Es enthält alles, was Sie zum Betrieb des Mikrocontrollers benötigen. Schließen Sie es einfach mit einem USB-Kabel am Computer an oder speisen Sie es mit einem AC/DC-Adapter oder einer Batterie, um loszulegen. Das Mega 2560 Board ist kompatibel mit den meisten Shields, die für den Uno und die früheren Boards Duemilanove oder Diecimila entwickelt wurden.
Betriebsspannung
5 V
Eingangsspannung
7 V - 12 V
Digitaler E/A
54
Analoge Eingangs-Pins
16
Gleichstrom pro I/O-Pin
20 mA
Gleichstrom für 3,3-V-Pin
50 mA
Flash-Speicher
256 KB davon 8 KB vom Bootloader genutzt
SRAM
8 KB
EEPROM
4 KB
Taktfrequenz
16MHz
LED_Builtin
13
Länge
101.52 mm
Breite
53.3 mm
Gewicht
37 g
Weitere Informationen finden Sie in der Getting Started Guide von Arduino.
Was ist mit den Siebdrucketiketten? Sie sind überall verteilt. Wir haben uns entschieden, die Pins so zu beschriften, wie sie auf dem Apollo3-IC selbst belegt sind. Das macht das Auffinden des Pins mit der gewünschten Funktion sehr viel einfacher. Werfen Sie einen Blick auf die vollständige Pin-Karte aus dem Apollo3-Datenblatt. Wenn Sie wirklich die 4-Bit-SPI-Funktionalität des Artemis testen wollen, müssen Sie auf die Pins 4, 22, 23 und 26 zugreifen. Möchten Sie den differentiellen ADC-Port 1 ausprobieren? Die Pins 14 und 15. Mit dem RedBoard Artemis ATP können Sie die beeindruckenden Fähigkeiten des Artemis-Moduls ausreizen.
Das RedBoard Artemis ATP verfügt über die verbesserte Stromaufbereitung und USB-zu-Seriell, die wir über die Jahre bei unserer RedBoard-Produktlinie verfeinert haben. Ein moderner USB-C-Anschluss macht die Programmierung einfach. Ein Qwiic-Anschluss macht I²C einfach. Der ATP ist vollständig kompatibel mit dem Arduino-Kern von SparkFun und kann einfach unter der Arduino-IDE programmiert werden. Wir haben den JTAG-Anschluss für fortgeschrittene Anwender freigelegt, die lieber die Leistung und Geschwindigkeit professioneller Tools nutzen möchten.
Wenn Sie ein Lot von einem GPIO mit einem einfachen Programm benötigen, ist das ATP das richtige Modul für den Markt. Wir haben ein digitales MEMS-Mikrofon für Leute hinzugefügt, die mit Always-on-Sprachbefehlen mit TensorFlow und maschinellem Lernen experimentieren wollen. Wir haben sogar einen praktischen Jumper hinzugefügt, um den Stromverbrauch für Tests mit geringem Stromverbrauch zu messen.
Mit 1MB Flash und 384k RAM haben Sie viel Platz für Ihre Skizzen. Das Artemis-Modul läuft mit 48MHz, wobei ein 96MHz-Turbo-Modus zur Verfügung steht, und ist zudem mit Bluetooth ausgestattet!
Merkmale
Arduino Mega Footprint
1M Flash / 384k RAM
48MHz / 96MHz Turbo verfügbar
6uA/MHz (arbeitet mit weniger als 5mW bei vollem Betrieb)
48 GPIO - alle interruptfähig
31 PWM-Kanäle
Eingebauter BLE-Funk
10 ADC-Kanäle mit 14-Bit-Präzision mit bis zu 2,67 Millionen Abtastungen pro Sekunde effektiv und kontinuierlich, Multi-Slot-Abtastrate
2 Kanal-Differenzial-ADC
2 UARTs
6 I²C-Busse
6 SPI-Busse
2/4/8-Bit-SPI-Bus
PDM-Schnittstelle
I²S-Schnittstelle
Sichere 'Smart Card'-Schnittstelle
Qwiic-Anschluss
Das Leonardo unterscheidet sich von allen vorherigen Boards dadurch, dass der ATmega32u4 über integrierte USB-Kommunikation verfügt, wodurch ein zweiter Prozessor überflüssig wird. Dadurch kann das Leonardo für einen angeschlossenen Computer als Maus und Tastatur fungieren und verfügt zusätzlich über einen virtuellen (CDC) seriellen/COM-Port.
Mikrocontroller
ATMega4809
Betriebsspannung
5 V
Eingangsspannung
7 V bis 12 V
Analoge Eingangspins
12
PWM-Pins
7
DC E/A-Pin
20
Gleichstrom pro E/A-Pin
20 mA
Gleichstrom für 3,3 V Pin
50 mA
Flash-Speicher
32 KB, davon 4 KB vom Bootloader genutzt
SRAM
2,5 KB
EEPROM
1 KB
Taktfrequenz
16 MHz
Länge
68,6 mm
Breite
53,3 mm
Gewicht
20 g
Der Micro enthält alles, was zur Unterstützung des Mikrocontrollers benötigt wird. Schließen Sie ihn einfach mit einem Micro-USB-Kabel an einen Computer an, und schon kann es losgehen. Dank seines Formfaktors kann er problemlos auf einem Steckbrett platziert werden.
Die Micro-Platine ähnelt dem Arduino Leonardo darin, dass der ATmega32U4 über integrierte USB-Kommunikation verfügt, wodurch ein zweiter Prozessor überflüssig wird. Dadurch kann der Micro für einen angeschlossenen Computer als Maus und Tastatur fungieren und verfügt zusätzlich über einen virtuellen (CDC) seriellen/COM-Anschluss.
Mikrocontroller
ATmega32U4
Betriebsspannung
5 V
Eingangsspannung
7 V bis 12 V
Analoge Eingangspins
12
PWM-Pins
7
DC E/A-Pin
20
Gleichstrom pro E/A-Pin
20 mA
Gleichstrom für 3,3 V Pin
50 mA
Flash-Speicher
32 KB, davon 4 KB vom Bootloader genutzt
SRAM
2,5 KB
EEPROM
1 KB
Taktfrequenz
16 MHz
LED_Eingebaut
13
Länge
45 mm
Breite
18 mm
Gewicht
13 g
Bluno ist das erste seiner Art, das ein Bluetooth 4.0 (BLE)-Modul in Arduino Uno integriert, was es zu einer idealen Prototyping-Plattform für Software- und Hardwareentwickler macht, die BLE nutzen möchten. Sie können Ihr eigenes Smart-Armband, Ihren eigenen intelligenten Schrittzähler und vieles mehr entwickeln. Durch die stromsparende Bluetooth 4.0-Technologie wird Echtzeitkommunikation mit geringem Energieverbrauch ganz einfach.
