Über 45 Projekte für den legendären 555-Chip (und den 556, 568)
Der 555-Timer-IC, ursprünglich um 1971 von Signetics eingeführt, gehört zweifellos zu den beliebtesten analogen integrierten Schaltkreisen, die je produziert wurden. Ursprünglich als „IC-Zeitmaschine“ bezeichnet, wurde dieser Chip über Jahrzehnte hinweg in zahlreichen zeitgesteuerten Projekten verwendet. Dieses Buch befasst sich mit der Entwicklung von Projekten, die auf dem 555-Timer-IC basieren. Es werden über 45 vollständig getestete und dokumentierte Projekte vorgestellt. Alle Projekte wurden vom Autor selbst getestet, indem sie einzeln auf einem Breadboard aufgebaut wurden. Es sind keine Programmierkenntnisse erforderlich, um die im Buch vorgestellten Projekte nachzubauen oder zu verwenden. Allerdings ist es definitiv hilfreich, über grundlegende Elektronikkenntnisse und den Umgang mit einem Breadboard zum Aufbau und Testen elektronischer Schaltungen zu verfügen. Einige der Projekte im Buch sind:
Abwechselnd blinkende LEDs
Veränderung der Blinkrate von LEDs
Touchsensor-Ein/Aus-Schalter
Ein-/Ausschaltverzögerung
Lichtabhängiger Ton
Dunkel-Hell-Lichtschalter
Tonburst-Generator
Langzeit-Timer
Lauflichter
LED-Roulette-Spiel
Ampelsteuerung
Durchgangsprüfer
Elektronisches Schloss
Kontaktentprellung für Schalter
Spielzeug-Elektronikorgel
Mehrfachsensor-Alarmsystem
Metronom
Spannungsmultiplizierer
Elektronischer Würfel
7-Segment-Display-Zähler
Motorsteuerung
7-Segment-Display-Würfel
Elektronische Sirene
Verschiedene andere Projekte
Die im Buch vorgestellten Projekte können von den Lesern für ihre eigenen Anwendungen modifiziert oder erweitert werden. Elektronikingenieur-Studenten, Leute, die gerne kleine elektronische Schaltungen entwerfen, sowie Elektronik-Hobbyisten werden die Projekte im Buch sicher lehrreich, unterhaltsam, interessant und nützlich finden.
Einstieg in die FPGA-Programmierung mit VHDL und MAX1000-Board
Entdecke die faszinierende Welt der FPGA-Programmierung mit dem Buch 'FPGA für alle – Einstieg in die FPGA-Programmierung mit VHDL und MAX1000-Board' von Erik Bartmann. Mit 23 Projekten findet der Leser einen Einstieg in die komplexe FPGA-Programmierung. Zuvor vermittelt der Autor die digitaltechnischen Grundlagen, um diese Form der Programmierung verstehen zu können. Am Ende der fast 500 Buchseiten ist der ambitionierte Leser in der Lage, erste eigene FPGA-Anwendungen zu erstellen. Das Buch ist praxisorientiert und bietet eine Vielzahl von Beispielprojekten, Übungen und Simulationen. Erik Bartmann führt in die Hardwarebeschreibungssprache VHDL ein und zeigt dem Leser die Software-Werkzeugkette und den Workflow auf, der bei der FPGA-Programmierung so ganz anders ist als bei der prozeduralen Programmierung.
Im Buch kommt das preiswerte, aber leistungsstarke FPGA-Board MAX1000 zum Einsatz. Der preisgünstige Bezug des MAX1000-FPGA-Boards ist über den Bombini-Verlag gewährleistet. Alle Projekte im Buch werden mit diesem FPGA-Board durchgeführt. Der Schwerpunkt des Buches liegt auf der Programmierung mit VHDL, einer weit verbreiteten HDL-Sprache für die Entwicklung von digitaler Logik.
Der Leser wird die grundlegenden Strukturelemente von VHDL kennenlernen, wie Variablen und Signale, und das erlernte Wissen direkt in praktischen Projekten anwenden. Das Buch führt durch verschiedene FPGA-Projekte, darunter die Ansteuerung von LEDs, Abfrage eines Tasters, Design von Addierschaltungen, Simulation von Schaltungen, Pulsweiten-Modulation, Steuerung eines Servo-Motors und vieles mehr.
Zusätzlich bietet das Buch Einblicke in fortgeschrittene Themen wie Schaltungssynthese, Multiplexer, Wertevergleich, Arbeit mit negativen Zahlen, Ansteuerung einer LED-Matrix, analoge Eingänge und Serielle Kommunikation. Es enthält auch einen Abschnitt über VHDP sowie eine Einführung in den I²C-Bus und die Simulation eines Arduinos auf dem FPGA-Board.
Merkmale
Nordic nRF52840 Bluetooth LE-Prozessor – 1 MB Flash, 256 KB RAM, 64 MHz Cortex M4-Prozessor
1,3″ 240×240 Farb-IPS-TFT-Display für hochauflösende Texte und Grafiken
Stromversorgung über jede 3-6-V-Batteriequelle (interner Regler und Schutzdioden)
Zwei A/B-Benutzertasten und eine Reset-Taste
ST Micro-Serie 9-DoF-Bewegung – LSM6DS33 Accel/Gyro + LIS3MDL-Magnetometer
APDS9960 Näherungs-, Licht-, Farb- und Gestensensor
PDM Mikrofon-Tonsensor
SHT Luftfeuchtigkeit
BMP280 Temperatur und Luftdruck/Höhe RGB-NeoPixel-Anzeige-LED
2 MB interner Flash-Speicher für Datenprotokollierung, Bilder, Schriftarten oder CircuitPython-Code
Summer/Lautsprecher zum Abspielen von Tönen und Pieptönen
Zwei helle weiße LEDs an der Vorderseite zur Beleuchtung/Farberkennung
Qwiic / STEMMA QT-Anschluss zum Hinzufügen weiterer Sensoren, Motorsteuerungen oder Displays über I²C. Sie können GROVE I²C-Sensoren mithilfe eines Adapterkabels anschließen.
