Introduction to Electronic Filters is your comprehensive guide to understanding, designing, and applying first-order electronic filters using resistors, capacitors, and inductors. Whether you are a student, maker, or educator, this book demystifies the theory behind RC and RL filters and bridges the gap between concepts and real-world applications through simulation and experimentation.
From the basics of frequency response and phase shift to hands-on breadboard builds and Python-based simulations, this book offers a deeply practical learning experience. You will learn to analyse filters using Bode plots and phasors, and explore applications in audio tone shaping, sensor signal conditioning, noise reduction, and power supply filtering.
As you progress, you’ll build, measure, simulate, and tune filters using modern tools like CircuitLab, Python, and the Analog Discovery 3. Each chapter includes thoughtfully crafted activities that reinforce learning by doing – designing filters for specific tasks, simulating dynamic behaviour, and observing how theory translates into performance.
Inside you’ll find:
A clear introduction to the fundamentals of electronic filters
Detailed explanations of RC and RL filters, cutoff frequency, and phase
Guided activities using both simulation and hardware tools
Real-life applications in audio, sensors, power supplies, and more
A beginner-friendly primer on Python and algebra for electronics
Whether you’re working through simulations or experimenting with real components on your workbench, this book will help you develop a solid understanding of electronic filters and their role in practical circuits.
There are many so-called 'Arduino compatible' platforms on the market. The ESP8266 – in the form of the WeMos D1 Mini Pro – is one that really stands out. This device includes WiFi Internet access and the option of a flash file system using up to 16 MB of external flash memory. Furthermore, there are ample in/output pins (though only one analogue input), PWM, I²C, and one-wire. Needless to say, you are easily able to construct many small IoT devices!
This book contains the following builds:
A colourful smart home accessory
refrigerator controller
230 V power monitor
door lock monitor
and some further spin-off devices.
All builds are documented together with relevant background information for further study. For your convenience, there is a small PCB for most of the designs; you can also use a perf board. You don’t need to be an expert but the minimum recommended essentials include basic experience with a PC, software, and hardware, including the ability to surf the Internet and assemble PCBs.
And of course: A handle was kept on development costs. All custom software for the IoT devices and PCB layouts are available for free download from at Elektor.com.
TapNLink-Module bieten drahtlose Schnittstellen zur Verknüpfung elektronischer Systeme mit mobilen Geräten und der Cloud. TapNLink stellt eine direkte Verbindung zum Mikrocontroller des Zielsystems her. Es integriert sich in das Zielsystem und wird von diesem mit Strom versorgt. Alle TapNLink-Produkte lassen sich einfach konfigurieren, um den Zugriff verschiedener Benutzertypen auf Daten im Zielsystem zu steuern. TapNLink ermöglicht die schnelle Erstellung von Human Machine Interfaces (HMI), die auf Android-, iOS- und Windows-Mobilgeräten laufen. HMI-Apps lassen sich leicht an verschiedene Benutzer anpassen und können bereitgestellt und aktualisiert werden, um mit den sich ändernden Systemanforderungen und Benutzerbedürfnissen Schritt zu halten.
TapNLink-WLAN-Module können auch so konfiguriert werden, dass sie das Zielsystem dauerhaft mit einem drahtlosen Netzwerk und der Cloud verbinden. Dies ermöglicht eine permanente Protokollierung von Zielsystemdaten und Alarmen.
Merkmale
Drahtlose Kanäle
WLAN 802.11b/g/n
Bluetooth Low Energy (BLE 4.2)
Near Field Communication (NFC) Typ5-Tag (ISO/IEC 15693)
Unterstützte Zielverbindungen: Verbindet sich mit 2 GPIOs des Ziel-Mikrocontrollers und unterstützt:
Serielle Schnittstelle mit Software Secure Serial Port (S3P)-Protokoll
Serielle Schnittstelle mit ARM SWD-Debug-Protokoll.
