Merkmale
Eingebaute USB-zu-Seriell-Schnittstelle
Eingebaute PCB-Antenne
Angetrieben durch Pineseed BL602 SoC mit Pinenut-Modell: 12S-Stempel
2 MB Flash
USB-C-Anschluss
Geeignet für Steckbrett-BIY-Projekte
An Bord befinden sich drei Farb-LEDs
Abmessungen: 25,4 x 44,0 mm
Hinweis: USB-Kabel ist nicht im Lieferumfang enthalten.
Der intelligente digitale Thermostat-Temperaturregler ist ein kleiner Schalterregler (77 x 51 mm), mit dem Sie Ihren eigenen Thermostat erstellen können. Mit seinem NTC-Sensor und seinen LED-Anzeigen können Sie je nach gemessener Temperatur bis zu 10A 220V schalten.
ESP32-S2-Saola-1R ist ein kleines ESP32-S2-basiertes Entwicklungsboard. Die meisten I/O-Pins sind zur einfachen Anbindung auf beiden Seiten bis zu den Stiftleisten herausgebrochen. Entwickler können Peripheriegeräte entweder mit Überbrückungskabeln verbinden oder ESP32-S2-Saola-1R auf einem Steckbrett montieren.
ESP32-S2-Saola-1R ist mit dem ESP32-S2-WROVER-Modul ausgestattet, einem leistungsstarken, generischen Wi-Fi-MCU-Modul, das über eine umfangreiche Auswahl an Peripheriegeräten verfügt. Es ist eine ideale Wahl für vielfältige Anwendungsszenarien rund um das Internet der Dinge (IoT), tragbare Elektronik und Smart Home. Die Platine verfügt über eine PCB-Antenne und verfügt über einen 4 MB externen SPI-Flash und einen zusätzlichen 2 MB pseudostatischen SPI-RAM (PSRAM).
Merkmale
MCU
ESP32-S2 eingebetteter Xtensa®-Single-Core-32-Bit-LX7-Mikroprozessor, bis zu 240 MHz
128 KB ROM
320 KB SRAM
16 KB SRAM im RTC
W-lan
802.11 b/g/n
Bitrate: 802.11n bis zu 150 Mbit/s
A-MPDU- und A-MSDU-Aggregation
Unterstützung für 0,4 µs Schutzintervall
Mittenfrequenzbereich des Betriebskanals: 2412 ~ 2484 MHz
Hardware
Schnittstellen: GPIO, SPI, LCD, UART, I²C, I²S, Kameraschnittstelle, IR, Impulszähler, LED-PWM, TWAI (kompatibel mit ISO 11898-1), USB OTG 1.1, ADC, DAC, Berührungssensor, Temperatursensor
40-MHz-Quarzoszillator
4 MB SPI-Flash
Betriebsspannung/Stromversorgung: 3,0 ~ 3,6 V
Betriebstemperaturbereich: –40 ~ 85 °C
Abmessungen: 18 × 31 × 3,3 mm
Anwendungen
Allgemeiner IoT-Sensor-Hub mit geringem Stromverbrauch
Generische IoT-Datenlogger mit geringem Stromverbrauch
Kameras für Video-Streaming
Over-the-Top-Geräte (OTT).
USB-Geräte
Spracherkennung
Bilderkennung
Mesh-Netzwerk
Heimautomatisierung
Smart-Home-Systemsteuerung
Intelligentes Gebäude
Industrielle Automatisierung
Intelligente Landwirtschaft
Audioanwendungen
Anwendungen im Gesundheitswesen
Wi-Fi-fähiges Spielzeug
Tragbare Elektronik
Einzelhandels- und Gastronomieanwendungen
Intelligente POS-Geräte
Bringen Sie Farbe in Ihre Projekte mit dieser Kollektion aus roten, grünen, gelben, blauen und weißen LEDs. Sie sind mit verschiedenen Strombegrenzungswiderständen ausgestattet, um die Teile zu schützen und die Helligkeit zu steuern.
Inbegriffen
10-mm-LEDs
1x Hrsg
1x grün
1x gelb
1x blau
1x weiß
5-mm-LEDs
5x Aufl
5x grün
5x gelb
5x blau
5x weiß
3mm LEDs
5x Aufl
5x grün
5x gelb
5x blau
5x weiß
25x 330 Ω Widerstände
10x 1 kΩ Widerstände
10x 10 kΩ Widerstände
10x 100 kΩ Widerstände
10x 1 MΩ Widerstände
Das SparkFun GPS-RTK2 legt die Messlatte für hochpräzises GPS höher und ist das neueste in einer Reihe von leistungsstarken RTK-Karten mit dem ZED-F9P-Modul von u-blox. Das ZED-F9P ist ein Spitzenmodul für hochgenaue GNSS- und GPS-Ortungslösungen, einschließlich RTK mit einer dreidimensionalen Genauigkeit von 10 mm. Mit dieser Karte werden Sie in der Lage sein, die X-, Y- und Z-Position Ihres (oder eines beliebigen Objekts) innerhalb der Breite Ihres Fingernagels zu bestimmen! Das ZED-F9P ist einzigartig, da es sowohl als Rover als auch als Basisstation eingesetzt werden kann. Durch die Verwendung unseres praktischen Qwiic-Systems ist kein Löten erforderlich, um ihn mit dem Rest Ihres Systems zu verbinden. Dennoch haben wir die Pins im 0,1"-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Wir haben sogar eine wiederaufladbare Backup-Batterie eingebaut, um die neueste Modulkonfiguration und Satellitendaten bis zu zwei Wochen lang verfügbar zu halten. Diese Batterie hilft beim "Warm-Start" des Moduls und verkürzt die Zeit bis zur ersten Reparatur drastisch. Das Modul verfügt über einen "Survey-in"-Modus, der es ermöglicht, das Modul als Basisstation zu verwenden und RTCM 3.x-Korrekturdaten zu erzeugen. Die Konfigurationsmöglichkeiten des Moduls
Die Anzahl der Konfigurationsmöglichkeiten des ZED-F9P ist unglaublich! Geofencing, variable I2C-Adresse, variable Update-Raten, sogar die hochgenaue RTK-Lösung kann auf 20Hz erhöht werden. Der GPS-RTK2 hat sogar fünf Kommunikationsanschlüsse, die alle gleichzeitig aktiv sind: USB-C (der sich als COM-Port enumeriert), UART1 (mit 3,3V TTL), UART2 für den RTCM-Empfang (mit 3,3V TTL), I2C (über die beiden Qwiic-Anschlüsse oder ausgebrochene Pins) und SPI.