Bluno integriert einen TI CC2540 BT 4.0-Chip mit dem Arduino UNno. Es ermöglicht drahtlose Programmierung über BLE, unterstützt Bluetooth HID, AT-Befehle zur Konfiguration von BLE und Sie können die BLE-Firmware problemlos aktualisieren. Bluno ist außerdem mit allen „Arduino Uno“-Pins kompatibel, was bedeutet, dass jedes mit Uno erstellte Projekt direkt drahtlos werden kann!
Spezifikationen
Integrierter BLE-Chip: TI CC2540
Drahtlose Programmierung über BLE
Unterstützt Bluetooth HID Unterstützt AT-Befehle zur Konfiguration von BLE
Transparente Kommunikation über Serial
Einfaches Upgrade der BLE-Firmware
Gleichstromversorgung: Stromversorgung über USB oder extern, 7–12 V Gleichstrom
Mikrocontroller: Atmega328
Bootloader: Arduino Uno (trennen Sie alle BLE-Geräte, bevor Sie eine neue Skizze hochladen)
Kompatibel mit der Arduino Uno-Pin-Zuordnung
Größe: 60 x 53 mm (2,36 x 2,08 Zoll)
Gewicht: 30 g
Der Hauptprozessor des Boards ist ein stromsparender Arm® Cortex®-M0 32-bit SAMD21. Die WiFi- und Bluetooth®-Konnektivität wird mit einem Modul von u-blox, dem NINA-W10, realisiert, einem stromsparenden Chipsatz, der im 2,4-GHz-Bereich arbeitet. Darüber hinaus wird die sichere Kommunikation durch den Microchip® ECC608 Krypto-Chip gewährleistet. Außerdem gibt es eine 6-Achsen-IMU, die dieses Board perfekt für einfache Vibrationsalarmsysteme, Schrittzähler, die relative Positionierung von Robotern usw. macht.
WiFi und Arduino IoT Cloud
Sie können Ihr Board mit jeder Art von bestehendem WiFi-Netzwerk verbinden oder es verwenden, um Ihren eigenen Arduino Access Point zu erstellen. Die spezifischen Beispiele, die wir für den Nano 33 IoT bereitstellen, können auf der WiFiNINA library reference page eingesehen werden.
Es ist auch möglich, das Board mit verschiedenen Cloud-Diensten zu verbinden, unter anderem mit dem Arduino-eigenen. Hier sind einige Beispiele, wie man die Arduino-Boards dazu bringt, sich zu verbinden:
Arduinos eigene IoT-Cloud: Die IoT-Cloud von Arduino ist ein einfacher und schneller Weg, um eine sichere Kommunikation für alle Ihre angeschlossenen Dinge zu gewährleisten. Probieren Sie es hier.
Blynk: ein einfaches Projekt aus unserer Community, das eine Verbindung zu Blynk herstellt, um das Board mit wenig Code von einem Telefon aus zu bedienen.
IFTTT: sehen Sie einen ausführlichen Fall von Bau eines intelligenten Steckers, der mit IFTTT verbunden ist.
AWS IoT Core: Wir haben dieses Beispiel erstellt, wie man sich mit Amazon Web Services verbindet.
Azure: Besuchen Sie dieses GitHub-Repository, das erklärt, wie man einen Temperatursensor mit der Azure-Cloud verbindet.
Firebase: Wenn Sie eine Verbindung zu Googles Firebase herstellen möchten, zeigt Ihnen diese Arduino-Bibliothek, wie es geht.
Mikrokontroller
SAMD21 Cortex®-M0+ 32bit low power ARM MCU
Funkmodul
u-blox NINA-W102
Sicherheitselement
ATECC608A
Betriebsspannung
3.3 V
Eingangsspannung
21 V
Digitale E/A-Pins
14
PWM Pins
11
DC Strom pro I/O Pin
7 mA
Analoge Eingangs-Pins
8
Analoge Ausgangsstifte
1
Externe Interrupts
Alle digitalen Pins
UART
1
SPI
1
I2C
1
Flash-Speicher
256 KB
SRAM
32 KB
EEPROM
none
Taktgeschwindigkeit
48 MHz
LED_Builtin
13
USB
Eigenständig im SAMD21-Prozessor
IMU
LSM6DS3
Länge
45 mm
Breite
18 mm
Gewicht
5 g
Der Hauptprozessor des Boards ist ein stromsparender Arm® Cortex®-M0 32-bit SAMD21, wie bei den anderen Boards der Arduino MKR Familie. Für die WiFi- und Bluetooth®-Konnektivität sorgt ein Modul von u-blox, der NINA-W10, ein stromsparender Chipsatz, der im 2,4-GHz-Bereich arbeitet. Darüber hinaus wird die sichere Kommunikation durch den Microchip® ECC508 Krypto-Chip gewährleistet. Außerdem befinden sich ein Batterieladegerät und eine RGB-LED an Bord.
Offizielle Arduino WiFi-Bibliothek
Sie können Ihr Board mit jeder Art von bestehendem WiFi-Netzwerk verbinden oder es verwenden, um Ihren eigenen Arduino Access Point zu erstellen. Die spezifischen Beispiele, die wir für das MKR WiFi 1010 bereitstellen, können auf der WiFiNINA library reference page eingesehen werden.
