Merkmale:
1,54-Zoll-IPS-TFT-Display mit einer Auflösung von 240 x 240, das Text oder Videos anzeigen kann
Stereo-Lautsprecheranschlüsse für die Audiowiedergabe – entweder Text-to-Speech, Benachrichtigungen oder zum Erstellen eines Sprachassistenten.
Stereo-Kopfhörerausgang für die Audiowiedergabe über eine Stereoanlage, Kopfhörer oder Aktivlautsprecher. Stereo-Mikrofoneingang – perfekt für die Erstellung Ihrer ganz eigenen Smart-Home-Assistenten
Zwei 3-polige JST STEMMA-Anschlüsse, mit denen weitere Tasten, ein Relais oder sogar einige NeoPixel angeschlossen werden können!
Der STEMMA QT Plug-and-Play-I2C-Port kann mit jedem der 50+ I2C STEMMA QT-Boards von Adafruit verwendet werden oder kann mit einem Adapterkabel zum Anschluss an Grove I2C-Geräte verwendet werden.
5-Wege-Joystick + Taste für Benutzeroberfläche und Steuerung.
Drei RGB-DotStar-LEDs für farbenfrohes LED-Feedback.
Über den STEMMA QT-Anschluss können Sie Wärmebildsensoren wie den Panasonic Grid-EYE oder MLX90640 anschließen. Wärmeempfindliche Kameras können auch im Dunkeln als Personendetektor verwendet werden! Ein externer Beschleunigungsmesser kann zur Gesten- oder Vibrationserkennung angeschlossen werden, z. B. bei vorausschauenden Maschinen-/Industriewartungsprojekten
Bitte beachten Sie: Ein Raspberry Pi 4 ist nicht im Lieferumfang enthalten.
Diese 900-MHz-Funkversion kann entweder für 868 MHz oder 915 MHz Senden/Empfangen verwendet werden - die genaue Funkfrequenz wird beim Laden der Software festgelegt, da sie dynamisch umgestimmt werden kann.
Das Herzstück des Feather 32u4 ist ein ATmega32u4, der mit 8 MHz getaktet ist und mit 3,3 V Logik arbeitet. Dieser Chip hat 32 K Flash und 2 K RAM, mit eingebautem USB, so dass er nicht nur eine USB-zu-Seriell-Programm- und Debug-Fähigkeit besitzt, ohne dass ein FTDI-ähnlicher Chip erforderlich ist, sondern auch als Maus, Tastatur, USB-MIDI-Gerät usw. fungieren kann.
Um die Verwendung für tragbare Projekte zu erleichtern, haben wir einen Anschluss für 3,7-V-Lithium-Polymer-Batterien und eine integrierte Ladefunktion eingebaut. Sie brauchen keine Batterie, das Gerät läuft problemlos direkt über den Micro-USB-Anschluss. Wenn du aber einen Akku hast, kannst du ihn mitnehmen und dann zum Aufladen an den USB-Anschluss anschließen. Der Feather schaltet automatisch auf USB-Strom um, wenn dieser verfügbar ist. Außerdem haben wir die Batterie über einen Teiler mit einem analogen Pin verbunden, so dass Sie die Batteriespannung messen und überwachen können, um zu erkennen, wann Sie eine Aufladung benötigen.
Merkmale
Dimensionen 2,0" x 0,9" x 0,28" (51 x 23 x 8 mm) ohne eingelötete Header
Leicht wie eine (große?) Feder - 5,5 Gramm
ATmega32u4 @ 8 MHz mit 3,3 V Logik/Stromversorgung
3,3-V-Regler mit 500-mA-Spitzenstromausgang
Native USB-Unterstützung, mit USB-Bootloader und Debugging über die serielle Schnittstelle
Sie erhalten außerdem eine Vielzahl von Pins - 20 GPIO-Pins
Hardware Seriell, Hardware I²C, Hardware SPI Unterstützung
7x PWM-Anschlüsse
10x analoge Eingänge
Eingebautes 100 mA Lipoly-Ladegerät mit Ladestatusanzeige-LED
Pin #13 rote LED für allgemeines Blinken
Power/Enable-Pin
4 Befestigungslöcher
Reset-Taste
Das Feather 32u4 Radio nutzt den zusätzlichen Platz, der übrig bleibt, um ein RFM69HCW 868/915 MHz Funkmodul hinzuzufügen. Diese Funkmodule eignen sich nicht für die Übertragung von Audio- oder Videodaten, aber sie eignen sich sehr gut für die Übertragung kleiner Datenpakete, wenn Sie eine größere Reichweite als 2,4 GHz benötigen (BT, BLE, WiFi, ZigBee).
SX1231-basiertes Modul mit SPI-Schnittstelle
Packet Radio mit vorgefertigten Arduino-Bibliotheken
Verwendet das lizenzfreie ISM-Band ("European ISM" @ 868 MHz oder "American ISM" @ 915 MHz)
+13 bis +20 dBm bis zu 100 mW Ausgangsleistung (Ausgangsleistung in Software wählbar)
50 mA (+13 dBm) bis 150 mA (+20 dBm) Stromaufnahme für Übertragungen
Reichweite von ca. 350 Metern, abhängig von Hindernissen, Frequenz, Antenne und Ausgangsleistung
Aufbau von Mehrpunkt-Netzwerken mit individuellen Knotenadressen
Verschlüsselte Packet Engine mit AES-128
Einfache Drahtantenne oder Spot für uFL-Anschluss
Komplett zusammengebaut und getestet, mit einem USB-Bootloader, mit dem Sie es schnell mit der Arduino IDE verwenden können. Kopfstücke sind auch enthalten, so dass Sie es einlöten und in ein lötfreies Breadboard stecken können. Sie müssen ein kleines Stück Draht abschneiden und anlöten (jeder Volldraht oder Litze ist in Ordnung), um Ihre Antenne zu erstellen.