Programmierbar mit Arduino IDE oder CircuitPython
Diese Schreibtischlampe ist ideal für Ihren Arbeitsplatz. Mit der 5-Zoll großen 5D-Linse gelingen feinste Arbeiten. Die Lampe verfügt über 80 integrierte LEDs.
Features
Linsengröße: 5 Zoll
Linsenmaterial: Glas
Dioptrie: 5D
Lichtquelle: T5 22 W fluoreszierende Energiesparlampe (80 Stück LED)
Standardmontage: Tischfuß
Spannung: 220-240 V
Leistung: 22 W
Die SQ-Serie der berührungslosen PCBite-Sonden von Sensepeek ist isoliert, wird mit farbcodierten Kabelhaltern geliefert und hat einen niedrigeren Schwerpunkt, was sie im Vergleich zur ursprünglichen SP-Serie der Sonden noch stabiler macht. Alle beliebten Funktionen der berührungslosen Messung, austauschbare feinrastende Testnadeln und das minimalistische Design werden beibehalten, um herkömmliche Sonden in Standardgröße und handgehaltene Sonden überflüssig zu machen.
Features
Alle berührungslosen Sonden von Sensepeek ermöglichen schnelle Messungen oder lange Trigger-Sessions.
Kein Löten von Drähten, um Ihre Sonde anzuschließen, oder komplizierte Werkzeuge zur Einrichtung erforderlich. Platzieren Sie einfach die Probennadel an einem beliebigen Prüfpunkt oder Bauteil im Signalpfad und lassen Sie sie los.
Spart Zeit und Frustration bei Entwicklung, Verifizierung und Reparaturen. Das minimalistische Design und die federbelastete Testnadel ermöglichen gleichzeitige Messungen an feinrastenden Komponenten und benachbarten Signalen.
Sowohl die Länge als auch das Gewicht der SQ-Sonden sind perfekt ausbalanciert, um sie mit PCBite PCB-Haltern und Basisplatte zu verwenden, was für die berührungslose Funktion unerlässlich ist.
Der Sondenhalter verfügt über einen leistungsstarken Magneten in der Basis, wie bei allen PCBite-Sonden und -Haltern, wodurch die Sonde einfach platziert und neu positioniert werden kann.
Die SQ-Serie der Sonden kann auch ohne den Sondenhalter von Hand verwendet werden, da sie über einen isolierten Griff verfügen. Ihr volles Potenzial wird jedoch bei berührungsloser Messung ausgeschöpft.
Lieferumfang
2x SQ10-Sonden und Stift-Tastnadeln (rot/schwarz)
2x Banane zu Dupont-Testkabel (rot/schwarz)
1x Satz Kabelhalter (rot/schwarz)
2x zusätzliche Testnadeln
Downloads
Benutzerhandbuch
Das Set besteht aus 86 Teilen. Dies sind ein Mega 2560 Mikrocontroller-Board, 2 Breadboards, ein USB-Kabel, ein Batteriehalter, eine IR-Fernbedienung, eine 4-stellige Segmentanzeige, 2x 1-stellige Segmentanzeigen, eine 8x8 LED-Matrix, ein Potentiometer, eine RGB-LED, 5 blaue LEDs, 5 gelbe LEDs, 5 rote LEDs, 4 Tasten, ein Temperatursensor (LM35), 2 Kippschalter, ein IR-Empfänger, ein aktiver Summer, ein passiver Summer, 3 Fotowiderstände, ein Flammensensor, 18 Widerstände (5x 1 kΩ, 8x 220 Ω, 5x 10 kΩ), ein Schieberegister (SN74HC595N) und 30 Kabel.MerkmaleModelMega 2560 Learning KitMikrocontrollerATmega 2560 R3Projekte20 verschiedene ProjekteAnleitungInklusive Projekthandbuch von 63 Seiten als Download und einer gedruckten KurzanleitungSpecificationsEingangsspannung7-12 VEingangsspannung (max.)6-20 VDigitale IO54 (14 with PWM)Analoge IO16DC Current IO40 mADC Current 3.3 V50 mASpeicher256 kB (8 kB Bootloader)SRAM8 kBEEPROM4 kBClock Speed16 MHzAbmessungen11.52 x 53,3 mm
Das FR01D (2-in-1) Wärmebildkamera und Multimeter ist eine kompakte und leichte Lösung, die Diagnose- und Wartungsaufgaben erleichtert. Mit der Ein-Klick-Funktion können Sie mühelos zwischen dem Wärmebild- und dem Multimeter-Modus wechseln und haben so zwei wichtige Werkzeuge in einem tragbaren Gerät.
Das Multimeter ist in der Lage, Gleich- und Wechselspannung, Widerstand, Diodenprüfungen, Durchgangsprüfungen und Kapazität zu messen.
Das FR01D verfügt über einen 2,8" Touchscreen mit einer Auflösung von 320 x 480 Pixeln. Das Gerät wird von einem integrierten wiederaufladbaren Lithium-Akku betrieben und kann über USB aufgeladen werden.
Mit dem FR01D können Sie Platinen prüfen und warten, Netzteile überprüfen, elektronische Geräte reparieren und Haushaltsgeräte überholen. Seine kompakte Größe, Multifunktionalität und Benutzerfreundlichkeit machen das FR01D zum idealen Begleiter für Elektroniker und Wartungstechniker.
Allgemeine technische Daten
Displaygröße
2,8" (320 x 480)
Touchscreen
Resistiv
Datenübertragung
USB-C
Bildspeicherformat
BMP
Batterie
Li-Ionen-Akku
Lagertemperatur
−20°C~60°C
Betriebstemperatur
0°C~50°C
Betriebsfeuchtigkeit
<85% RH
Abmessungen
134 x 69 x 25 mm
Gewicht
130 g
Wärmebildkamera (Technische Daten)
Sensor
Vanadiumoxid (VOx)
Bildaufnahmehäufigkeit
25 Hz
Wärmebildpixel
192 x 192
Sichtfeld (FOV)
50,0°(H) x 50°(V) / 72,1°(T)
Temperaturbereich
–20°C bis +550°C
Gain-Modus
Auto
Genauigkeit
±2°C oder ±2%
Messauflösung
0,1°C
Multimeter (Technische Daten)
DC-Eingangsspannung (max.)