Kompatibel mit anderen Cloud-Diensten
Es ist auch möglich, das Board mit verschiedenen Cloud-Diensten zu verbinden, unter anderem mit dem von Arduino. Hier sind einige Beispiele, wie man das MKR WiFi 1010 zum Verbinden bringen kann:
Blynk: ein einfaches Projekt der Arduino-Gemeinschaft, das eine Verbindung zu Blynk herstellt, um Ihr Board mit wenig Code von einem Telefon aus zu bedienen
IFTTT: Ausführliche Darstellung des Aufbaus eines intelligenten Steckers, der mit IFTTT verbunden ist
AWS IoT-Kern: Arduino hat dieses Beispiel für die Verbindung zu Amazon Web Services erstellt
Azure: Besuchen Sie dieses GitHub-Repository, das erklärt, wie man einen Temperatursensor mit der Azure-Cloud verbindet
Firebase: Wenn Sie eine Verbindung zu Googles Firebase herstellen möchten, zeigt Ihnen diese Arduino-Bibliothek
Mikrokontroller
SAMD21 Cortex®-M0+ 32bit low power ARM MCU
Funkmodul
u-blox NINA-W102
Spannungsversorgung
5 V
Sicherheitselement
ATECC508
Unterstützte Batterie
Li-Po Single Cell, 3.7 V, 1024 mAh Minimum
Betriebsspannung
3.3 V
Digitale E/A-Pins
8
PWM Pins
13
UART
1
SPI
1
I2C
1
Analoge Eingangspins
7
Analoge Ausgangsstifte
1
Externe Interrupts
10
Flash-Speicher
256 KB
SRAM
32 KB
EEPROM
no
Taktgeschwindigkeit
32.768 kHz, 48 MHz
LED_Builtin
6
USB
USB-Gerät und eingebetteter Host
Länge
61.5 mm
Breite
25 mm
Gewicht
32 g
Der Arduino Nano 33 BLE Sense Rev2 mit Headers ist Arduinos 3,3 V AI-fähiges Board im kleinstmöglichen Formfaktor und mit einer Reihe von Sensoren ausgestattet, die es Ihnen ermöglichen, ohne externes Zubehör sofort mit der Programmierung Ihres nächsten Projekts zu beginnen.
Mit dem Arduino Nano 33 BLE Sense Rev2 können Sie:
Tragbare Geräte bauen, die mithilfe von KI Bewegungen erkennen können.
Ein Raumtemperaturüberwachungsgerät bauen, das Änderungen am Thermostat vorschlagen oder vornehmen kann.
Ein Gesten- oder Spracherkennungsgerät unter Verwendung des Mikrofons oder des Gestensensors in Kombination mit den KI-Fähigkeiten des Boards bauen.
Unterschiede zwischen Rev1 und Rev2:
Austausch des IMU von LSM9DS1 (9-Achsen) durch eine Kombination aus zwei IMUs (BMI270 - 6-Achsen-IMU und BMM150 - 3-Achsen-IMU)
Austausch des Temperatur- und Feuchtigkeitssensors von HTS221 durch HS3003
Austausch des Mikrofons von MP34DT05 durch MP34DT06JTR
Austausch der Stromversorgung MPM3610 durch MP2322
Hinzufügen eines VUSB-Lötjumpers auf der Oberseite des Boards
Neuer Testpunkt für USB, SWDIO und SWCLK
Specifications
Microkontroller
nRF52840 (Datenblatt)
Betriebsspannung
3.3 V
Eingangsspannung (Grenzwert)
21 V
DC-Strom pro I/O-Pin
15 mA
Taktgeschwindigkeit
64 MHz
CPU-Flash-Speicher
1 MB (nRF52840)
SRAM
256 KB (nRF52840)
EEPROM
None
Digitale Ein-/Ausgangspins
14
PWM-Pins
Alle digitalen Pins
UART
1
SPI
1
I²C
1
Analogeingangspins
8 (ADC 12 bit 200 k samples)
Analogausgangspins
Only through PWM (no DAC)
Externe Unterbrechungen
Alle digitalen Pins
LED_BUILTIN
13
USB
Nativ im nRF52840-Prozessorr
IMU
BMI270 (Datenblatt) and BMM150 (Datenblatt)
Mikrofon
MP34DT06JTR (Datenblatt)
Geste, Licht, Nähe, Farbe
APDS9960 (Datenblatt)
Barometrischer Druck
LPS22HB (Datenblatt)
Temperatur, Luftfeuchtigkeit
HS3003 (Datenblatt)
Downloads
Datenblatt
Schaltpläne
Das ATmega328 Uno Development Board (Arduino Uno kompatibel) ist ein Mikrocontroller-Board, das auf dem ATmega328 basiert.
Es verfügt über 14 digitale Ein-/Ausgangspins (von denen 6 als PWM-Ausgänge verwendet werden können), 6 analoge Eingänge, einen 16 MHz-Keramikresonator, einen USB-Anschluss, eine Strombuchse, einen ICSP-Header und eine Reset-Taste.
Es enthält alles, was zur Unterstützung des Mikrocontrollers erforderlich ist. Schließen Sie es über ein USB-Kabel an einen Computer an oder betreiben Sie es mit einem AC-DC-Adapter oder einer Batterie, um loszulegen.
Technische Daten
Mikrocontroller
ATmega328
Betriebsspannung
5 V DC
Eingangsspannung (empfohlen)
7-12 V DC
Eingangsspannung (Grenzwerte)
6-20 V DC
Digitale I/O-Pins
14 (davon 6 mit PWM-Ausgang)
Analoge Eingangspins
6
SRAM
2 kB (ATmega328)
EEPROM
1 kB (ATmega328)
Flash-Speicher
32 kB (ATmega328), davon 0,5 kB vom Bootloader verwendet
Taktgeschwindigkeit
16 MHz
Downloads
Manual
Das Portenta C33 ist ein leistungsstarkes System-on-Module, das für kostengünstige Internet-of-Things (IoT)-Anwendungen entwickelt wurde. Basierend auf dem R7FA6M5BH2CBG Mikrocontroller von Renesas hat dieses Board den gleichen Formfaktor wie das Portenta H7 und ist mit diesem rückwärtskompatibel, wodurch es durch seine High-Density-Anschlüsse vollständig mit allen Schilden und Trägern der Portenta-Familie kompatibel ist.
Als kostengünstiges Gerät ist das Portenta C33 eine ausgezeichnete Wahl für Entwickler, die IoT-Geräte und -Anwendungen mit geringem Budget erstellen möchten. Ganz gleich, ob Sie ein Smart-Home-Gerät oder einen vernetzten Industriesensor entwickeln, der Portenta C33 bietet die Verarbeitungsleistung und die Konnektivitätsoptionen, die Sie benötigen, um Ihre Arbeit zu erledigen.