UART mit Modbus-Protokoll
Unterstützung für mobile Plattformen
HTML5-Web-Apps (Android, iOS)
API für Cordova (Android, iOS, Windows 10)
Java (Android, iOS nativ)
Auto-App-Generator für Android- und iOS-Handys
Sicherheit
Konfigurierbare Zugangsprofile
Konfigurierbare, verschlüsselte Passwörter
AES-128/256 Datenverschlüsselung auf Modulebene
Konfigurierbare sichere Kopplung mit NFC
Abmessungen: 38 mm x 28 mm x 3 mm
Elektrische Eigenschaften
Eingangsspannung: 2,3 V bis 3,6 V
Energieeffizient:
Standby: 100 µA
NFC Tx/Rx: 7 mA
WLAN-Empfang: 110 mA
Wi-Fi-Sende: 280 mA (802.11b)
Temperaturbereich: -20 °C bis +55 °C
Einhaltung
CE (Europa), FCC (USA), IC (Kanada)
ERREICHEN
RoHS
WEEE
Bestellinformationen
Basisteilenummer: TnL-FIW103
Mindestbestellmenge: 20 Module
TapNLink-Module vorqualifiziert, vorprogrammiert und konfigurierbar.
Konfigurations- und Testsoftware IoTize Studio
Software für HMI auf mobilen Geräten (iOS, Android, Windows 10)
IoTize Cloud MQTT-Infrastruktur (Open Source)
Weitere Informationen finden Sie im Datenblatt hier .
Diese Glasfaser-Außenantenne ist für den Empfang von Signalen im 868-MHz-ISM-Band optimiert und unterstützt Technologien wie Sigfox, LoRa, Mesh Networks und Helium. Die Antenne besteht aus einem Halbwellendipol mit einem Gewinn von 4,4 dBi, der in einem Fiberglas-Radom mit einem Montagesockel aus Aluminium gekapselt ist.
Technische Daten
Häufigkeit
868-870 MHz
Antennentyp
Dipol 1/2 Welle
Anschluss
N female
Installationstyp
Mastdurchmesser 35-60 mm (Montagehalterung im Lieferumfang enthalten)
Gewinn
4,4 dBi
SWR
≤1,5
Art der Polarisation
Vertikal
Maximale Leistung
10 W
Impedanz
50 Ohm
Abmessungen
52,5 cm
Rohrdurchmesser
26 mm
Basisantenne
32 mm
Betriebstemperatur
−30°C bis +60°C
Lieferumfang
ISM-Band Antenne (868 MHz)
Masthalterung (zur Montage an einem Mast mit 35 bis 60 mm Durchmesser)
Der Stifthalter des AxiDraw hält den Stift normalerweise parallel zur Vorderseite des vertikalen Stiftschlittens, entweder vertikal oder im 45°-Winkel zur Vertikalen.
Dieser schwere Aluminiumadapter sitzt zwischen der Vorderseite des vertikalen Schlittens und dem Stiftclip und dient dazu, die Stiftspitze um weitere 45° zu drehen, nicht aus der Vertikalen, sondern aus der Parallele zur Vorderseite des vertikalen Schlittens. Dies gibt dem AxiDraw die Möglichkeit, einen Stift im „Rechtshänder“-Griff zu halten, im Gegensatz zur normalen „Mittelhänder“-Position (mangels einer besseren Beschreibung).
Der Rechtshändergriff ermöglicht es, den Stift in einem gleichmäßigen Winkel zu halten, der für die Verwendung mit normalen Stiften, aber auch mit Stub-, Italic-, Parallel- und Keilspitzenstiften geeignet ist.
Kompatibilität
Dieser Adapter ist nur mit Stiftplottern der AxiDraw V3-Familie kompatibel, die den Stift auf einem vertikalen Schlitten mit 2 Löchern montieren. Dies umfasst alle AxiDraw V3/A3- und AxiDraw V3 XLX-Einheiten sowie alle AxiDraw V3-Einheiten, die nach Februar 2017 hergestellt wurden.
I²C ist allgegenwärtig, Sie finden es in Ihrem Telefon, in eingebetteter Elektronik, in allen Mikrocontrollern, Raspberry Pi und Computer-Motherboards. Es ist in einer Vielzahl von Fällen anwendbar, der einzige Nachteil besteht jedoch darin, dass es schwierig sein kann, die ordnungsgemäße Verwendung zu erlernen und mühsames Debuggen zu vermeiden.
Mit diesem Gerät können Sie leichter verstehen, was im Inneren vor sich geht, da I²CDriver über eine übersichtliche Logikanalysator-Anzeige der Signalleitungen sowie eine grafische Dekodierung des I²C-Verkehrs verfügt.