Sparkfun hat außerdem eine umfangreiche Arduino-Bibliothek für u-blox-Module geschrieben, um das GPS-RTK2 einfach über das Qwiic Connect System auszulesen und zu steuern. Lassen Sie NMEA hinter sich! Verwenden Sie eine viel leichtere binäre Schnittstelle und gönnen Sie Ihrem Mikrocontroller (und seinem einen seriellen Port) eine Pause. Die SparkFun Arduino-Bibliothek zeigt, wie man Breitengrad, Längengrad, sogar Kurs und Geschwindigkeit über I2C auslesen kann, ohne dass ständige serielle Abfragen nötig sind.
Features
Gleichzeitiger Empfang von GPS, GLONASS, Galileo und BeiDou
Empfang der Bänder L1C/A und L2C
Spannung: 5 V oder 3,3 V, aber alle Logik ist 3,3 V
Strom: 68 mA - 130 mA (variiert mit Konstellationen und Tracking-Status)
Zeit bis zum ersten Fix: 25 s (kalt), 2 s (heiß)
Max Navigation Rate:
PVT (Basisortung über UBX-Binärprotokoll) - 25 Hz
RTK - 20 Hz
Raw - 25 Hz
Horizontale Positionsgenauigkeit:
2,5 m ohne RTK
0,010 m mit RTK
Max. Höhe: 50k m
Max. Geschwindigkeit: 500 m/s
Gewicht: 6,8 g
Abmessungen: 43,5 mm x 43,2 mm
2 x Qwiic-Stecker
Das SparkFun RedBoard Qwiic ist eine Arduino-kompatible Platine, die Funktionen verschiedener Arduinos mit dem Qwiic Connect System kombiniert.
Merkmale
ATmega328-Mikrocontroller mit Optiboot-Bootloader
Kompatibel mit R3 Shield
CH340C Seriell-USB-Konverter
Spannungspegel-Jumper von 3,3 V bis 5 V
A4 / A5 Brücken
Spannungsregler AP2112
ISP-Header
Eingangsspannung: 7 V - 15 V
1 Qwiic-Anschluss
16 MHz Taktfrequenz
32 k Flash-Speicher
Komplette SMD-Konstruktion
Verbesserter Reset-Knopf
Lerne die Grundlagen der Elektronik, indem du manuell deinen Arduino Uno zusammenbaust, gewinne Erfahrung im Löten, indem du jedes einzelne Bauteil montierst, und entfalte dann deine Kreativität mit dem einzigen Kit, das sich zu einem Synthesizer verwandelt!
Das Arduino Make-Your-Uno-Kit ist wirklich der beste Weg, um zu lernen, wie man lötet. Und wenn du fertig bist, ermöglicht dir die Verpackung, einen Synthesizer zu bauen und deine eigene Musik zu machen.
Ein Kit mit allen Komponenten, um deinen eigenen Arduino Uno und einen Audio-Synthesizer-Schild zu bauen.
Das Make-Your-Uno-Kit wird mit einem kompletten Satz von Anweisungen in einer dedizierten Inhaltsplattform geliefert. Dazu gehören Videomaterial, ein 3D- interaktiver Viewer zur detaillierten Anleitung und wie man das Board programmiert, sobald es fertig ist.
Dieses Kit enthält:
Arduino Make-Your-Uno
1x Make-Your-Uno-PCB
1x USB-C-Serieller Adapter
7x Widerstände 1 kOhm
2x Widerstände 10 kOhm
2x Widerstände 1 MOhm
1x Diode (1N4007)
1x 16 MHz Quartz
4x gelbe LEDs
1x grüne LED 1x Drucktaster
1x MOSFET
1x LDO (3,3 V)
1x LDO (5 V)
3x Keramikkondensatoren (22pF)
3x Elektrolytkondensatoren (47uF)
7x Polyesterkondensatoren (100nF)
1x Sockel für ATMega 328p
2x I/O-Steckverbinder
1x Steckerleiste 6-polig
1x Buchsenstecker
1x ATmega 328p-Mikrocontroller
Arduino Audio Synth
1x Audio Synth PCB
1x Widerstand 100kOhm
1x Widerstand 10 Ohm
1x Audio-Verstärker (LM386)
1x Keramikkondensator (47nF)
1x Elektrolytkondensator (47uF)
1x Elektrolytkondensator (220uF)
1x Polyesterkondensator (100nF)
4x Anschluss-Pin-Header
6x Potentiometer 10kOhm mit Kunststoffknöpfen
Ersatzteile
2x Elektrolytkondensatoren (47uF)
2x Polyesterkondensatoren (100nF)
2x Keramikkondensatoren (22pF)
1x Drucktaster
1x gelbe LED
1x grüne LED
Mechanische Teile
5x Abstandshalter 12 mm
11x Abstandshalter 6 mm
5x Schraubmuttern
2x Schrauben 12 mm
Das AVR-IoT WA-Entwicklungsboard kombiniert einen leistungsstarken ATmega4808 AVR MCU, einen ATECC608A CryptoAuthentication™ Secure Element IC und den vollständig zertifizierten ATWINC1510 Wi-Fi-Netzwerkcontroller – was die einfachste und effektivste Möglichkeit bietet, Ihre eingebettete Anwendung mit Amazon Web Services zu verbinden ( AWS). Das Board verfügt außerdem über einen integrierten Debugger und erfordert keine externe Hardware zum Programmieren und Debuggen der MCU.