Mit Portenta C33 lassen sich KI-gestützte Projekte schnell und einfach umsetzen, da eine Vielzahl an gebrauchsfertigen Software-Bibliotheken und Arduino-Sketches sowie Widgets zur Anzeige von Daten in Echtzeit auf Arduino IoT Cloud-basierten Dashboards zur Verfügung stehen.
Features
Ideal für kostengünstige IoT-Anwendungen mit Wi-Fi/Bluetooth LE-Konnektivität
Unterstützt MicroPython und andere höhere Programmiersprachen
Bietet Sicherheit auf Hardwareebene auf Industrieniveau und sichere OTA-Firmware-Updates
Nutzt gebrauchsfertige Softwarebibliotheken und Arduino-Skizzen
Perfekt zum Überwachen und Anzeigen von Echtzeitdaten auf Arduino IoT Cloud-Widget-basierten Dashboards
Kompatibel mit den Arduino-Portenta- und MKR-Familien
Mit Kronenstiften für automatische Montagelinien
Kostengünstige Leistung
Portenta C33 ist zuverlässig, sicher und verfügt über eine seiner Reichweite würdige Rechenleistung. Er wurde entwickelt, um großen und kleinen Unternehmen in allen Bereichen die Möglichkeit zu bieten, auf das IoT zuzugreifen und von höheren Effizienzniveaus und Automatisierung zu profitieren.
Applikationen
Portenta C33 bietet Nutzern mehr Anwendungen als je zuvor, von der schnellen Plug-and-Play-Prototyperstellung bis hin zur Bereitstellung einer kostengünstigen Lösung für Projekte im industriellen Maßstab.
Industrielles IoT-Gateway
Maschinenüberwachung zur Verfolgung von OEE/OPE
Inline-Qualitätskontrolle und -sicherung
Überwachung des Energieverbrauchs
Gerätesteuerungssystem
Gebrauchsfertige IoT-Prototyping-Lösung
Technische Daten
Mikrocontroller
Renesas R7FA6M5BH2CBG ARM Cortex-M33:
ARM Cortex-M33 Core mit bis zu 200 MHz
512 kB Onboard-SRAM
2 MB Onboard-Flash
Arm TrustZone
Secure Crypto Engine 9
Externe Speicher
16 MB QSPI Flash
USB-C
USB-C High-Speed
Konnektivität
100 MB Ethernet-Schnittstelle (PHY)
Wi-Fi
Bluetooth Low Energy
Schnittstellen
CAN
SD-Karte
ADC
GPIO
SPI
I²S
I²C
JTAG/SWD
Sicherheit
NXP SE050C2 Sicheres Element
Betriebstemperatur
-40 bis +85 °C
Abmessungen
66,04 x 25,40 mm
Downloads
Datasheet
Schematics
Portenta X8 ist ein leistungsstarkes, industrietaugliches SOM mit vorinstalliertem Linux-Betriebssystem, das dank seiner modularen Container-Architektur geräteunabhängige Software ausführen kann. Nutzen Sie die Vorteile der integrierten Wi-Fi/Bluetooth Low Energy-Konnektivität, um OS-/Anwendungs-OTA-Updates sicher durchzuführen. Es sind im Grunde zwei Industrieprodukte in einem, mit der Leistung von nicht weniger als 9 Kernen. Nutzen Sie die Arduino-Umgebung, um Echtzeitaufgaben auszuführen, während Linux sich um die Hochleistungsverarbeitung kümmert.
Portenta X8 verfügt über einen NXP i.MX 8M Mini Cortex-A53 Quad-Core, bis zu 1,8 GHz pro Kern + 1x Cortex-M4 bis zu 400 MHz, sowie die STMicroelectronics STM32H747 Dual-Core Cortex-M7 bis zu 480 MHz + M4 32-Bit-ARM-MCU bis zu 240 MHz.
Features
Kombination von zwei Industrieprodukten in einem, Arduinos umfangreichen Bibliothekenschatz und container-basierter Linux-Distribution
Herausragende Rechenleistung – insgesamt 9 Kerne bei geringsten Abmessungen
Multiprozessor-Architektur für leistungsoptimierte Verarbeitung
Nutzen Sie beliebte Programmiersprachen wie Python, Java, Ruby und andere
Echtzeit-I/O und Feldbus/Steuerung auf einem dedizierten Kern
Stellen Sie leistungsstarke KI-Algorithmen und maschinelles Lernen bereit (Edge computing)
Sichere Over-the-Air Updates von OS und Applikationen
Industrietaugliche Sicherheit gelöst über Hardware, dank Crypto-Chip mit dediziertem Bus
Nutzen Sie die umfangreichen Arduino-Entwicklungen zur Erweiterung der Portenta-Funktionen
Implementierung von Multiprotokoll-Routing auf einem einzigen Modul
Kompatibilität mit anderen Arduino Portenta Produkten
Sicherheit in Industriequalität
Portenta X8 wurde im Hinblick auf industrielle Sicherheit entwickelt.
PSA-zertifiziert und umfasst das NXP SE050C2-Hardware-Sicherheitselement für Schlüsselgenerierung, beschleunigte Kryptooperationen und sichere Datenspeicherung.
Ausgezeichnet mit der ARM „SystemReady“-Zertifizierung und integrierten Parsec-Services, welches damit als eines der ersten Cassini-Produkte auf dem Entwicklermarkt zur Verfügung steht.
Portenta X8 enthält das anpassbare Open-Source-Betriebssystem Linux microPlatform. Dieses basiert auf den besten Industriepraktiken für End-to-End-Sicherheit, inkrementelle OTA-Updates und Flottenmanagement.
Portenta X8 nutzt die Cloud-basierte DevOps-Plattform von Foundries.io und damit die sich ständig neu verbesserte Methode wie man Embedded-Linux-Lösungen erstellt, testet, bereitstellt und wartet und profitiert von Foundries.io kontinuierlichen Update-Service für Cybersicherheit. Dieser Dienst garantiert für ein aktualisiertes Image mit sämtlichen Schwachstellen-Patches. Daneben entkoppelt der Ansatz mit Containern das Betriebssystem von der Applikation, um das gesamte System unabhängig auf dem neuesten Stand zu halten.