1000 V
AC-Eingangsspannung (max.)
750 V
Widerstand (max.)
99,99 MΩ
Kapazität (max.)
99,99 mF
Einschaltdauertestbereich
0,1% ~ 99,9%
Diodentestbereich
0 V ~ 3 V
Kontinuitätstest
999,9 Ω
Display
9999 Counts (Aktualisierung 3x pro Sekunde)
Accuracy
Funktion
Bereich
Auflösung
Genauigkeit
AC-Spannung
400 mV
0.1 mV
2% +3
9.999 V
0.001 V
1.0% +3
99.99 V
0.01 V
999.9 V
0.1V
DC-Spannung
400 mV
0.1 mV
2% +3
9.999 V
0.001 V
1.0% +3
99.99 V
0.01 V
999.9 V
0.1 V
Widerstand
999.9 Ω
0.1 Ω
0.5% +3
9.999 KΩ
0.001 kΩ
99.99 KΩ
0.01 kΩ
999.9 KΩ
0.1 kΩ
9.999 MΩ
0.001 MΩ
99.99 MΩ
0.01 MΩ
1.5% +3
Diodentest
3.000 V
0.001 V
10%
Kapazität
9.999 nF
0.001 nF
2% +5
99.99 nF
0.01 nF
999.9 nF
0.1 nF
9.999 uF
0.001 uF
99.99 uF
0.01 uF
999.9 uF
0.1 uF
9.999 mF
0.001 mF
5% +5
99.99 mF
0.01 mF
Lieferumfang
1x FR01D Wärmebildkamera & Multimeter
2x Prüfkabel
1x USB-Kabel
1x Manual
Zusätzlich unterstützt dieser u-blox-Empfänger I2C (u-blox nennt dies Display Data Channel), was ihn perfekt für die Qwiic-Kompatibilität macht, so dass wir unsere kostbaren UART-Ports nicht verbrauchen müssen. Da wir unser praktisches Qwiic-System verwenden, ist kein Löten erforderlich, um es mit dem Rest des Systems zu verbinden. Dennoch haben wir die Pins im 0,1'-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Das NEO-M9N-Modul erkennt Jamming- und Spoofing-Ereignisse und kann diese an den Host melden, so dass das System auf solche Ereignisse reagieren kann. Im NEO-M9N-Modul ist ein SAW-Filter (Surface Acoustic Wave) in Kombination mit einem LNA (Low Noise Amplifier) im HF-Pfad integriert, der einen normalen Betrieb auch bei starken HF-Störungen ermöglicht.
U-blox-basierte GPS-Produkte sind mit dem beliebten, aber dichten Windows-Programm namens u-centre konfigurierbar. Viele verschiedene Funktionen können auf dem NEO-M9N konfiguriert werden: Baudraten, Aktualisierungsraten, Geofencing, Spoofing-Erkennung, externe Interrupts, SBAS/D-GPS, etc. All dies kann innerhalb der SparkFun Arduino Library vorgenommen werden!
Das SparkFun NEO-M9N GPS Breakout ist außerdem mit einem On-Board-Akku ausgestattet, der die RTC des NEO-M9N mit Strom versorgt. Dadurch wird die Zeit bis zum ersten Fix von einem Kaltstart (~24s) auf einen Warmstart (~2s) reduziert. Die Batterie hält die RTC und die GNSS-Orbitdaten auch ohne Stromzufuhr für eine lange Zeit aufrecht.
Features
Integrierter U.FL-Anschluss zur Verwendung mit einer Antenne Ihrer Wahl
92-Kanal GNSS-Empfänger
1,5 m horizontale Genauigkeit
25 Hz maximale Aktualisierungsrate (4 gleichzeitige GNSS)
Time-To-First-Fix:
Kalt: 24 s
Heiß: 2 s
Max. Höhe: 80.000 m
Max G: ≤ 4
Max Geschwindigkeit: 500 m/s
Geschwindigkeitsgenauigkeit: 0,05 m/s
Kursgenauigkeit: 0,3 Grad
Zeitimpulsgenauigkeit: 30 ns
3,3 VCC und E/A
Stromverbrauch: ~31 mA Tracking GPS+GLONASS
Software-konfigurierbar
Geofencing
Kilometerzähler
Spoofing-Erkennung
Externer Interrupt
Pin-Steuerung
Low Power Modus
Viele andere!
Unterstützt NMEA-, UBX- und RTCM-Protokolle über UART- oder I2C-Schnittstellen
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Building a GPS System
Datasheet (NEO-M9N)
Product Summary
Integration Manual
u-blox Protocol Specification
NEO-M9M Documents & Resources
u-center Software
SparkFun u-blox GNSS Arduino Library
GitHub Hardware Repo
Die SQ-Serie der handsfree PCBite-Sonden von Sensepeek ist isoliert, wird mit farbcodierten Kabelhaltern geliefert und hat einen niedrigeren Schwerpunkt, was sie im Vergleich zur ursprünglichen SP-Serie der Sonden noch stabiler macht. Alle beliebten Funktionen der berührungslosen Messung, des austauschbaren Feinraster-Federkugelteststifts und des minimalistischen Designs wurden beibehalten, um herkömmliche Sonden in Standardgröße und Handheld-Sonden überflüssig zu machen.
Funktionen
Alle berührungslosen Sonden von Sensepeek ermöglichen schnelle Messungen oder lange Trigger-Sitzungen.
Kein Löten von Drähten zur Verbindung Ihrer Sonde oder komplizierte Werkzeuge zum Einrichten mehr erforderlich. Positionieren Sie einfach die Sonde auf einem beliebigen Prüfpunkt oder Bauteil im Signalpfad und lassen Sie sie los.
Spart Zeit und Frustration bei Entwicklung, Verifizierung und Reparaturen.
Das minimalistische Design und die federbelastete Testnadel ermöglichen gleichzeitige Messungen an eng beieinander liegenden Komponenten und benachbarten Signalen.