Im Auslieferungszustand ist auf der MCU ein Firmware-Image vorinstalliert, mit dem Sie mithilfe der integrierten Temperatur- und Lichtsensoren schnell eine Verbindung zur AWS-Plattform herstellen und Daten an diese senden können. Sobald Sie bereit sind, Ihr eigenes benutzerdefiniertes Design zu erstellen, können Sie mithilfe der kostenlosen Softwarebibliotheken in Atmel START oder MPLAB Code Configurator (MCC) ganz einfach Code generieren.
Das AVR-IoT WA-Board wird von zwei preisgekrönten integrierten Entwicklungsumgebungen (IDEs) unterstützt – Atmel Studio und Microchip MPLAB X IDE – und gibt Ihnen die Freiheit, mit der Umgebung Ihrer Wahl Innovationen zu entwickeln.
Merkmale
ATmega4808 Mikrocontroller
Vier Benutzer-LEDs
Zwei mechanische Tasten
mikroBUS-Header-Footprint
TEMT6000 Lichtsensor
MCP9808 Temperatursensor
ATECC608A CryptoAuthentication™-Gerät
WINC1510 WiFi-Modul
Onboard-Debugger
Auto-ID zur Platinenidentifizierung in Atmel Studio und Microchip MPLAB
Eine grüne Betriebs- und Status-LED auf der Platine
Programmieren und Debuggen
Virtueller COM-Port (CDC)
Zwei DGI GPIO-Leitungen
USB- und batteriebetrieben
Integriertes Li-Ion/LiPo-Akkuladegerät
LuckFox Pico Mini ist ein kompaktes Linux-Mikro-Entwicklungsboard, das auf dem Rockchip RV1103-Chip basiert und eine einfache und effiziente Entwicklungsplattform für Entwickler bietet. Es unterstützt eine Vielzahl von Schnittstellen, einschließlich MIPI CSI, GPIO, UART, SPI, I²C, USB usw., was für eine schnelle Entwicklung und Fehlerbehebung praktisch ist.
Features
Single-Core ARM Cortex-A7 32-Bit-Kern mit integriertem NEON und FPU
Eingebaute, von Rockchip selbst entwickelte NPU der 4. Generation, zeichnet sich durch hohe Rechenpräzision aus und unterstützt die Hybridquantisierung int, int8 und int16. Die Rechenleistung von int8 beträgt 0,5 TOPS und bis zu 1,0 TOPS mit int4
Integrierter, selbst entwickelter ISP3.2 der dritten Generation, unterstützt 4 Megapixel, mit mehreren Bildverbesserungs- und Korrekturalgorithmen wie HDR, WDR, mehrstufiger Rauschunterdrückung usw.
Verfügt über eine leistungsstarke Kodierungsleistung, unterstützt den intelligenten Kodierungsmodus und das adaptive Stream-Speichern je nach Szene, spart mehr als 50% Bitrate im Vergleich zum herkömmlichen CBR-Modus, sodass die Bilder von der Kamera hochauflösende Bilder mit geringerer Größe und doppelt so viel Speicherplatz bieten Leerzeichen
Die integrierte RISC-V-MCU unterstützt einen geringen Stromverbrauch und einen schnellen Start, unterstützt eine schnelle Bildaufnahme von 250 ms und lädt gleichzeitig die Al-Modellbibliothek, um die Gesichtserkennung "in einer Sekunde" zu realisieren.
Eingebauter 16-Bit-DRAM DDR2, der anspruchsvolle Speicherbandbreiten bewältigen kann
Integriert mit integriertem POR, Audio-Codec und MAC PHY
Technische Daten
Prozessor
ARM Cortex-A7, Single-Core-32-Bit-CPU, 1,2 GHz, mit NEON und FPU
NPU
Rockchip NPU der 4. Generation, unterstützt int4, int8, int16; bis zu 1,0 TOPS (int4)
ISP
ISP3.2 der dritten Generation, bis zu 4 MP-Eingang bei 30fps, HDR, WDR, Rauschunterdrückung
RAM
64 MB DDR2
Speicher
128 MB SPI NAND Flash
USB
USB 2.0-Host/Gerät über Typ-C
Kameraschnittstelle
MIPI CSI 2-spurig
GPIO-Pins
17 GPIO-Pins
Stromverbrauch
RISC-V-MCU mit geringem Stromverbrauch für schnellen Start
Abmessungen
28 x 21 mm
Downloads
Wiki
Dieses Modul enthält eine integrierte Trace-Antenne, passt den IC an einen FCC-zugelassenen Footprint an und enthält Entkopplungs- und Timing-Mechanismen, die in einer Schaltung mit dem nackten nRF52840-IC entwickelt werden müssten. Der Bluetooth-Transceiver auf dem nRF52840 verfügt über einen BT 5.1-Stack. Er unterstützt Bluetooth 5, Bluetooth Mesh, IEEE 802.15.4 (Zigbee & Thread) und 2,4Ghz RF-Funkprotokolle (einschließlich des proprietären RF-Protokolls von Nordic), so dass Sie auswählen können, welche Option für Ihre Anwendung am besten geeignet ist.