Darüber hinaus wird kontinuierlich eine Adresskarte aller angeschlossenen I²C-Geräte angezeigt. Sobald Sie ein Gerät anschließen, leuchtet es auf der Karte auf. Durch die Strom- und Spannungsüberwachung können Sie elektrische Probleme frühzeitig erkennen. Die mitgelieferten farbcodierten Kabel machen den Anschluss ganz einfach; Es ist kein Pinbelegungsplan erforderlich. Es umfasst eine separate 3,3-V-Versorgung für Ihre Geräte, einen High-Side-Strommesser und programmierbare Pullup-Widerstände für beide I²C-Leitungen.
Dank 3 I²C-Ports können Sie problemlos mehrere Geräte gleichzeitig anschließen.
I²CDriver wird mit Software zur Steuerung geliefert von:
eine GUI
die Befehlszeile
C und C++ mit einer einzigen Quelldatei
Python 2 und 3 mit einem Modul
Sie können I²C-Hardware mit den Ihnen vertrauten PC-Tools steuern und die Entwicklungszeit reduzieren, die erforderlich ist, damit das Gerät das tut, was Sie möchten.
Die Kalibrierung von Geräten wie Beschleunigungsmessern, Magnetometern und Gyroskopen ist viel einfacher und schneller, wenn sie direkt auf dem PC über I²CDriver durchgeführt wird.
Darüber hinaus zeigt das integrierte Display eine Heatmap aller aktiven Netzwerkknoten an. So können Sie in einem I²C-Netzwerk mit mehreren Geräten auf einen Blick erkennen, welche am aktivsten sind. I²CDriver kann den gesamten I²C-Verkehr zurück zum PC leiten. Der Erfassungsmodus von I²CDriver zeichnet jedes Bit zuverlässig in einem umfassenden Protokoll mit Zeitstempel auf. Dies ist sehr hilfreich für Debug, Analyse und Reverse Engineering. Zu den unterstützten Formaten gehören Text, CSV und VCD.
Merkmale
Offene Hardware: Design, Firmware und alle Tools stehen unter BSD-Lizenz
Live-Anzeige: Zeigt Ihnen jederzeit genau, was es gerade tut
Schnelle Übertragung: anhaltende I²C-Übertragungen bei 400 und 100 kHz
USB-Stromüberwachung: USB-Netzspannungsüberwachung zur Erkennung von Versorgungsproblemen, bis zu 0,01 V
Zielstromüberwachung: High-Side-Strommessung des Zielgeräts, bis zu 5 mA
I²C-Pullups: programmierbare I²C-Pullup-Widerstände mit automatischer Abstimmung
Drei I²C-Ports: drei identische I²C-Ports, jeweils mit Strom und I²C-Signalen
Jumper: Farbcodierte Jumper, die in jeder Verpfändungsstufe enthalten sind
3.3-Ausgang: Die Ausgangspegel betragen 3,3 V, alle sind 5 V-tolerant
Unterstützt alle I²C-Funktionen: 7- und 10-Bit-I²C-Adressierung, Clock-Stretching, Bus-Arbitrierung
Robuste Komponenten: Verwendet einen seriellen USB-Adapter von FTDI und einen EFM8-Controller in Automobilqualität von Silicon Labs
Nutzungsberichte: Meldet Betriebszeit, Temperatur und laufendes CRC des gesamten Datenverkehrs
Flexible Steuerung: GUI, Befehlszeile, C/C++ und Python 2/3-Hostsoftware für Windows, Mac und Linux
Einzelheiten
Maximaler Ausgangsstrom: bis zu 470 mA
Gerätestrom: bis zu 25 mA
Abmessungen: 61 mm x 49 mm x 6 mm
Computerschnittstelle: USB 2.0, Micro-USB-Anschluss
Inhalt (I²CDriver Core)
1x I²C-Treiber
3x Satz Verbindungsbrücken
Dieses Display entspricht der Norm Nokia 5110 und ist damit ideal zum Anzeigen von Messwertdaten bzw. Messwertgraphen bei einem Mikrocontroller oder einem Einplatinencomputer. Zusätzlich ist es zu allen Raspberry Pi, Arduino, CubieBoard, Banana Pi und Mikrocontrollern kompatibel – ohne zusätzlichen Aufwand.