Applikationen
Portenta X8 ermöglicht es IT-Experten, Systemintegratoren und Beratungsunternehmen eine Vielzahl von Lösungen für industrielle Aufgaben zu entwickeln und zu verbessern und eignet sich auch für Gebäudeautomation und intelligente Landwirtschaftsanwendungen.
Vernetzter Edge-Computer für die Fertigung
Autonome Transportsysteme (Autonomous Guided Vehicles – AGV)
Interaktive sichere Full-HD-Kioske und Digital Dienste
Büro- und Haussteuerungssysteme
Navigation und Steuerung für intelligente Landwirtschaft
Verhaltensanalyse für Büros und Fabriken
Downloads
Datasheet
Schematics
Der Portenta H7 Lite ermöglicht es Ihnen, Ihr nächstes intelligentes Projekt zu erstellen.
Haben Sie sich jemals ein automatisiertes Haus oder einen smarten Garten gewünscht? Nun, mit den Arduino-IoT-Cloud-kompatiblen Boards ist es jetzt einfach. Das heißt: Sie können Geräte verbinden, Daten visualisieren, Projekte von überall auf der Welt steuern und teilen.
Der Portenta H7 Lite ist dem Portenta H7 sehr ähnlich, da er gleichzeitig hochgradigen Code zusammen mit Echtzeitaufgaben dank seiner beiden Prozessoren ausführen kann. Zum Beispiel ist es möglich, Code den Arduino-kompilierten Code zusammen mit MicroPython auszuführen und beide Kerne miteinander kommunizieren zu lassen. Der H7 Lite ist jedoch ein kostengünstiges Board mit H7-Funktionalitäten, das für spezifische Anwendungsfälle konfiguriert werden kann.
Eigenschaften
Dual Core – Zwei beste Prozessoren in einem, die parallel Aufgaben ausführen
AI on the Edge – So leistungsstark, dass es AI-Zustandsmaschinen ausführen kann
Anpassungsfähigkeit – Das Board ist in Volumen hochgradig anpassungsfähig
Unterstützung von hochgradigem Programmiersprachen (Micropython)
Der Portenta H7 Lite bietet doppelte Funktionalität: Er kann wie jedes andere eingebettete Mikrocontroller-Board ausgeführt werden oder als Hauptprozessor eines eingebetteten Computers.
Zum Beispiel können Sie mit dem Portenta Vision Shield Ihren H7 Lite in eine industrielle Kamera verwandeln, die in der Lage ist, auf lebendigen Videostreams Echtzeit-Maschinenlernalgorithmen auszuführen. Da der H7 Lite einfach Prozesse, die mit TensorFlow Lite erstellt wurden, ausführen kann, könnte einer der Kerne auf der Fly einen Computer Vision-Algorithmus berechnen, während der andere niedrigschwellige Operationen wie das Steuern eines Motors oder das Verhalten als Benutzeroberfläche ausführt.
Lösungen
Hochwertige industrielle Maschinen
Laborgeräte,
computergestützte Bildverarbeitung,
Programmierbare Logiksteuerungen,
Robotersteuerungen,
gerätekritische Geräte,
schneller Boot-Vorgang (in Millisekunden)
Zwei parallele Kerne
Die Portenta H7 Lite wird von einem STM32H747 Dual Core mit einem Cortex-M7, der mit 480 MHz arbeitet, und einem Cortex-M4, der mit 240 MHz betrieben wird, angetrieben. Die beiden Kerne kommunizieren über ein Remote-Prozeduraufruf-Mechanismus, mit dem Funktionen auf dem anderen Prozessor nahtlos aufgerufen werden können. Beide Prozessoren teilen sich alle on-Chip-Peripheriegeräte und können ausgeführt werden:
Arduino-Skizzen auf der ARM Mbed OS
Native Mbed-Anwendungen
MicroPython / JavaScript über einen Interpreter
TensorFlow Lite
Ein neuer Standard für Pinouts
Die Portenta-Familie fügt zwei 80-Pin-High-Density-Stecker am Boden des Boards hinzu. Dies stellt die Skalierbarkeit für eine Vielzahl von Anwendungen sicher: Erweitern Sie einfach Ihr Portenta-Board auf dasjenige, das Ihren Anforderungen entspricht.
USB-C Mehrzweckanschluss
Der Programmieranschluss des Boards ist ein USB-C-Anschluss, der auch zum Energieversorgen des Boards, als USB-Hub oder zur Energieversorgung von OTG-verbundenen Geräten verwendet werden kann.
Arduino IoT Cloud
Verwenden Sie Ihr Portenta-Board in der Arduino IoT Cloud, einer einfachen und schnellen Möglichkeit, um sichere Kommunikation für alle Ihre verbundenen Dinge zu gewährleisten.
Spezifikationen
Microcontroller
STM32H747XI Dual Cortex-M7+M4 32-Bit Low-Power ARM-MCU (Datenblatt)
Sicherheitselement (Standard)
Microchip ATECC608
Stromversorgung des Boards (USB/VIN)
5 V
Unterstützter Akku
Li-Po Einzelzelle, 3,7 V, 700 mAh Minimum (integriertes Ladegerät)
Betriebsspannung des Schaltkreises
3.3 V
Stromverbrauch
2,95 ?A im Standby-Modus (Backup-SRAM OFF, RTC/LSE ON)
Timer
22x Timer und Watchdogs
UART
4x Ports (2 mit Flusskontrolle)
Ethernet PHY
10/100 Mbps (nur über Erweiterungsport)
SD card
Schnittstelle für SD-Kartenstecker (nur über Erweiterungsport)
Betriebstemperatur
-40 °C to +85 °C
MKR Header
Verwendung von vorhandenen industriellen MKR-Shields
Hochdichte Anschlüsse
Zwei 80-polige Anschlüsse werden alle Peripheriegeräte des Boards anderen Geräten zugänglich machen
Kamera-Schnittstelle
8-Bit, bis zu 80 MHz
ADC
3x ADCs mit 16-Bit max. Auflösung (bis zu 36 Kanäle, bis zu 3,6 MSPS)
DAC
2x 12-Bit DAC (1 MHz)
USB-C
Host/Gerät, Hoch/Voll Geschwindigkeit, Leistungsabgabe
Downloads
Datenblatt
Schaltpläne
Der Arduino MKR Zero ist eine Entwicklungsplatine für Musikproduzenten! Mit einem SD-Kartenhalter und dedizierten SPI-Schnittstellen (SPI1) können Sie Musikdateien ohne zusätzliche Hardware abspielen.