Merkmale
ARM Cortex-M4-CPU mit einer Fließkommaeinheit (FPU)
1MB interner Flash -- Für alle Ihre Programm-, SoftDevice- und Dateispeicheranforderungen!
256kB interner RAM -- Für Ihren Stack und Heap-Speicher.
Integrierter 2,4GHz-Funk mit Unterstützung für:
Bluetooth Low Energy (BLE) -- Mit Unterstützung für periphere und/oder zentrale BLE-Geräte
Bluetooth 5 -- Mesh Bluetooth!
ANT -- Wenn Sie das Gerät in einen Herzfrequenz- oder Trainingsmonitor verwandeln möchten.
Nordic's proprietäres RF-Protokoll -- Wenn Sie sicher mit anderen Nordic-Geräten kommunizieren wollen.
Jede E/A-Peripherie, die Sie brauchen könnten.
USB -- Verwandeln Sie Ihren nRF52840 in einen USB-Massenspeicher, verwenden Sie eine CDC-Schnittstelle (USB-Seriell) und mehr.
UART -- Serielle Schnittstellen mit Unterstützung für Hardware-Flow-Control, falls gewünscht.
I²C -- Jedermanns liebste 2-Draht bidirektionale Busschnittstelle
SPI -- Wenn Sie die 3+-drahtige serielle Schnittstelle bevorzugen
Analog-Digital-Wandler (ADC) -- Acht Pins am nRF52840 Mini Breakout unterstützen analoge Eingänge
PWM -- Timer-Unterstützung an jedem Pin bedeutet PWM-Unterstützung für die Ansteuerung von LEDs oder Servomotoren.
Echtzeituhr (RTC) -- Behält Sekunden und Millisekunden genau im Auge, unterstützt auch zeitgesteuerte Deep-Sleep-Funktionen.
Drei UARTs
Primär an die USB-Schnittstelle gebunden. Zwei Hardware-UARTs.
Zwei I²C-Busse
Zwei SPI-Busse
Der sekundäre SPI-Bus wird hauptsächlich für Flash-ICs verwendet.
PDM-Audioverarbeitung
Zwei analoge Eingänge
Zwei dedizierte digitale E/A-Pins
Zwei dedizierte PWM-Pins
Elf Allzweck-E/A-Pins
Das Data Logging Carrier Board bietet Anschlüsse für I2C über einen Qwiic-Stecker oder Standard-PTH-Pins mit 0,1"-Abstand sowie SPI- und serielle UART-Anschlüsse für die Datenerfassung von Peripheriegeräten, die diese Kommunikationsprotokolle verwenden.
Mit dem Data Logging Carrier Board können Sie die Stromversorgung sowohl für den Qwiic-Anschluss auf dem Board als auch für eine dedizierte 3,3-V-Stromschiene für nicht-Qwiic-Peripheriegeräte steuern, so dass Sie auswählen können, wann Sie die Peripheriegeräte mit Strom versorgen, von denen Sie die Daten überwachen. Außerdem verfügt es über einen Ladeschaltkreis für einzellige Lithium-Ionen-Akkus und einen separaten RTC-Batterie-Backup-Schaltkreis, um die Stromversorgung einer Echtzeituhrschaltung auf dem Prozessor-Board aufrechtzuerhalten.
Merkmale
M.2 MicroMod-Anschluss
microSD-Buchse
USB-C Anschluss
3,3 V 1 A Spannungsregler
Qwiic-Anschluss
Boot/Reset-Tasten
RTC-Backup-Batterie & Ladeschaltung
Independente 3,3V-Regler für Qwiic-Bus und Peripherie-Erweiterungen
Steuerung durch digitale Pins auf der Prozessorplatine, um stromsparende Sleep-Modi zu ermöglichen
Phillips #0 M2,5 x 3 mm Schraube enthalten
Spracherkennung, Always-on-Sprachbefehle, Gesten- oder Bilderkennung sind mit TensorFlow-Anwendungen möglich. Die Cloud ist beeindruckend robust, aber die ständige Verbindung erfordert Strom und Konnektivität, die möglicherweise nicht verfügbar sind. Edge Computing übernimmt diskrete Aufgaben wie die Feststellung, ob jemand "Ja" gesagt hat, und reagiert entsprechend. Die Audioanalyse wird auf der MicroMod-Kombination und nicht im Web durchgeführt. Dadurch werden Kosten und Komplexität drastisch reduziert und gleichzeitig potenzielle Datenlecks begrenzt.
Das Board verfügt über zwei MEMS-Mikrofone (eines mit PDM-Schnittstelle, eines mit I2S-Schnittstelle), einen 3-Achsen-Beschleunigungsmesser ST LIS2DH12, einen Anschluss für eine Kamera (separat erhältlich) und einen Qwiic-Anschluss. Ein moderner USB-C-Anschluss macht die Programmierung einfach und wir haben den JTAG-Anschluss für fortgeschrittene Anwender freigelegt, die lieber die Leistung und Geschwindigkeit professioneller Tools nutzen möchten. Wir haben sogar einen praktischen Jumper hinzugefügt, um den Stromverbrauch für Tests mit geringem Stromverbrauch zu messen.