Technische Daten
Chipsatz
Philips PCD8544
Schnittstelle
SPI
Auflösung
84 x 48 Pixel
Spannungsversorgung
2,7-3,3 V
Besondere Merkmale
Hintergrundbeleuchtung
Kompatibel mit
Raspberry Pi, Arduino, CubieBoard, Banana Pi und Mikrocontroller
Abmessungen
45 x 45 x 14 mm
Gewicht
14 g
Dieses auf Aluminium basierende Armor Case ist perfekt für Ihren Raspberry Pi 4, wenn er heiß wird, denn es schützt ihn gleichermaßen vor Stößen und Hitze. Die Kanalfräsung kombiniert mit zwei Lüftern bietet beste Kühlleistung. Deshalb ist es auch für extreme Bedingungen geeignet. Ein weiterer Vorteil ist, dass dieses Gehäuse nicht mehr Platz benötigt als der Raspberry Pi selbst und in bestehende Projekte integriert werden kann.
Merkmale
Material: CNC-gefräste Aluminiumlegierung
Kompatibel mit Raspberry Pi 4B
Zusammenbau: 4 mitgelieferte Schrauben verbinden das Gehäuse mit dem Raspberry Pi
Besonderheiten: Großer Kühlkörper und Doppellüfter mit je Ø24 mm, massiver Schutz gegen Hitze und Erschütterungen, kein zusätzlicher Platzbedarf
Verkabelung: Lüfter 5V (Rot) - 5V (Pin4), Lüfter GND (Schwarz) - GND (Pin6)
Lieferumfang: Panzergehäuse "BLOCK ACTIVE", Schrauben, Wärmeleitband
Größe Oberseite: 69 x 56 x 15,5 mm
Größe Unterseite: 87 x 56 x 7,5 mm
Downloads
Handbuch
Das JOY-iT Armor Case BLOCK ist ein robustes Aluminiumgehäuse, das speziell für den Raspberry Pi 5 entwickelt wurde. Es bietet hervorragenden Schutz vor Hitze und Stößen und eignet sich daher für anspruchsvolle Umgebungen. Durch sein kompaktes Design benötigt es keinen zusätzlichen Platz und ermöglicht eine nahtlose Integration in bestehende Projekte.
Das Gehäuse verfügt über einen großen Kühlkörper, um die Kühleffizienz zu verbessern. Die Installation ist unkompliziert, da das Gehäuse mit vier Schrauben (im Lieferumfang enthalten) am Raspberry Pi befestigt wird.
Technische Daten
Material
CNC-gefräste Aluminiumlegierung
Kühlleistung
Leerlauf: ~39°CVolllast: ~75°C
Besonderheiten
Großer Kühlkörper, Schutz vor Stößen und Hitze bei gleichem Volumen wie ohne Gehäuse
Abmessungen (Oberseite)
69 x 56 x 15,5 mm
Abmessungen (Unterseite)
87 x 56 x 7,5 mm
Mit dieser Erweiterungsplatine können Sie einem Raspberry Pi Pico eine RS485- und eine CAN-Schnittstelle hinzufügen.
Das Board bietet außerdem die Möglichkeit, es entweder über einen Standard-USB-C-Anschluss mit 5 V oder über eine Schraubklemme, die eine Spannung von 6 bis 12 V akzeptiert, zu betreiben. Die an der Schraubklemme anliegende Spannung wird durch einen auf der Platine integrierten Spannungswandler auf 5 V reduziert.
Features
Die Stromversorgung kann über einen USB-C-Anschluss mit 5 V oder über eine Schraubklemme erfolgen, die zwischen 6 und 12 V zieht. Im letzteren Fall reduziert ein eingebauter Spannungswandler die Spannung auf 5 V.
Um die Vielseitigkeit und den Funktionsumfang zu erhöhen, wurden die Anschlusspins des Raspberry Pi Pico nach außen geführt.
Das Erweiterungsboard bietet zusätzlich die Möglichkeit der Kommunikation über die RS485- und CAN-Schnittstellen.