Sowohl die Länge als auch das Gewicht der SQ-Sonden sind perfekt ausbalanciert und können mit den PCBite-PCB-Haltern und der Basisplatte verwendet werden, was für die berührungslose Funktion unerlässlich ist.
Der Sondenhalter ist mit einem starken Magneten in der Basis ausgestattet, wie bei allen PCBite-Sonden und -Haltern, was das Platzieren und Neupositionieren der Sonde erleichtert.
Die SQ-Serie von Sonden kann auch ohne den Sondenhalter von Hand verwendet werden, da sie über einen isolierten Griff verfügen, ihr volles Potenzial wird jedoch bei der berührungslosen Messung genutzt.
Im Lieferumfang enthalten
4x SQ10-Sonden und Pin-Testnadeln (schwarz)
2x Banane-zu-Dupont-Testdrähte (rot/schwarz)
5x Dupont-zu-Dupont-Testdrähte
1x Satz Kabelhalter (4 Farben)
4x zusätzliche Testnadeln
Downloads
Benutzerhandbuch
Der Raspberry Pi 5 verfügt über zwei vierspurige MIPI-Anschlüsse, von denen jeder entweder eine Kamera oder ein Display unterstützen kann. Diese Anschlüsse verwenden dasselbe 22-polige "Mini"-FPC-Format mit 0,5 mm Raster wie das Compute Module Development Kit und erfordern Adapterkabel für den Anschluss an die 15-poligen "Standard"-Anschlüsse mit 1 mm Raster an aktuellen Raspberry Pi Kamera- und Display-Produkten.
Diese Mini-zu-Standard-Adapterkabel für Kameras und Displays (beachten Sie, dass ein Kamerakabel nicht mit einem Display verwendet werden sollte und umgekehrt) sind in den Längen 200 mm, 300 mm und 500 mm erhältlich.
Dieses Display entspricht der Norm Nokia 5110 und ist damit ideal zum Anzeigen von Messwertdaten bzw. Messwertgraphen bei einem Mikrocontroller oder einem Einplatinencomputer. Zusätzlich ist es zu allen Raspberry Pi, Arduino, CubieBoard, Banana Pi und Mikrocontrollern kompatibel – ohne zusätzlichen Aufwand.
Technische Daten
Chipsatz
Philips PCD8544
Schnittstelle
SPI
Auflösung
84 x 48 Pixel
Spannungsversorgung
2,7-3,3 V
Besondere Merkmale
Hintergrundbeleuchtung
Kompatibel mit
Raspberry Pi, Arduino, CubieBoard, Banana Pi und Mikrocontroller
Abmessungen
45 x 45 x 14 mm
Gewicht
14 g
Das FNIRSI CTG-20 ist ein Schichtdickenmessgerät zur Messung der Dicke galvanischer Beschichtungen oder Beschichtungen auf Metalloberflächen. Es kann nichtmagnetische Beschichtungen (z. B. Farbe) auf magnetischen Materialien wie Stahl oder Eisen sowie Beschichtungen auf nichtmagnetischen Materialien wie Aluminium genau messen.
Ausgestattet mit einer eingebauten Präzisionssonde und einer wiederaufladbaren Lithiumbatterie erkennt das Gerät automatisch Substrateigenschaften und bestimmt die Beschichtungsdicke mithilfe elektromagnetischer Induktion und Wirbelstromeffekte. Dieses robuste Instrument liefert schnelle und hochpräzise Messungen und eignet sich daher ideal für Anwendungen in der Fertigung, der chemischen Industrie, der Automobilbranche und anderen Prüfbereichen.
Technische Daten
Messbereich
0-1400 μm
Genauigkeit
±3% +2 μm
Auflösungsverhältnis
0,1 μm
Kalibrierung
Nullpunktkalibrierung, Mehrpunktkalibrierung
Einheit
μm, mil
Minimaler konvexer Krümmungsradius
5 mm
Minimaler konvexer Krümmungsradius
25 mm
Mindestmessbereichsdurchmesser
20 mm
Batterie
600 mAh Lithiumbatterie
Ladeschnittstelle
USB-C
Funktionen
Datenspeicherung, drehbarer Bildschirm, Kittpulvertest, automatische Abschaltung
Abmessungen
115 x 48 x 18 mm
Gewicht
83 g
Lieferumfang
1x FNIRSI CTG-20 Schichtdickenmessgerät
1x USB-Kabel
1x Manual
Downloads
Manual
Das SparkFun GPS-RTK2 legt die Messlatte für hochpräzises GPS höher und ist das neueste in einer Reihe von leistungsstarken RTK-Karten mit dem ZED-F9P-Modul von u-blox. Das ZED-F9P ist ein Spitzenmodul für hochgenaue GNSS- und GPS-Ortungslösungen, einschließlich RTK mit einer dreidimensionalen Genauigkeit von 10 mm. Mit dieser Karte werden Sie in der Lage sein, die X-, Y- und Z-Position Ihres (oder eines beliebigen Objekts) innerhalb der Breite Ihres Fingernagels zu bestimmen! Das ZED-F9P ist einzigartig, da es sowohl als Rover als auch als Basisstation eingesetzt werden kann. Durch die Verwendung unseres praktischen Qwiic-Systems ist kein Löten erforderlich, um ihn mit dem Rest Ihres Systems zu verbinden. Dennoch haben wir die Pins im 0,1"-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Wir haben sogar eine wiederaufladbare Backup-Batterie eingebaut, um die neueste Modulkonfiguration und Satellitendaten bis zu zwei Wochen lang verfügbar zu halten. Diese Batterie hilft beim "Warm-Start" des Moduls und verkürzt die Zeit bis zur ersten Reparatur drastisch. Das Modul verfügt über einen "Survey-in"-Modus, der es ermöglicht, das Modul als Basisstation zu verwenden und RTCM 3.x-Korrekturdaten zu erzeugen. Die Konfigurationsmöglichkeiten des Moduls
Die Anzahl der Konfigurationsmöglichkeiten des ZED-F9P ist unglaublich! Geofencing, variable I2C-Adresse, variable Update-Raten, sogar die hochgenaue RTK-Lösung kann auf 20Hz erhöht werden. Der GPS-RTK2 hat sogar fünf Kommunikationsanschlüsse, die alle gleichzeitig aktiv sind: USB-C (der sich als COM-Port enumeriert), UART1 (mit 3,3V TTL), UART2 für den RTCM-Empfang (mit 3,3V TTL), I2C (über die beiden Qwiic-Anschlüsse oder ausgebrochene Pins) und SPI.