Features
M.2 MicroMod Keyed-E H4,2mm 65 Pins SMD Stecker 0,5mm
Digitales I2C MEMS-Mikrofon PDM Invensense ICS-43434 (COMP)
Digitales PDM-MEMS-Mikrofon PDM Knowles SPH0641LM4H-1 (IC)
ML414H-IV01E Lithium-Batterie für RTC
ST LIS2DH12TR Beschleunigungssensor (3-Achsen, Ultra-Low-Power)
24 Pin 0,5mm FPC Stecker (Himax Kameraanschluss)
USB - C
Qwiic-Anschluss
MicroSD-Buchse
Phillips #0 M2.5x3mm Schraube enthalten
Die MotoPi-Platine ist eine Erweiterungsplatine zur Ansteuerung und Verwendung von bis zu 16 PWM-gesteuerten 5-V-Servomotoren.
Der eigene Taktgeber auf dem MotoPi sorgt für ein sehr genaues PWM-Signal und somit auch für eine genaue Positionierung.
Die Platine verfügt über 2 Eingänge für eine Spannung von 4,8-6 V, über die zusammen bis zu 11 A eingespeist werden können, so dass eine optimale Versorgung der Motoren stets gewährleistet ist und somit auch größere Projekte mit ausreichend Strom beliefert werden können.
Die Versorgung läuft zentral über den MotoPi, der für jeden Motor separat einen Anschluss für Spannung, Masse und die Steuerleitung zur Verfügung stellt.
Durch den eingebauten Kondensator wird der Strom zusätzlich gepuffert. Hierdurch wird das Einbrechen der Spannung bei kurzzeitiger Mehrbelastung abgemildert, die sonst zum Ruckeln führen könnte. Zusätzlich hat man noch die Möglichkeit, einen weiteren Kondensator anzuschließen.
Der integrierte Analog-Digital-Wandler bietet neue Möglichkeiten wie z. B. die Steuerung über einen Joystick.
Die Ansteuerung und Programmierung der Motoren kann (wie gewohnt) weiterhin bequem über den Raspberry Pi bedient werden. Anleitung und Codebeispiele erlauben auch Einsteigern, schnell Ergebnisse zu erzielen.
Besonderheiten
16 Kanäle, eigener Taktgeber für Servomotoren (PWM), inkl. Analog-Digital-Wandler
Eingang 1
Hohlstecker 5,5 / 2,1 mm, 4,8-6 V, 5 A max.
Eingang 2
Schraubklemme, 4,8-6 V, 6 A max.
Kompatibel mit
Raspberry Pi A+, B+, 2B, 3B
Maße (BxHxT)
65 x 24 x 56 mm
Lieferumfang
Platine, Bedienungsanleitung, Befestigungsmaterial, Retail-Verpackung
Das OKdo E1 ist ein äußerst kostengünstiges Entwicklungsboard, das auf dem Dual-Core-Arm-Cortex-M33-Mikrocontroller LPC55S69JBD100 von NXP basiert. Das E1-Board eignet sich perfekt für industrielles IoT, Gebäudesteuerung und -automatisierung, Unterhaltungselektronik sowie allgemeine eingebettete und sichere Anwendungen.
Merkmale
Prozessor mit Arm TrustZone, Floating Point Unit (FPU) und Memory Protection Unit (MPU)
CASPER Crypto-Coprozessor zur Hardwarebeschleunigung für bestimmte asymmetrische kryptografische Algorithmen
PowerQuad Hardware Accelerator für Fest- und Gleitkomma-DSP-Funktionen
SRAM Physical Unclonable Function (PUF) zur Schlüsselgenerierung, -speicherung und -rekonstruktion
PRINCE-Modul zur Echtzeit-Verschlüsselung und Entschlüsselung von Flash-Daten
AES-256- und SHA2-Engines
Bis zu neun Flexcomm-Schnittstellen. Jede Flexcomm-Schnittstelle kann per Software als USART-, SPI-, I²C- und I²S-Schnittstelle ausgewählt werden
USB 2.0 High-Speed-Host/Geräte-Controller mit On-Chip-PHY
USB 2.0 Full-Speed Host/Geräte-Controller mit On-Chip-PHY
Bis zu 64 GPIOs Sichere digitale Ein-/Ausgabe-Kartenschnittstelle (SD/MMC und SDIO).
Spezifikationen
LPC55S69JBD100 640-KByte-Flash-Mikrocontroller
Eingebauter CMSIS-DAP v1.0.7-Debugger basierend auf LPC11U35
Interne PLL-Unterstützung für einen Betrieb mit bis zu 100 MHz, 16 MHz können für den vollen 150-MHz-Betrieb montiert werden.
SRAM 320kB
32-kHz-Quarz für Echtzeituhr
4 Benutzerschalter
3-Farben-LED
Benutzer-USB-Anschluss
2 16-polige Erweiterungsstecker
UART über USB virtueller COM-Port
Das SparkFun Thing Plus Matter ist das erste leicht zugängliche Board seiner Art, das Matter und das Qwiic-Ökosystem von SparkFun für die schnelle Entwicklung und das Prototyping von Matter-basierten IoT-Geräten kombiniert. Das drahtlose MGM240P-Modul von Silicon Labs bietet sichere Konnektivität sowohl für 802.15.4 mit Mesh-Kommunikation (Thread) als auch für Bluetooth Low Energy 5.3-Protokolle. Das Modul ist bereit für die Integration in das IoT-Protokoll Matter von Silicon Labs für die Heimautomatisierung .