Der MKR Zero bietet Ihnen die Leistung eines Zero im kleineren Format des MKR-Formfaktors. Das MKR Zero-Board ist ein großartiges Bildungswerkzeug, um 32-Bit-Anwendungsentwicklung kennenzulernen. Es verfügt über einen On-Board-SD-Anschluss mit dedizierten SPI-Schnittstellen (SPI1), mit dem Sie Musikdateien ohne zusätzliche Hardware abspielen können! Das Board wird von Atmels SAMD21-MCU betrieben, die einen 32-Bit-ARM-Cortex-M0+-Kern aufweist.
Das Board enthält alles, was zum Unterstützen des Mikrocontrollers benötigt wird. Schließen Sie es einfach über ein Mikro-USB-Kabel an einen Computer an oder betreiben Sie es mit einer LiPo-Batterie. Die Batteriespannung kann ebenfalls überwacht werden, da eine Verbindung zwischen der Batterie und dem Analog-Digital-Wandler des Boards besteht.
Spezifikationen:
Mikrocontroller
SAMD21 ARM Cortex-M0+ 32-Bit Low Power
Stromversorgung des Boards (USB/VIN)
5 V
Unterstützte Batterie
Li-Po Einzelzelle, mindestens 3,7 V, 700 mAh
Gleichstrom für 3,3 V Pin
600 mA
Gleichstrom für 5 V Pin
600 mA
Betriebsspannung des Schaltkreises
3.3 V
Digitale I/O-Pins
22
PWM-Pins
12 (0, 1, 2, 3, 4, 5, 6, 7, 8, 10, A3 - oder 18 -, A4 - oder 19)
UART
1
SPI
1
I²C
1
Analoge Eingangspins
7 (ADC 8/10/12 bit)
Analoge Ausgangspins
1 (DAC 10 bit)
Externe Unterbrechungen
10 (0, 1, 4, 5, 6, 7, 8, A1 - oder 16 -, A2 - oder 17)
Gleichstrom pro I/O-Pin
7 mA
Flash-Speicher
256 KB
Flash-Speicher für Bootloader
8 KB
SRAM
32 KB
EEPROM
No
Taktgeschwindigkeit
32.768 kHz (RTC), 48 MHz
LED_BUILTIN
32
Downloads
Datasheet
Eagle-Dateien
Schaltpläne
Fritzing
Pinbelegung
Der Arduino MKR NB 1500 ermöglicht es Ihnen, Ihr nächstes intelligentes Projekt zu entwickeln.
Haben Sie schon einmal von einem automatisierten Haus oder einem intelligenten Garten geträumt? Mit den Arduino IoT Cloud-kompatiblen Boards wird es jetzt einfach. Sie können Geräte anschließen, Daten visualisieren, Projekte von überall auf der Welt steuern und teilen. Egal, ob Sie Anfänger oder Profi sind, wir bieten eine breite Palette von Plänen an, um sicherzustellen, dass Sie die Funktionen erhalten, die Sie benötigen.
Fügen Sie Ihrem Projekt mit dem MKR NB 1500 die Narrowband-Kommunikation hinzu. Er ist die perfekte Wahl für Geräte an abgelegenen Orten ohne Internetverbindung oder in Situationen, in denen keine Stromversorgung verfügbar ist, wie z.B. bei Feldinstallationen, Fernmesssystemen, solarbetriebenen Geräten oder anderen extremen Szenarien.
Der Hauptprozessor des Boards ist ein stromsparender ARM Cortex-M0 32-Bit-SAMD21, wie auch bei anderen Boards der Arduino MKR-Familie. Die Narrowband-Konnektivität erfolgt über ein Modul von u-blox, das SARA-R410M-02B, ein stromsparender Chipsatz, der in verschiedenen Bändern des IoT-LTE-Zellbereichs arbeitet. Darüber hinaus wird die sichere Kommunikation durch den Microchip ECC508-Crypto-Chip gewährleistet. Das PCB enthält auch einen Batterielader und einen Anschluss für eine externe Antenne.
Dieses Board ist für den weltweiten Einsatz konzipiert und bietet Konnektivität in den LTE Cat M1/NB1-Bändern 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28. Zu den Betreibern, die Dienste in diesem Teil des Spektrums anbieten, gehören unter anderem Vodafone, AT&T, T-Mobile USA, Telstra und Verizon.
Spezifikationen
Der Arduino MKR NB 1500 basiert auf dem SAMD21-Mikrocontroller.