Sparkfun hat außerdem eine umfangreiche Arduino-Bibliothek für u-blox-Module geschrieben, um das GPS-RTK2 einfach über das Qwiic Connect System auszulesen und zu steuern. Lassen Sie NMEA hinter sich! Verwenden Sie eine viel leichtere binäre Schnittstelle und gönnen Sie Ihrem Mikrocontroller (und seinem einen seriellen Port) eine Pause. Die SparkFun Arduino-Bibliothek zeigt, wie man Breitengrad, Längengrad, sogar Kurs und Geschwindigkeit über I2C auslesen kann, ohne dass ständige serielle Abfragen nötig sind.
Features
Gleichzeitiger Empfang von GPS, GLONASS, Galileo und BeiDou
Empfang der Bänder L1C/A und L2C
Spannung: 5 V oder 3,3 V, aber alle Logik ist 3,3 V
Strom: 68 mA - 130 mA (variiert mit Konstellationen und Tracking-Status)
Zeit bis zum ersten Fix: 25 s (kalt), 2 s (heiß)
Max Navigation Rate:
PVT (Basisortung über UBX-Binärprotokoll) - 25 Hz
RTK - 20 Hz
Raw - 25 Hz
Horizontale Positionsgenauigkeit:
2,5 m ohne RTK
0,010 m mit RTK
Max. Höhe: 50k m
Max. Geschwindigkeit: 500 m/s
Gewicht: 6,8 g
Abmessungen: 43,5 mm x 43,2 mm
2 x Qwiic-Stecker
Der Raspberry Pi Monitor ist ein 15,6" Full-HD-Computerdisplay. Es ist benutzerfreundlich, vielseitig, kompakt und erschwinglich und der perfekte Desktop-Display-Begleiter für Raspberry Pi-Computer und andere Geräte.
Mit integriertem Audio über zwei nach vorne gerichtete Lautsprecher, VESA- und Schraubmontagemöglichkeiten sowie einem integrierten winkelverstellbaren Ständer eignet sich der Raspberry Pi Monitor ideal für den Desktop-Einsatz oder für die Integration in Projekte und Systeme. Die Stromversorgung kann direkt über einen Raspberry Pi oder über ein separates Netzteil erfolgen.
Features
15,6" Full HD 1080p IPS-Display
Integrierter winkelverstellbarer Ständer
Integriertes Audio über zwei nach vorne gerichtete Lautsprecher
Audioausgang über 3,5-mm-Buchse
HDMI-Eingang in voller Größe
VESA- und Schraubbefestigungsoptionen
Lautstärke- und Helligkeitssteuerungstasten
USB-C Stromkabel
Technische Daten
Display
Bildschirmgröße: 15,6 Zoll, 16:9-Verhältnis
Panel-Typ: IPS-LCD mit Anti-Glare-Beschichtung
Anzeigeauflösung: 1920 x 1080
Farbtiefe: 16,2M
Helligkeit (typisch): 250 Nits
Farbraumabdeckung: 45%
Blickwinkel: 80°
Stromversorgung
1,5 A/5 V
Kann direkt über einen Raspberry Pi USB-Anschluss (max 60% Helligkeit, 50% Lautstärke) oder über ein separates Netzteil (max 100% Helligkeit, 100% Lautstärke) mit Strom versorgt werden.
Konnektivität
Standard-HDMI-Anschluss (1.4-kompatibel)
3,5-mm-Stereo-Kopfhöreranschluss
USB-C (Stromeingang)
Audio
2x 1,2 W integrierte Lautsprecher
Unterstützung für Abtastraten von 44,1 kHz, 48 kHz und 96 kHz
Downloads
Datasheet
Merkmale
Dual-Core 64-Bit RISC-V RV64IMAFDC (RV64GC) CPU / 400 MHz (normal)
Duale unabhängige FPU mit doppelter Präzision
8 MB On-Chip-SRAM mit 64 Bit Breite
Neuronaler Netzwerkprozessor (KPU) / 0,8 Tops
Feldprogrammierbares IO-Array (FPIOA)
AES, SHA256-Beschleuniger
Direct Memory Access Controller (DMAC)
Micropython-Unterstützung
Unterstützung der Firmware-Verschlüsselung
Onboard-Hardware:
Blitz: 16M Kamera: OV7740
2x Knöpfe
Statusanzeige-LED
Externer Speicher: TF-Karte/Micro SD
Schnittstelle: HY2.0/kompatibel mit GROVE
Anwendungen
Gesichtserkennung/-erkennung
Objekterkennung/-klassifizierung
Ermitteln Sie die Größe und Koordinaten des Ziels in Echtzeit
Erhalten Sie den Typ des erkannten Ziels in Echtzeit
Formerkennung, Videorecorder
Inbegriffen
1x UNIT-V (einschließlich 20 cm 4P-Kabel und USB-C-Kabel)
Wenn Sie nach einer Möglichkeit suchen, Ihren Raspberry Pi kühl zu halten, dann ist dieser Küker die ideale Möglichkeit dafür. Der aktive Lüfter ist nach dem Aufstecken auf den 5 V und GPIO-Pin sofort einsatzbereit. Der Kühler ist kompatibel zu allen Raspberry Pis und eignet sich ideal, um diesen auch unter Volllast zu kühlen.
Spannung: 5 V
Strom: 0,2 A
Abmessungen: 30 x 30 x 7 mm
Mit diesem Buch erweitert der Leser seine Mikrocontroller-Kenntnisse auf Grund eigener Erfahrungen und Erfolgserlebnisse und wird dazu noch ganz nebenbei in die Welt des Arduino und seiner Entwicklungsumgebung eingeführt. Am Ende dieses vergnüglichen und fast spielerischen Lehrgangs stellen Begriffe wie I/O, Speicherplatz, Interrupts, Kommunikationsstandards, A/D-Konverter (und vieles mehr) keine Geheimnisse mehr dar und der Leser ist in der Lage, auch andere Mikrocontroller zu programmieren. Mit anderen Worten: ein erstes Mikrocontroller-Buch mit Happy End.