Was ist Matter? Einfach ausgedrückt ermöglicht Matter einen zuverlässigen Betrieb zwischen Smart-Home-Geräten und IoT-Plattformen ohne Internetverbindung, sogar von verschiedenen Anbietern. Auf diese Weise ist Matter in der Lage, zwischen großen IoT-Ökosystemen zu kommunizieren, um ein einziges drahtloses Protokoll zu erstellen, das einfach, zuverlässig und sicher zu verwenden ist.
Das Thing Plus Matter (MGM240P) enthält Qwiic- und LiPo-Batterieanschlüsse und mehrere GPIO-Pins, die sich per Software vollständig multiplexen lassen. Das Board verfügt über das Einzelzellen-LiPo-Ladegerät MCP73831 sowie die Ladezustandsanzeige MAX17048 zum Laden und Überwachen einer angeschlossenen Batterie. Außerdem ist ein µSD-Kartensteckplatz für externe Speicheranforderungen integriert
Das drahtlose MGM240P-Modul basiert auf dem drahtlosen EFR32MG24-SoC mit einem 32-Bit-ARM-Cortext-M33-Core-Prozessor mit 39 MHz, 1536 KB Flash-Speicher und 256 KB RAM. Das MGM240P arbeitet mit gängigen 802.15.4-Wireless-Protokollen (Matter, ZigBee und OpenThread) sowie Bluetooth Low Energy 5.3. Das MGM240P unterstützt Secure Vault von Silicon Labs für Thread-Anwendungen.
Technische Daten
MGM240P Wireless-Modul
Basierend auf dem EFR32MG24 Wireless SoC
32-Bit-ARM-M33-Core-Prozessor (@ 39 MHz)
1536 KB Flash-Speicher
256 KB Arbeitsspeicher
Unterstützt mehrere 802.15.4-Wireless-Protokolle (ZigBee und OpenThread)
Bluetooth Low Energy 5.3
Matter-ready
Secure Vault-Unterstützung
Eingebaute Antenne
Thing Plus Formfaktor (federkompatibel):
Abmessungen: 5,8 x 2,3 cm (2,30 x 0,9")
2 Befestigungslöcher:
4-40 Schrauben kompatibel
21 GPIO-PTH-Ausbrüche
Alle Stifte haben vollständige Multiplexing-Fähigkeit durch Software
SPI-, I²C- und UART-Schnittstellen werden standardmäßig auf beschriftete Pins abgebildet
13 GPIO (6 als analog gekennzeichnet, 7 als GPIO gekennzeichnet)
Alle funktionieren entweder als GPIO oder analog
Eingebauter Digital-Analog-Wandler (DAC)
USB-C-Anschluss
2-poliger JST-LiPo-Akkuanschluss für einen LiPo-Akku (nicht im Lieferumfang enthalten)
4-poliger JST-Qwiic-Anschluss
MC73831 Einzelzellen-LiPo-Ladegerät
Konfigurierbare Laderate (500 mA Standard, 100 mA alternativ)
MAX17048 Einzelzellen-LiPo-Tankanzeige
µSD-Kartensteckplatz
Geringer Stromverbrauch (15 µA, wenn sich MGM240P im Energiesparmodus befindet)
LEDs:
PWR – Rote Power-LED
CHG – Gelbe Batterieladestatus-LED
STAT – Blaue Status-LED
Reset-Taste:
Physischer Taster
Das Reset-Signal kann an A0 gebunden werden, um die Verwendung als Peripheriegerät zu ermöglichen.
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo
The FRDM-MCXN947 is a compact and versatile development board designed for rapid prototyping with MCX N94 and N54 microcontrollers. It features industry-standard headers for easy access to the MCU's I/Os, integrated open-standard serial interfaces, external flash memory, and an onboard MCU-Link debugger.
Technische Daten
Microcontroller
MCX-N947 Dual Arm Cortex-M33 cores @ 150 MHz each with optimized performance efficiency, up to 2 MB dual-bank flash with optional full ECC RAM, External flash
Accelerators: Neural Processing Unit, PowerQuad, Smart DMA, etc.
Memory Expansion
*DNP Micro SD card socket
Connectivity
Ethernet Phy and connector
HS USB-C connectors
SPI/I²C/UART connector (PMOD/mikroBUS, DNP)
WiFi connector (PMOD/mikroBUS, DNP)
CAN-FD transceiver
Debug
On-board MCU-Link debugger with CMSIS-DAP
JTAG/SWD connector
Sensor
P3T1755 I³C/I²C Temp Sensor, Touch Pad
Expansion Options
Arduino Header (with FRDM expansion rows)
FRDM Header
FlexIO/LCD Header
SmartDMA/Camera Header
Pmod *DNP
mikroBUS
User Interface
RGB user LED, plus Reset, ISP, Wakeup buttons
Lieferumfang
1x FRDM-MCXN947 Development Board
1x USB-C Cable
1x Quick Start Guide
Downloads
Datasheet
Block diagram
Das Power Delivery Board verwendet einen eigenständigen Controller, um mit den Stromadaptern zu verhandeln und auf eine höhere Spannung als nur 5V umzuschalten. Dies verwendet den gleichen Stromadapter für verschiedene Projekte, anstatt sich auf mehrere Stromadapter zu verlassen, die unterschiedliche Ausgangsspannungen bereitstellen. Das Board kann als Teil des Qwiic-Connect-Systems von SparkFun geliefert werden, so dass Sie keine Lötarbeiten durchführen müssen, um herauszufinden, wie die Dinge ausgerichtet sind.