Technische Daten
CAN-Schnittstelle
SPI, CAN
RS485-Schnittstelle
Seriell, RS485
Stromversorgung
5 V DC (USB-C)
Schraubklemme
6-12 V DC
Logiklevel
3,3 V
Abschlusswiderstand CAN
120 Ω (kann nach Bedarf aktiviert und deaktiviert werden)
Abschlusswiderstand RS485
120 Ω (kann nach Bedarf aktiviert und deaktiviert werden)
Der Explorer Board ist die einfache und effiziente Möglichkeit, Ihre Raspberry Pi Pico-Projekte zu entwickeln.
Da die wichtigsten Komponenten bereits integriert sind, sparen Sie Zeit und Mühe beim Verkabeln. Das Explorer Board verfügt über eine breite Palette an Interface-Anschlüssen, sodass Sie Ihre Projekte mit einer Vielzahl von Modulen und Geräten verbinden können.
Mit dem integrierten Breadboard lassen sich eigene Projekte schnell aufbauen und realisieren. Dank der Möglichkeit, alle Module einzeln zu- oder abzuschalten, können Sie Ihre Pins, welche zusätzlich separat nach außen geführt sind, jederzeit für andere Projekte nutzen oder auf dem integrierten Breadboard experimentieren.
Features
Schnelles und effizientes Experimentieren mit dem Raspberry Pi Pico
Raspberry Pi Pico direkt aufsteckbar
Alle Module einzeln zu- bzw. abschaltbar
Zusätzlich integriertes Breadboard für eigene Entwicklungen
Technische Daten
Integrierte Module: 4x RGB-LED, Buzzer, Relais, 1,8" TFT-Display, DHT11 Temperatursensor, 4x Button, Breadboard
Schnittstellen: 4x Servo-Motor, SPI, I²C, UART, 5x Krokodilklemmenanschluss
Stromversorgung: 5 V USB-C
Abmessungen: 219 x 110 x 27 mm
Downloads
Handbuch
Examples and libraries
Dieses Multimedia-Gehäuse für alle Raspberry Pi 4-Modelle besticht durch hohe Funktionalität, modernes Design und einer üppigen Ausstattung:
Integrierter IR-Empfänger, steuerbar mit fast allen IR-Fernbedienungen
Steuerbare LED-Beleuchtung
Ein/Aus schalten, Zusatzfunktionen des Raspberry Pi ansteuern
Aktive, leise Kühlung
Werkzeugloser, magnetischer Zusammenbau
Alle Anschlüsse des Raspberry Pi liegen auf der Rückseite
GPIO-Port über separate Klappe erreichbar
Ideal als Multimediaplattform im Wohnzimmer, Desktop-Gerät oder den Einsatz im Digital Signage.
Technische Daten
Material
Acryl
Farbe
Schwarz
Kompatibel
Raspberry Pi 4
Stromversorgung
5 VDC (USB-C)
Mikrocontroller
STM32F030F4P
Infrarotempfänger
TSOP4838
LEDs
4x WS2812Mini
Herausgeführte Anschlüsse
1x USB-C, 1x Aux, 2x microHDMIVom Raspberry Pi: 2x USB-A 3.0, 2x USB-A 2.0, 1x RJ45
Gewicht
280 g
Abmessungen
113 x 100 x 38 mm
Lieferumfang
Multimedia-Gehäuse, Adapter-Board, Steuerungsboard, Aux-Adapterkabel
Downloads
Datenblatt (179,1 KB)
Handbuch (3,6 MB)
Expertenanleitung (6,1 MB)
Firmware v1.0.9-beta (11,2 KB)
Addons for LibreElec 9 (2,6 MB)
Code Examples
Addon - Multimedia Case Configuration
Addon - LED Configuration
Addon - IR Control Configuration
Prepared LibreElec Image
Prepared LibreElec Image 10.BETA
GitHub
Dieses JOY-iT Mikrocontrollerboard eröffnet Ihnen die Welt des Programmierens und bietet ihnen die gleiche Rechenleistung des Meganbsp;2560, aber mit einer geringeren Fläche (Footprint). Es hat zudem viel mehr Anschlüsse als vergleichbare Boards (Arduino Uno). Er wird mit der Arduino-IDE betrieben und die Stromversorgung kann entweder über den USB-Anschluss oder die VIN-Pins erfolgen. Das ermöglicht Ihnen eine sichere Nutzung mit vielen anderen Geräten (z. B. Desktop-PC). Daher ist der Mega 2560nbsp;Pro hochintegrierbar.