Dieses Buch ist für Sie geeignet, wenn Sie Anfänger auf dem Gebiet der Mikrocontroller sind, als Arduino-User bzw. -Enthusiast Ihre Kenntnisse vertiefen möchten, Elektronik studieren oder als Lehrer inspiriert werden möchten.
Neues Konzept:
Dieses Buch überrascht mit einem völlig neuen Konzept an Schaltungsbeispielen: Mit speziellen Arduino-Anwendungen vertreiben Sie störende Freunde und Familienmitglieder sicher und zuverlässig aus Ihrer Umgebung und machen so Schluss mit lästigen gesellschaftlichen Verpflichtungen, so dass Sie in Zukunft Ihre komplette Freizeit nur noch der Programmierung von Mikrocontrollern widmen können.
Originelle Anwendungsbeispiele
Geringe Hardware-Kosten
Freie und offene Software (Open Source)
Alle gezeigten Programme können kostenlos von der Elektor-Website heruntergeladen werden.
Das farbige, spiralgebundene SIK-Handbuch (im Lieferumfang enthalten) enthält Schritt-für-Schritt-Anleitungen mit Schaltplänen und Anschlusstabellen für den Aufbau jedes Projekts und jeder Schaltung mit den enthaltenen Teilen. Es werden vollständige Beispielcodes zur Verfügung gestellt, neue Konzepte und Komponenten werden direkt vor Ort erklärt, und Tipps zur Fehlerbehebung bieten Hilfe, wenn etwas schief geht.
Das Kit erfordert keine Lötarbeiten und wird für Anfänger ab 10 Jahren empfohlen, die ein Arduino-Starterkit suchen. Für die SIK-Version 4.1 hat Sparkfun einen völlig neuen Ansatz für die Vermittlung von eingebetteter Elektronik gewählt. In früheren Versionen des SIK konzentrierte sich jede Schaltung auf die Einführung einer neuen Technologie. Mit SIK v4.1 werden die Komponenten im Kontext der Schaltung, die Sie bauen, vorgestellt. Jede Schaltung baut auf der letzten auf und führt zu einem Projekt, das alle im Handbuch vorgestellten Komponenten und Konzepte beinhaltet. Mit neuen Bauteilen und einer völlig neuen Strategie werden Sie, auch wenn Sie den SIK schon einmal benutzt haben, eine ganz neue Erfahrung machen!
Das SIK V4.1 enthält das Redboard Qwiic, womit Sie in das SparkFun Qwiic-Ökosystem einsteigen können, nachdem Sie sich mit den SIK-Schaltungen vertraut gemacht haben. Das SparkFun Qwiic Connect System ist ein Ökosystem von I2C-Sensoren, Aktoren, Abschirmungen und Kabeln, die das Prototyping schneller und weniger fehleranfällig machen. Alle Qwiic-fähigen Boards verwenden einen gemeinsamen 4-poligen JST-Stecker im Raster 1mm. Dies reduziert den Platzbedarf auf der Leiterplatte und polarisierte Anschlüsse bedeuten, dass man nichts falsch anschließen kann. Mit der Erweiterung des SparkFun RedBoard Qwiic müssen Sie eine neue Treiberinstallation herunterladen, die sich von der des originalen SparkFun RedBoard unterscheidet.
Inklusive
SparkFun RedBoard Qwiic
Arduino- und Breadboard-Halterung
SparkFun Inventor's Kit Guidebook
Weißes lötfreies Breadboard
Transportkoffer
SparkFun Mini-Schraubendreher
16 x 2 Weiß-auf-Schwarz-LCD (mit Headern)
SparkFun Motor Driver (mit Stiftleisten)
Paar Gummiräder
Paar Hobby-Getriebemotoren
Kleiner Servo
Ultraschall-Abstandssensor
TMP36 Temperatursensor
6' USB Micro-B Kabel
Überbrückungsdrähte
Fotozelle
Dreifarbige LED
Rote, blaue, gelbe und grüne LEDs
Rote, blaue, gelbe und grüne taktile Tasten
10K Trimmpotentiometer
Mini-Netzschalter
Piezo-Lautsprecher
AA-Batteriehalter
330 und 10KWiderstände
Binder Clip
Dual-Lock™-Befestigung
Der SDRplay RSPduo ist ein hochleistungsfähiger 14-Bit-SDR-Empfänger mit zwei Tunern. In einem hochwertigen Stahlgehäuse untergebracht, kann jeder Tuner einzeln im Bereich von 1 kHz bis 2 GHz mit bis zu 10 MHz Bandbreite oder beide Tuner können gleichzeitig im Bereich von 1 kHz bis 2 GHz mit bis zu 2 MHz Bandbreite pro Tuner arbeiten.
Dank einer hochstabilen Referenz und externen Taktgebern eignet sich dieses Gerät ideal für industrielle, wissenschaftliche und Bildungsanwendungen.