Das SparkFun Power Delivery Board nutzt die Vorteile des Power-Delivery-Standards mit einem Standalone-Controller von STMicroelectronics, dem STUSB4500. Der STUSB4500 ist ein USB-Power-Delivery-Controller, der Senkengeräte anspricht. Er implementiert einen proprietären Algorithmus zur Aushandlung eines Stromversorgungsvertrags mit einer Quelle (d. h. einer Steckdose oder einem Netzteil), ohne dass ein externer Mikrocontroller erforderlich ist. Sie benötigen jedoch einen Mikrocontroller, um die Karte zu konfigurieren. PDO-Profile werden in einem integrierten nichtflüchtigen Speicher konfiguriert. Der Controller übernimmt die ganze Arbeit der Leistungsaushandlung und bietet eine einfache Möglichkeit zur Konfiguration über I2C.
Um die Karte zu konfigurieren, benötigen Sie einen I2C-Bus. Das Qwiic-System macht es einfach, das Power Delivery Board mit einem Mikrocontroller zu verbinden. Je nach Anwendung können Sie den I2C-Bus auch über die durchkontaktierten SDA- und SCL-Löcher anschließen.
Merkmale
Eingangs- und Ausgangsspannungsbereich von 5-20V
Ausgangsstrom bis zu 5A
Drei konfigurierbare Stromabgabeprofile
Automatischer Type-C™- und USB-PD-Sink-Controller
Zertifizierter USB Type-C™ rev 1.2 und USB PD rev 2.0 (TID #1000133)
Integrierte VBUS-Spannungsüberwachung
Integrierte VBUS-Switch-Gate-Treiber (PMOS)
Nach dem Einschalten beginnt der YDLIDAR G4 sich zu drehen und die Umgebung um sich herum zu scannen. Die Scandistanz beträgt 16 m und das Gerät bietet eine Scanrate von 9.000 Mal pro Sekunde.
Es macht detaillierte Untersuchungen seiner Umgebung und kann die kleinsten Objekte um sich herum lokalisieren. Mit einem hochpräzisen bürstenlosen Motor und einem Encoder-Disc, der auf Lagern montiert ist, dreht es sich reibungslos und hat eine Betriebsdauer von bis zu 500.000 Stunden.
Der G4 ist eine kostengünstige Lösung für Projekte, die Hinderniserkennung, Hindernisvermeidung und/oder simultane Lokalisierung und Kartierung (SLAM) erfordern. Alle YDLIDAR-Produkte sind ROS-ready.
Features
360 Grad 2D-Reichweiten-Scanning
Stabile Leistung, hohe Präzision
16 m Reichweite
Starke Widerstandsfähigkeit gegenüber Umgebungslichtinterferenzen
Bürstenloser Motorantrieb, stabile Leistung
FDA-Lasersicherheitsstandard Klasse I
360 Grad omnidirektionales Scanning, 5-12 Hz adaptive Scanning-Frequenz
OptoMagnetic-Technologie
Drahtlose Datenkommunikation
Scanrate von 9000 Hz
Dokumentation
ROS-Treiber
Ydlidar-Download-Seite
Unten im Abschnitt "Downloads" finden Sie das Datenblatt sowie die Benutzer- und Entwicklungsanleitungen.
Dieses Trägerboard kombiniert ein 2,4"-TFT-Display, sechs adressierbare LEDs, einen Onboard-Spannungsregler, einen 6-poligen IO-Anschluss und einen microSD-Steckplatz mit dem M.2-Steckplatz, sodass es mit kompatiblen Prozessorboards in unserem MicroMod-Ökosystem verwendet werden kann. Außerdem haben wir dieses Trägerboard mit dem ATtiny84 von Atmel mit 8kb programmierbarem Flash bestückt. Dieser kleine Kerl ist vorprogrammiert, um mit dem Prozessor über I2C zu kommunizieren und Tastendrücke zu lesen.
Features
M.2 MicroMod-Anschluss
240 x 320 Pixel, 2,4" TFT-Display
6 adressierbare APA102 LEDs
Magnetischer Buzzer
USB-C-Anschluss
3,3 V 1 A Spannungsregler
Qwiic-Anschluss
Boot/Reset-Tasten
RTC-Backup-Batterie & Ladeschaltung
microSD
Phillips #0 M2,5 x 3 mm Schraube enthalten
Der Milk-V Duo 256M ist eine ultrakompakte Embedded-Entwicklungsplattform basierend auf dem SG2002-Chip. Es kann Linux und RTOS ausführen und bietet eine zuverlässige, kostengünstige und leistungsstarke Plattform für Profis, industrielle ODMs, AIoT-Enthusiasten, Heimwerker und Entwickler.
Dieses Board ist eine aktualisierte Version von Duo mit einer Speichererweiterung auf 256 TMB und eignet sich für Anwendungen, die größere Speicherkapazitäten erfordern. Der SG2002 erhöht die Rechenleistung auf 1,0 TOPS @ INT8. Es ermöglicht den nahtlosen Wechsel zwischen RISC-V/ARM-Architekturen und unterstützt den gleichzeitigen Betrieb dualer Systeme. Darüber hinaus umfasst es eine Reihe umfangreicher GPIO-Schnittstellen wie SPI und UART, die für eine breite Palette von Hardwareentwicklungen im Bereich intelligenter Edge-Überwachung geeignet sind, darunter IP-Kameras, intelligente Türspionschlösser, visuelle Türklingeln und mehr.