Microcontroller
SAMD21 Cortex-M0+ 32-bit low power ARM MCU (Datenblatt)
Funkmodul
u-blox SARA-R410M-02B (Zusammenfassung des Datenblatts)
Sicherheitselement:
ATECC508 (Datenblatt)
Stromversorgung des Boards (USB/VIN)
5 V
Unterstützte Batterie
Li-Po-Einzelle, 3,7 V, 1500 mAh Minimum
Betriebsspannung des Schaltkreises
3.3 V
Digitale I/O-Pins
8
PWM-Pins
13 (0 .. 8, 10, 12, 18 / A3, 19 / A4)
UART
1
SPI
1
I²C
1
Analogeingangspins
7 (ADC 8/10/12 bit)
Analogausgangspin
1 (DAC 10 bit)
Externe Unterbrechungen
8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2)
Stromstärke pro I/O-Pin
7 mA
Flash-Speicher
256 KB (internal)
SRAM
32 KB
EEPROM
No
Taktfrequenz
32.768 kHz (RTC), 48 MHz
LED_BUILTIN
6
USB
USB-Gerät in voller Geschwindigkeit und integrierter Host
Antennengewinn
2 dB
Carrier frequency
LTE bands 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28
Leistungsklasse (Funk)
LTE Cat M1/NB1: Klasse 3 (23 dBm)
Datenrate (LTE M1 Halb-Duplex)
UL 375 kbps / DL 300 kbps
Datenrate (LTE NB1 Full-Duplex)
UL 62.5 kbps / DL 27.2 kbps
Arbeitsbereich
Multiregion
Geräteposition
GNSS über Modem
Stromverbrauch (LTE M1)
min 100 mA / max 190 mA
Stromverbrauch (LTE NB1)
min 60 mA / max 140 mA
SIM-Karte
MicroSIM (nicht im Lieferumfang enthalten)
Abmessungen
67.6 x 25 mm
Gewicht
32 g
SPI
1
I²C
1
Analogeingangspins
7 (ADC 8/10/12 bit)
Analogausgangspin
1 (DAC 10 bit)
Externe Unterbrechungen
8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2)
Stromstärke pro I/O-Pin
7 mA
Flash-Speicher
256 KB (internal)
SRAM
32 KB
EEPROM
No
Taktfrequenz
32.768 kHz (RTC), 48 MHz
LED_BUILTIN
6
USB
USB-Gerät in voller Geschwindigkeit und integrierter Host
Antennengewinn
2 dB
Carrier frequency
LTE bands 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28
Leistungsklasse (Funk)
LTE Cat M1/NB1: Klasse 3 (23 dBm)
Datenrate (LTE M1 Halb-Duplex)
UL 375 kbps / DL 300 kbps
Datenrate (LTE NB1 Full-Duplex)
UL 62.5 kbps / DL 27.2 kbps
Arbeitsbereich
Multiregion
Geräteposition
GNSS über Modem
Stromverbrauch (LTE M1)
min 100 mA / max 190 mA
Stromverbrauch (LTE NB1)
min 60 mA / max 140 mA
SIM-Karte
MicroSIM (nicht im Lieferumfang enthalten)
Abmessungen
67.6 x 25 mm
Gewicht
32 g
Downloads
Eagle-dateien
Schaltpläne
Anschlussbelegung
Max Carrier verwandelt Portenta-Module in Einplatinencomputer oder Referenzdesigns, die Edge AI für leistungsstarke Industrie-, Gebäudeautomatisierungs- und Robotikanwendungen ermöglichen. Dank dedizierter High-Density-Anschlüsse kann er mit Portenta X8 oder H7 gekoppelt werden, so dass Sie Ihre industriellen Projekte einfach entwickeln und einsetzen können. Dieser Arduino Pro-Träger erweitert die Portenta-Konnektivitätsoptionen mit Fieldbus, LoRa, Cat-M1 und NB-IoT.
Unter den vielen verfügbaren Plug-and-Play-Anschlüssen befinden sich Ethernet, USB-A, Audiobuchsen, microSD, mini-PCIe, FD-CAN und serielle RS232/422/485.
Max Carrier kann über eine externe Stromversorgung (6-36 V) oder über den integrierten 18650 Li-Ionen-Akku mit 3,7-V-Ladegerät betrieben werden.
Features/h2>
Einfache Erstellung von Prototypen für industrielle Anwendungen und Verkürzung der Markteinführungszeit
Ein leistungsstarker Träger, der Portenta-Peripheriegeräte (z. B. CAN, RS232/422/485, USB, mPCIe) freilegt
Mehrere Konnektivitätsoptionen (Ethernet, LoRa, CAT-M1, NB-IoT)
MicroSD für Datenprotokollierungsvorgänge
Integrierte Audiobuchsen (Line-In, Line-Out, Mic-In)
Standalone bei Batteriebetrieb
Integrierter JTAG-Debugger über Micro-USB (nur bei Portenta H7)
Technische Daten
Anschlüsse
High-Density-Anschlüsse kompatibel mit Portenta-Produkten2x USB-A Buchsen1x Gigabit-Ethernet-Anschluss (RJ45)1x FD-Can auf RJ111x mPCIe1x Serielle RS232/422/485 auf RJ12
Audio
3x Audioanschlüsse: Stereo-Line-In/Line-Out, Mic-InLautsprecheranschluss
Speicher
Micro SD
Drahtlose Module
Murata CMWX1ZZABZ-078 LoRaSARA-R412M-02B (Kat.M1/NB-IoT)
Betriebstemperaturen
-40 °C bis +85 °C (-40° F bis 185 °F)
Debugging
Integrierte JLink OB / Blackmagic-Sonde
Strom/Akku
Stromanschluss für externe Versorgung (6-36 V)Integrierter 18650 Li-Ion-Akku-Anschluss mit Ladegerät (3,7 V)
Dimensionen
101.6 x 101.6 mm (4.0 x 4.0")
Downloads
Datasheet
Schematics
Portenta HAT Carrier ist ein zuverlässiges und und robustes Board, das Portenta X8 in einen industriellen Einplatinencomputer verwandelt, der mit Raspberry Pi-HATs und -Kameras kompatibel ist. Es ist ideal für zahlreiche industrielle Anwendungen wie Gebäudeautomation und Maschinenüberwachung.
Portenta HAT Carrier ist auch mit Portenta H7 und Portenta C33 kompatibel und bietet einfachen Zugriff auf mehrere Peripheriegeräte – einschließlich CAN, Ethernet, microSD und USB – und erweitert jede Portenta-Anwendung weiter.
Es eignet sich hervorragend für das Prototyping und für die Skalierung. Es erweitert die Funktionen eines typischen Raspberry Pi Modell B. Debuggen Sie schnell mit dedizierten JTAG-Pins und halten Sie mit einem PWM-Lüfteranschluss die Wärme auch bei intensiver Arbeitslast unter Kontrolle. Steuern Sie Aktoren oder lesen Sie analoge Sensoren über die zusätzlichen 16x analogen I/Os aus. Fügen Sie jedem Projekt industrielle Bildverarbeitungslösungen hinzu, indem Sie den integrierten Kameraanschluss nutzen.
Features
Fügen Sie Raspberry Pi HATs zu Ihren Portenta-Projekten hinzu
Schneller Zugriff auf CAN-, USB- und Ethernet-Peripheriegeräte
Nutzen Sie die integrierte MicroSD-Karte, um Daten zu protokollieren
Genießen Sie das einfache Debuggen über die integrierten JTAG-Pins
Aktoren einfach steuern und Sensoren über 16x analoge I/Os auslesen
Nutzung des integrierten Kameraanschlusses für maschinelles Sehen
Portenta führt Sie vom Prototyp zur Hochleistungslösung
Portenta HAT Carrier bietet Ihnen ein reibungsloses Linux-Prototyping-Erlebnis und eröffnet die Möglichkeit für integrierte Echtzeit-MCU-Lösungen. Portenta HAT Carrier erweitert Portenta SOMs für schnellere, einfachere und effizientere Tests Ihrer Ideen und stellt gleichzeitig die Fähigkeiten und Leistungen auf Industrieniveau sicher, für die die Portenta-Reihe bekannt ist.