Features
Microcontroller
ATmega2560 - 16AU
Speicherplatz
Flash 256 KB, SRAM 8 KB, EEPRom 4 KB
Pinanzahl:Digital I/OPWM OutputAnalog Input
541516
Kompatibel mit
Arduino, Desktop PCs, etc.
Besonderheiten
USB-Port oder Power Pins zur Stromversorgung
Anschlusswandler
MicroUSB zu USB-UART
Abmessungen
55 x 38 mm
Lieferumfang
JOY-iT Mega 2560 Pro mit Pins
Weitere Spezifikationen
Eingangspannung
7 - 9 Volt über Vin, 5 Volt über mUSB
Logik Level
5 Volt
Ausgangsspannung
800 mA
Sapnnungsregulator
LDO (bis zu 12 Voltspitzen)
Frequenz
16 MHz (zum Datenaustausch sind 12 MHz möglich)
Downloads
Handbuch
Die MotoPi-Platine ist eine Erweiterungsplatine zur Ansteuerung und Verwendung von bis zu 16 PWM-gesteuerten 5-V-Servomotoren.
Der eigene Taktgeber auf dem MotoPi sorgt für ein sehr genaues PWM-Signal und somit auch für eine genaue Positionierung.
Die Platine verfügt über 2 Eingänge für eine Spannung von 4,8-6 V, über die zusammen bis zu 11 A eingespeist werden können, so dass eine optimale Versorgung der Motoren stets gewährleistet ist und somit auch größere Projekte mit ausreichend Strom beliefert werden können.
Die Versorgung läuft zentral über den MotoPi, der für jeden Motor separat einen Anschluss für Spannung, Masse und die Steuerleitung zur Verfügung stellt.
Durch den eingebauten Kondensator wird der Strom zusätzlich gepuffert. Hierdurch wird das Einbrechen der Spannung bei kurzzeitiger Mehrbelastung abgemildert, die sonst zum Ruckeln führen könnte. Zusätzlich hat man noch die Möglichkeit, einen weiteren Kondensator anzuschließen.
Der integrierte Analog-Digital-Wandler bietet neue Möglichkeiten wie z. B. die Steuerung über einen Joystick.
Die Ansteuerung und Programmierung der Motoren kann (wie gewohnt) weiterhin bequem über den Raspberry Pi bedient werden. Anleitung und Codebeispiele erlauben auch Einsteigern, schnell Ergebnisse zu erzielen.
Besonderheiten
16 Kanäle, eigener Taktgeber für Servomotoren (PWM), inkl. Analog-Digital-Wandler
Eingang 1
Hohlstecker 5,5 / 2,1 mm, 4,8-6 V, 5 A max.
Eingang 2
Schraubklemme, 4,8-6 V, 6 A max.
Kompatibel mit
Raspberry Pi A+, B+, 2B, 3B
Maße (BxHxT)
65 x 24 x 56 mm
Lieferumfang
Platine, Bedienungsanleitung, Befestigungsmaterial, Retail-Verpackung
Die Motorino-Platine ist eine Erweiterungsplatine zur Ansteuerung und Verwendung von bis zu 16 PWM-gesteuerten 5-V-Servomotoren.
Der eigene Taktgeber auf dem Motorino sorgt für ein sehr genaues PWM-Signal und somit eine genaue Positionierung.
Die Platine verfügt über 2 Eingänge für Spannung von 4,8-6 V, über die zusammen bis zu 11 A eingespeist werden können, sodass eine optimale Versorgung der Motoren stets gewährleistet ist und somit auch größere Projekte mit ausreichend Strom beliefert werden können.
Die Versorgung läuft zentral über den Motorino, der für jeden Motor separat einen Anschluss für Spannung, Masse und die Steuerleitung zur Verfügung stellt.
Durch den eingebauten Kondensator wird der Strom zusätzlich gepuffert, hierdurch wird das Einbrechen der Spannung bei kurzzeitiger Mehrbelastung reduziert, die sonst zum Ruckeln führen könnte. Zusätzlich hat man noch die Möglichkeit, einen weiteren Kondensator anzuschließen.