SG2002 ist ein leistungsstarker Chip mit geringem Stromverbrauch, der für verschiedene Produktbereiche wie intelligente IP-Überwachungskameras, intelligente Türschlösser, visuelle Türklingeln und Heimintelligenz entwickelt wurde. Es integriert H.264-Videokomprimierung und -Dekodierung, H.265-Videokomprimierungskodierung und ISP-Funktionen. Es unterstützt mehrere Bildverbesserungs- und Korrekturalgorithmen wie HDR Wide Dynamic Range, 3D-Rauschunterdrückung, Antibeschlag und Objektivverzerrungskorrektur und bietet Kunden eine professionelle Videobildqualität.
Der Chip enthält außerdem eine selbst entwickelte TPU, die 1,0 TOPS Rechenleistung bei 8-Bit-Integer-Operationen liefert. Die speziell entwickelte TPU-Planungs-Engine sorgt effizient für einen Datenfluss mit hoher Bandbreite für alle Kerne der Tensor-Verarbeitungseinheit. Darüber hinaus bietet es Benutzern einen leistungsstarken Deep-Learning-Modell-Compiler und ein Software-SDK-Entwicklungskit. Führende Deep-Learning-Frameworks wie Caffe und Tensorflow können problemlos auf die Plattform portiert werden. Darüber hinaus umfasst es Sicherheitsstart, sichere Updates und Verschlüsselung und bietet eine Reihe von Sicherheitslösungen von der Entwicklung über die Massenproduktion bis hin zu Produktanwendungen.
Der Chip integriert ein 8-Bit-MCU-Subsystem und ersetzt die typische externe MCU, um Kosteneinsparungs- und Energieeffizienzziele zu erreichen.
Technische Daten
SoC
SG2002
RISC-V CPU
C906 @ 1 Ghz + C906 @ 700 MHz
Arm CPU
1x Cortex-A53 @ 1 GHz
MCU
8051 @ 6 KB SRAM
Speicher
256 MB SIP-DRAM
TPU
1,0 TOPS @ INT8
Speicher
1x microSD-Anschluss oder 1x SD NAND an Bord
USB
1x USB-C für Strom und Daten, USB-Pads verfügbar
CSI
1x 16P FPC-Anschluss (MIPI CSI 2-spurig)
Sensorunterstützung
5 M bei 30 fps
Ethernet
100 Mbit/s Ethernet mit PHY
Audio
Über GPIO-Pads
GPIO
Bis zu 26x GPIO-Pads
Stromversorgung
5 V/1 A
OS-Unterstützung
Linux, RTOS
Abmessungen
21 x 51 mm
Downloads
Documentation
GitHub
Maker Line ist ein Zeilensensor mit einem Array aus 5 IR-Sensoren, der Linien mit einer Breite von 13 mm bis 30 mm verfolgen kann.
Auch die Sensorkalibrierung wird vereinfacht. Es ist nicht mehr nötig, das Potentiometer für jeden einzelnen IR-Sensor einzustellen. Sie müssen nur die Kalibrierungstaste 2 Sekunden lang drücken, um in den Kalibrierungsmodus zu wechseln. Anschließend müssen Sie das Sensorarray über die Linie bewegen, die Taste erneut drücken und schon kann es losgehen.
Die Kalibrierungsdaten werden im EEPROM gespeichert und bleiben auch nach dem Ausschalten des Sensors erhalten. Die Kalibrierung muss daher nur einmal durchgeführt werden, es sei denn, die Sensorhöhe, Linienfarbe oder Hintergrundfarbe hat sich geändert.
Maker Line unterstützt auch zwei Ausgänge: 5 x digitale Ausgänge für den Zustand jedes Sensors unabhängig voneinander, was einem herkömmlichen IR-Sensor ähnelt, aber Sie profitieren von der einfachen Kalibrierung, und auch ein analoger Ausgang, dessen Spannung die Linienposition darstellt. Der analoge Ausgang bietet auch eine höhere Auflösung im Vergleich zu einzelnen digitalen Ausgängen. Dies ist besonders nützlich, wenn beim Bau eines Linienverfolgungsroboters mit PID-Steuerung eine hohe Genauigkeit erforderlich ist.
Features
Betriebsspannung: DC 3,3 V und 5 V kompatibel (mit Verpolungsschutz)
Empfohlene Linienbreite: 13 mm bis 30 mm
Wählbare Linienfarbe (hell oder dunkel)
Erfassungsabstand (Höhe): 4 mm bis 40 mm (Vcc = 5 V, schwarze Linie auf weißer Oberfläche)
Sensor-Aktualisierungsrate: 200 Hz
Einfacher Kalibrierungsprozess
Duale Ausgabetypen: 5 x digitale Ausgänge repräsentieren jeden IR-Sensorstatus, 1 x analoger Ausgang repräsentiert die Zeilenposition.
Unterstützt eine breite Palette von Controllern wie Arduino, Raspberry Pi usw.
Downloads
Datenblatt
Tutorial: Einen kostengünstigen Linienverfolgungsroboter bauen
Hier finden Sie alle Arten von Teilen, Komponenten und Zubehör, die Sie in verschiedenen Projekten benötigen, angefangen von einfachen Kabeln, Sensoren und Displays bis hin zu bereits vormontierten Modulen und Kits.