Features
Dual-Tuner bietet unabhängige Abdeckung von 1 kHz bis 2 GHz unter gleichzeitiger Verwendung von 2 Antennenanschlüssen
14-Bit-ADC-Siliziumtechnologie
Bis zu 10 MHz sichtbare Bandbreite (Single-Tuner-Modus) oder 2 Slices von 2 MHz Spektrum (Dual-Tuner-Modus)
3 per Software auswählbare Antennenanschlüsse (2x 50Ω und 1x 1kΩ hochohmiger symmetrischer/unsymmetrischer Eingang)
Hochohmiger Antennenanschluss (1 kHz bis 30 MHz) mit wählbarem MW-Sperrfilter und 2 Vorselektionsfiltern zur Auswahl
Per Software wählbare AM/FM- und DAB-Rundfunkband-Sperrfilter für die 2 SMA-Antennenanschlüsse (1 kHz bis 2 GHz)
Externer Takteingang und -ausgang ermöglichen die einfache Synchronisierung mit mehreren RSPs oder einem externen Referenztakt
Stromversorgung über das USB-Kabel mit einer einfachen Typ-B-Buchse
11 hochselektive, eingebaute Front-End-Vorwahlfilter an den beiden SMA-Antennenanschlüssen
Per Software wählbarer mehrstufiger rauscharmer Vorverstärker
Bias-T-Netzteil zur Versorgung des an der Antenne montierten LNA
In einem robusten, schwarz lackierten Stahlgehäuse untergebracht
SDRuno – SDR-Software der Extraklasse (für Windows)
Dokumentierte API für die Entwicklung neuer Anwendungen
Technische Daten
Frequenzbereich
1 kHz – 2 GHz
Antennenanschluss
SMA
Antennenimpedanz
50 Ohm
Stromverbrauch (typisch)
Single-Tuner Mode: 180 mA (ohne Bias-T)Dual-Tuner Mode: 280 mA (ohne Bias-T)
USB-Anschluss
USB-B
Maximale Eingangsleistung
+0 dBm kontinuierlich+10 dBm kurzzeitig
ADC Abtastraten
2-10,66 MSPS
ADC Anzahl der Bits
14 bit 2-6,048 MSPS12 bit 6,048-8,064 MSPS10 bit 8,064-9,216 MSPS8 bit >9,216 MSPS
Bias-T
4,7 V100 mA garantiert
Referenz
0,5ppm 24 MHz TCXO.Frequenzfehler auf 0,01ppm im Feld trimmbar.
Betriebstemperatur
−10˚C bis +60˚C
Abmessungen
98 x 94 x 33 mm
Gewicht
315 g
Downloads
Datasheet
Detailed Technical Information
Software
RSPdx-R2 vs RSPduo
RSPdx-R2
RSPduo
Kontinuierlicher Bereich von 1 kHz bis 2 GHz
✓
✓
Bis zu 10 MHz sichtbare Bandbreite
✓
✓
14-Bit-ADC-Siliziumtechnologie plus mehrere Hochleistungs-Eingangsfilter
✓
✓
Per Software wählbare AM/FM- und DAB-Rundfunkband-Sperrfilter
✓
✓
4,7 V Bias-T für die Versorgung eines externen Antennenverstärkers
✓
✓
Stromversorgung über das USB-Kabel mit einer einfachen Typ-B-Buchse
✓
✓
50Ω SMA-Antenneneingang(e) für 1 kHz bis 2 GHz Betrieb (per Software wählbar)
2
2
Zusätzlicher per Software wählbarer Hi-Z-Eingang für bis zu 30 Mhz-Betrieb
✓
Zusätzlicher per Software wählbarer 50-Ω-BNC-Eingang für den Betrieb mit bis zu 200 MHz
✓
Zusätzlicher LF/VLF-Filter für unter 500 kHz
✓
24 MHz Referenztakt-Eingang (+ Ausgang auf RSPduo)
✓
✓
Duale Tuner ermöglichen den Empfang auf 2 völlig unabhängigen 2-MHz-Bereichen
✓
Zwei Tuner ermöglichen Diversity-Empfang mit SDRuno
✓
Robustes schwarz lackiertes Stahlgehäuse
✓
✓
Gesamtleistung unter 2 MHz für MW und LF
++
+
Mehrere gleichzeitige Anwendungen
+
++
Leistung unter schwierigen Fading-Bedingungen (*mit Diversity-Abstimmung)
+
*++
Das AVR-IoT WA-Entwicklungsboard kombiniert einen leistungsstarken ATmega4808 AVR MCU, einen ATECC608A CryptoAuthentication™ Secure Element IC und den vollständig zertifizierten ATWINC1510 Wi-Fi-Netzwerkcontroller – was die einfachste und effektivste Möglichkeit bietet, Ihre eingebettete Anwendung mit Amazon Web Services zu verbinden ( AWS). Das Board verfügt außerdem über einen integrierten Debugger und erfordert keine externe Hardware zum Programmieren und Debuggen der MCU.
Im Auslieferungszustand ist auf der MCU ein Firmware-Image vorinstalliert, mit dem Sie mithilfe der integrierten Temperatur- und Lichtsensoren schnell eine Verbindung zur AWS-Plattform herstellen und Daten an diese senden können. Sobald Sie bereit sind, Ihr eigenes benutzerdefiniertes Design zu erstellen, können Sie mithilfe der kostenlosen Softwarebibliotheken in Atmel START oder MPLAB Code Configurator (MCC) ganz einfach Code generieren.
Das AVR-IoT WA-Board wird von zwei preisgekrönten integrierten Entwicklungsumgebungen (IDEs) unterstützt – Atmel Studio und Microchip MPLAB X IDE – und gibt Ihnen die Freiheit, mit der Umgebung Ihrer Wahl Innovationen zu entwickeln.
Merkmale
ATmega4808 Mikrocontroller
Vier Benutzer-LEDs
Zwei mechanische Tasten
mikroBUS-Header-Footprint
TEMT6000 Lichtsensor
MCP9808 Temperatursensor
ATECC608A CryptoAuthentication™-Gerät
WINC1510 WiFi-Modul
Onboard-Debugger
Auto-ID zur Platinenidentifizierung in Atmel Studio und Microchip MPLAB
Eine grüne Betriebs- und Status-LED auf der Platine
Programmieren und Debuggen
Virtueller COM-Port (CDC)
Zwei DGI GPIO-Leitungen
USB- und batteriebetrieben
Integriertes Li-Ion/LiPo-Akkuladegerät
Der 555SE ist ein einfach zu bauender Lötbausatz für die Oberflächenmontage. Es enthält die Leiterplatte, Widerstände und Transistoren, aus denen der Stromkreis besteht, sowie gedruckte Montageanweisungen. Das Kit wird außerdem komplett mit dem „IC Leg“-Ständer und 8 farbcodierten Rändelschrauben-Anschlussklemmen geliefert.
Für den Bau des 555SE sind grundlegende elektronische Lötkenntnisse und Werkzeuge erforderlich, es werden jedoch keine zusätzlichen Kenntnisse in der Elektronik vorausgesetzt oder benötigt. Sie stellen Standard-Oberflächenlötwerkzeuge zur Verfügung: einen Lötkolben, Lötzinn (Draht oder Paste), eine kleine Metallpinzette sowie einen Kreuzschlitzschraubendreher.