Die Ansteuerung und Programmierung der Motoren kann (wie gewohnt) weiterhin bequem über den Arduino bedient werden. Anleitung und Codebeispiele erlauben auch Einsteigern, schnell Ergebnisse zu erzielen.
Besonderheiten
16 Kanäle, eigener Taktgeber für Servomotoren (PWM)
Eingang 1
Hohlstecker 5,5 / 2,1 mm , 4,8-6 V / 5 A max
Eingang 2
Schraubklemme, 4,8-6 V / 6 A max
Kommunikation
16 x PWM
Kompatibel mit
Arduino Uno, Mega und viele weitere Mikrovontroller mit Arduino-kompatiblem Pinout
Maß (BxHxT)
69 x 24 x 56 mm
Lieferumfang
Platine, Bedienungsanleitung, Retail-Verpackung
Wide Range Stromversorgung für Raspberry Pi
Mit dem PiEnergy Mini können Sie Ihren Raspberry Pi mit einer Spannung von 6 bis 36 V DC betreiben. Über den auf dem Board integrierten Knopf können Sie Ihren Raspberry Pi sowohl hoch- als auch herunterfahren.
Die Kommunikation mit dem Raspberry Pi läuft über GPIO4, diese Verbindung kann aber auch durch Entfernen eines Widerstands durchtrennt werden, um den Pin frei zu verwenden. Durch das ultraflache Design ist die Verwendung auch in Verbindung mit vielen Gehäusen möglich. Die Stiftleiste ist beiliegend und nicht angelötet, um den Aufbau noch flacher zuhalten.
Technische Daten
Eingangsspannung
6 bis 36 V DC
Ausgangsspannung
5,1 V
Ausgangsstrom
Bis zu 3 A (aktive Belüftung bei zusätzlich angeschlossenen Verbrauchern empfohlen)
Kabelquerschnitt am Spannungseingang
0,2-0,75 mm²
Schnittstelle zum Raspberry Pi
GPIO4
Mikrocontroller
ATtiny5
Weitere Anschlüsse
5 V Lüfteranschluss (2-Pin/2,54 mm)Lötpads für externen Ein-/Ausschalter
Kompatibel mit
Raspberry Pi 3, 4, 5
Abmessungen
23 x 56 x 11 mm
Lieferumfang
Board mit montiertem Kühlkörper
Stiftleiste (2x5)
Abstandshalter, Schraube, Mutter
Downloads
Datenblatt
Anleitung
Der 301T Fingerabdrucksensor ist durch den integrierten Chip in der Lage, Bilder zu sammeln und Algorithmen zu berechnen. Eine weitere bemerkenswerte Funktion des Sensors ist, dass er Fingerabdrücke unter verschiedenen Bedingungen, wie z. B. Feuchtigkeit, Lichtbeschaffenheit oder Veränderungen der Haut, erkennen kann. Dies bietet ein sehr breites Spektrum an Anwendungsmöglichkeiten, unter anderem zur Sicherung von Schlössern und Türen. Der Chip kann Daten über UART, TTL seriell und USB an den angeschlossenen Controller senden.
Technische Daten
Modell
JP2000 Sensor
Chip
32 Bit ARM Cortex-M3
Chip-Speicher
96 kB RAM, 1 MB Flash
Versorgungsspannung
4,2 - 6,0 V
Arbeitsstromverbrauch
Durchschnittlich: 40 mASpitze: 50 mA
Logiklevel
3,3 / 5 V TTL Logic
Fingerabdruckspeicherkapazität
3000 Abdrücke
Abgleichmethode
1:N Identifikation1:1 Verifizierung
Anpassbare Sicherheitsstufe
Stufe 1 - 5(Standardstufe: 3)
Falschakzeptanzrate
(auf Sicherheitsstufe 3)
Falschablehnungsrate
(auf Sicherheitsstufe 3)
Antwortzeit
Vorberechnung: Abgleich:
Baudratenunterstützung
9600 - 921600
UART-Übertragung
Keine Parität, Stopp-Bit: 1
Abmessungen
42 x 19 x 8 mm
Lieferumfang
1x Fingerabdrucksensor COM-FP-R301T
1x Kabel
Downloads
Datenblatt
Handbuch