Erweitern Sie das Raspberry Pi-Ökosystem für kommerzielle Anwendungen
Kombinieren Sie die Benutzerfreundlichkeit, Zugänglichkeit und unglaubliche Unterstützung der Arduino- und Raspberry Pi-Community für Ihr nächstes Projekt mit diesem Carrier, der darauf ausgelegt ist, MPU- und MCU-Anwendungen für die Entwicklung fortschrittlicher kommerzieller Lösungen zu kombinieren und zu erweitern.
Technische Daten
Anschlüsse
Steckverbinder mit hoher Dichte, kompatibel mit Portenta-Produkten
1x USB-A-Buchse
1x Gigabit-Ethernet-Anschluss (RJ45)
1x CAN FD mit integriertem Transceiver
1x MIPI-Kameraanschluss
1x MicroSD-Kartensteckplatz
1x PWM-Lüfteranschluss
40-poliger Header-Anschluss für Kompatibilität mit Raspberry Pi HATs
16-polige analoge Header-Anschlüsse, einschließlich:
8x analoge Eingänge
1x GPIO
1x UART ohne Flusskontrolle
2x PWM-Pins
1x LICELL-Pin für Portentas RTC-Stromversorgung
Schnittstellen
CAN FD
UART
ORKB
ANALOG
GPIO
SPI
I²C
I²S
PWM
Debuggen
Onboard 10x Pin 1,27 mm JTAG-Anschluss
Stromversorgung
Vom integrierten Schraubklemmenblock aus, der Folgendes ermöglicht:
7-32 V Netzteil, das sowohl den Carrier als auch den angeschlossenen Portenta mit Strom versorgt
5 V Netzteil
Via USB-C auf Portenta
Ab 5 V über 40-poligen Stiftleistenstecker
Abmessungen
85 x 56 mm
Downloads
Datasheet
Schematics
Der Portenta Cat. M1/NB IoT GNSS-Shield ermöglicht Ihnen, die Verbindungsfunktionen Ihrer Portenta H7-Anwendungen zu verbessern. Der Shield nutzt ein Cinterion TX62-Wireless-Modul von Thales, das für hocheffiziente, energieeffiziente IoT-Anwendungen entwickelt wurde, um eine optimierte Bandbreite und Leistung zu garantieren.
Der Portenta Cat. M1/NB IoT GNSS-Shield verbindet sich mit der starken Edge-Computing-Leistung des Portenta H7 und ermöglicht die Entwicklung von Asset-Tracking- und Fernüberwachungsanwendungen in industriellen Einstellungen sowie in Landwirtschaft, öffentlichen Einrichtungen und smarten Städten. Der Shield bietet eine Zellularverbindung für beide Cat. M1- und NB-IoT-Netze mit der Option, eSIM-Technologie zu verwenden. Verfolgen Sie Ihre Wertgegenstände einfach - in der Stadt oder weltweit - mit Ihrer Wahl aus GPS, GLONASS, Galileo oder BeiDou.
Funktionen
Verändern Sie die Verbindungsfähigkeiten ohne Änderung des Boards
Fügen Sie NB-IoT, CAT. M1 und Positionsbestimmung zu jedem Portenta-Produkt hinzu
Möglichkeit, einen kleinen Multiprotokoll-Router (WiFi - BT + NB-IoT/CAT. M1) zu erstellen
Verringern Sie die Kommunikationsbandbreitenanforderungen in IoT-Anwendungen erheblich
Niedrigenergie-Modul
Auch mit MKR-Boards kompatibel
Fernüberwachung
Industrielle und landwirtschaftliche Unternehmen können das Portenta Cat. M1/NB IoT GNSS-Shield nutzen, um Gasmessgeräte, optische Sensoren, Maschinenalarmsysteme, biologische Schädlingsfallen und mehr fern überwachen zu können.
Technologieanbieter, die Smart-City-Lösungen bereitstellen, können die Leistung und Zuverlässigkeit des Portenta H7 durch den Portenta Cat. M1/NB IoT GNSS-Shield verstärken, um Daten zu verbinden und Aktionen zu automatisieren, um eine wirklich optimierte Ressourcennutzung und eine verbesserte Benutzererfahrung zu ermöglichen.
Vermögensüberwachung
Fügen Sie Überwachungsfähigkeiten zu jedem Vermögen hinzu, indem Sie die Leistung und Edge-Computing-Funktionen der Portenta-Familienboards kombinieren. Das Portenta Cat. M1/NB IoT GNSS-Shield ist ideal zur Überwachung wertvoller Güter und auch zur Überwachung von industriellen Maschinen und Ausrüstungen.
Spezifikationen
Verbindungsfähigkeit
Cinterion TX62 Wireless-Modul; NB-IoT - LTE CAT.M1; 3GPP Rel.14 kompatibles Protokoll LTE Cat. M1/NB1/NB2; UMTS BÄNDE: 1 / 2 / 3 / 4 / 5 / 8 / 12(17) / 13 / 18 / 19 / 20 / 25 / 26 / 27 / 28 / 66 / 71 / 85; LTE Cat.M1 DL: max. 300 kbps, UL: max. 1,1 Mbps; LTE Cat.NB1 DL: max. 27 kbps, UL: max. 63 kbps; LTE Cat.NB2 DL: max. 124 kbps, UL: max. 158 kbps
Kurznachrichtendienst (SMS)
Punkt-zu-Punkt-Mobilterminierung (MT) und Mobilorigination (MO) Text-Modus; Protokoll-Dateneinheit (PDU) Modus
Lokalisierungsunterstützung
GNSS-Fähigkeit (GPS/BeiDou/Galileo/GLONASS)
Sonstiges
Eingebetteter IPv4- und IPv6-TCP/IP-Stack-Zugriff; Internetdienste: TCP-Server/Client, UDP-Client, DNS, Ping, HTTP-Client, FTP-Client, MQTT-Client; Sichere Verbindung mit TLS/DTLS; sicherer Bootvorgang
Dimensionen
66 x 25,4 mm
Betriebstemperatur
-40° C to +85° C (-104° F to 185°F)
Downloads
Datenblatt
Schaltpläne