Das Kit verfügt über relativ große oberflächenmontierbare Komponenten (1206 und SOT-23) und ist ein großartiger erster oberflächenmontierbarer Lötkit, wenn Sie gerade erst anfangen. Wenn Sie jedoch Erfahrung im Oberflächenlöten haben und über Werkzeuge wie eine Heißluft-Nacharbeitsstation oder andere Geräte verfügen, können Sie diese gerne zum Zusammenbau dieses Bausatzes verwenden.
Features
Ständer aus eloxiertem Aluminium
8x 4-40 oberflächenmontierte Gewindeeinsätze
Rändelschrauben aus Edelstahl mit farbcodierten Kunststoffkappen (1 rot, 1 schwarz, 6 grau)
Alle Materialien (einschließlich Platine und Ständer) sind RoHS-konform (bleifrei)
Abmessungen: 6,5 cm × 5,2 cm x 1,6 mm
Abmessungen zusammengebaut: 6,5 cm × 7,8 cm × 2,0 cm
ESP32-S2-Saola-1R ist ein kleines ESP32-S2-basiertes Entwicklungsboard. Die meisten I/O-Pins sind zur einfachen Anbindung auf beiden Seiten bis zu den Stiftleisten herausgebrochen. Entwickler können Peripheriegeräte entweder mit Überbrückungskabeln verbinden oder ESP32-S2-Saola-1R auf einem Steckbrett montieren.
ESP32-S2-Saola-1R ist mit dem ESP32-S2-WROVER-Modul ausgestattet, einem leistungsstarken, generischen Wi-Fi-MCU-Modul, das über eine umfangreiche Auswahl an Peripheriegeräten verfügt. Es ist eine ideale Wahl für vielfältige Anwendungsszenarien rund um das Internet der Dinge (IoT), tragbare Elektronik und Smart Home. Die Platine verfügt über eine PCB-Antenne und verfügt über einen 4 MB externen SPI-Flash und einen zusätzlichen 2 MB pseudostatischen SPI-RAM (PSRAM).
Merkmale
MCU
ESP32-S2 eingebetteter Xtensa®-Single-Core-32-Bit-LX7-Mikroprozessor, bis zu 240 MHz
128 KB ROM
320 KB SRAM
16 KB SRAM im RTC
W-lan
802.11 b/g/n
Bitrate: 802.11n bis zu 150 Mbit/s
A-MPDU- und A-MSDU-Aggregation
Unterstützung für 0,4 µs Schutzintervall
Mittenfrequenzbereich des Betriebskanals: 2412 ~ 2484 MHz
Hardware
Schnittstellen: GPIO, SPI, LCD, UART, I²C, I²S, Kameraschnittstelle, IR, Impulszähler, LED-PWM, TWAI (kompatibel mit ISO 11898-1), USB OTG 1.1, ADC, DAC, Berührungssensor, Temperatursensor
40-MHz-Quarzoszillator
4 MB SPI-Flash
Betriebsspannung/Stromversorgung: 3,0 ~ 3,6 V
Betriebstemperaturbereich: –40 ~ 85 °C
Abmessungen: 18 × 31 × 3,3 mm
Anwendungen
Allgemeiner IoT-Sensor-Hub mit geringem Stromverbrauch
Generische IoT-Datenlogger mit geringem Stromverbrauch
Kameras für Video-Streaming
Over-the-Top-Geräte (OTT).
USB-Geräte
Spracherkennung
Bilderkennung
Mesh-Netzwerk
Heimautomatisierung
Smart-Home-Systemsteuerung
Intelligentes Gebäude
Industrielle Automatisierung
Intelligente Landwirtschaft
Audioanwendungen
Anwendungen im Gesundheitswesen
Wi-Fi-fähiges Spielzeug
Tragbare Elektronik
Einzelhandels- und Gastronomieanwendungen
Intelligente POS-Geräte
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!
Sie sind noch kein Mitglied? Hier klicken!
KI-Sicherheitssystem AlertAlfredMit einem Raspberry Pi 5 plus Hailo-8L-Modul
KI in der ElektronikentwicklungEin Update nach nur einem Jahr
Einführung in KI-AlgorithmenPrompt: Welche Algorithmen werden in KI-Tools verwendet?
Einplatinencomputer für KI-ProjekteÜberblick und Hintergründiges
Von Sensordaten zu Modellen des Machine LearningGestenerkennung mit einem Beschleunigungssensor und Edge Impulse
Bau eines undichten, integrierenden und Feuer spuckenden NeuronsKünstliche Intelligenz ohne Software
ChatGPT für den ElektronikentwurfMacht GPT-4o es besser?
KI at the Edge mit dem ESP32-P4
Sprachfunktionen auf dem Raspberry Pi ZeroWenn Übertaktung Sprachanwendungen ermöglicht
Die wachsende Rolle von Edge-KIEin Trend, der die Zukunft prägt
Die Macht der Edge-KI entfesselnEin Gespräch mit François de Rochebouët von STMicroelectronics
Eine VHDL-Uhr, entwickelt mit ChatGPT
Die wahren Auswirkungen der KISayash Kapoor über „KI-Schlangenöl“ und mehr
Das Neueste von BeagleBoardBeagleY-AI, BeagleV-Fire, BeagleMod, BeaglePlay und BeagleConnect Freedom
Moskito-Erkennung mit offenen Daten und Arduino Nicla Vision
KI heute und morgenEinblicke von Espressif, Arduino und SparkFun
Zeitleiste: Künstliche Intelligenz
BeagleY-AIDer neuste Einplatinencomputer für KI-Anwendungen
KI im FokusPerspektiven aus der Elektor-Community
Maschinelles Sehen mit OpenMVBau eines Limonadendosen-Detektors
Ein Gespräch mit dem digitalen VerstandChatGPT vs. Gemini
Skilling Me Softly with this Bot?Scheitert die KI-Revolution im elektronischen Bereich an mangelnder sozialer Präzision?