Lipoly-Batterie und USB-Kabel nicht enthalten.
Im Inneren des RP2040 befindet sich ein USB-UF2-Bootloader mit „permanentem ROM“. Das heißt, wenn Sie eine neue Firmware programmieren möchten, können Sie die BOOTSEL-Taste gedrückt halten, während Sie sie an USB anschließen (oder den RUN/Reset-Pin auf Masse ziehen), und es erscheint als USB-Laufwerk, auf das Sie die Firmware ziehen können auf zu. Leute, die Adafruit-Produkte verwendet haben, werden dies sehr vertraut finden – Adafruit verwendet die Technik auf allen seinen nativen USB-Boards. Beachten Sie jedoch, dass Sie nicht auf „Reset“ doppelklicken, sondern stattdessen beim Booten BOOTSEL gedrückt halten, um den Bootloader aufzurufen!
Der RP2040 ist ein leistungsstarker Chip, der die Taktrate unseres M4 (SAMD51) und zwei Kerne hat, die unserem M0 (SAMD21) entsprechen. Da es sich um einen M0-Chip handelt, verfügt er weder über eine Gleitkommaeinheit noch über DSP-Hardwareunterstützung. Wenn Sie also etwas mit starker Gleitkommaberechnung tun, erfolgt dies in der Software und ist daher nicht so schnell wie ein M4. Für viele andere Rechenaufgaben erreichen Sie Geschwindigkeiten, die nahezu M4-Geschwindigkeiten entsprechen! Für Peripheriegeräte gibt es zwei I²C-Controller, zwei SPI-Controller und zwei UARTs, die über den GPIO gemultiplext sind – überprüfen Sie die Pinbelegung, um herauszufinden, welche Pins auf welche eingestellt werden können. Es gibt 16 PWM-Kanäle, jeder Pin hat einen Kanal, auf den er eingestellt werden kann (das Gleiche gilt für die Pinbelegung).
Technische Spezifikationen
Maße: 2,0 x 0,9 x 0,28' (50,8 x 22,8 x 7 mm) ohne eingelötete Stiftleisten
Leicht wie eine (große?) Feder – 5 Gramm
RP2040 32-Bit-Cortex-M0+-Dual-Core mit ~125 MHz bei 3,3 V Logik und Stromversorgung
264 KB RAM
8 MB SPI FLASH-Chip zum Speichern von Dateien und zur Speicherung von CircuitPython/MicroPython-Code. Kein EEPROM
Tonnenweise GPIO! 21 x GPIO-Pins mit folgenden Funktionen:
Vier 12-Bit-ADCs (einer mehr als Pico)
Zwei I²C-, zwei SPI- und zwei UART-Peripheriegeräte, eines ist für die „Hauptschnittstelle“ an Standard-Feather-Positionen gekennzeichnet
16 x PWM-Ausgänge – für Servos, LEDs usw
Die 8 digitalen „Nicht-ADC/Nicht-Peripherie“-GPIOs sind für maximale PIO-Kompatibilität hintereinander angeordnet
Eingebautes 200-mA+-Lipolyse-Ladegerät mit Ladestatusanzeige-LED
Pin Nr. 13 rote LED für allgemeines Blinken
RGB NeoPixel für Vollfarbanzeige.
Integrierter STEMMA QT-Anschluss, mit dem Sie schnell und ohne Löten alle Qwiic-, STEMMA QT- oder Grove I²C-Geräte anschließen können!
Sowohl die Reset-Taste als auch die Bootloader-Auswahltaste für schnelle Neustarts (kein Herausziehen und erneutes Einstecken zum Neustarten des Codes)
3,3 V Strom-/Aktivierungspin
Für den Debug-Zugriff kann ein optionaler SWD-Debug-Port eingelötet werden
4 Befestigungslöcher
24-MHz-Quarz für perfektes Timing.
3,3-V-Regler mit 500-mA-Spitzenstromausgang
Mit dem USB-Typ-C-Anschluss können Sie auf den integrierten ROM-USB-Bootloader und das Debuggen der seriellen Schnittstelle zugreifen
RP2040-Chipfunktionen
Dual ARM Cortex-M0+ bei 133 MHz
264 KB On-Chip-SRAM in sechs unabhängigen Bänken
Unterstützung für bis zu 16 MB Off-Chip-Flash-Speicher über dedizierten QSPI-Bus
DMA-Controller
Vollständig verbundene AHB-Querschiene
Interpolator- und Ganzzahlteiler-Peripheriegeräte
On-Chip-programmierbarer LDO zur Erzeugung der Kernspannung
2 On-Chip-PLLs zur Erzeugung von USB- und Kerntakten
30 GPIO-Pins, davon 4 als analoge Eingänge nutzbar
Peripheriegeräte
2 UARTs
2 SPI-Controller
2 I²C-Controller
16 PWM-Kanäle
USB 1.1-Controller und PHY, mit Host- und Geräteunterstützung
8 PIO-Zustandsmaschinen
Wird komplett montiert und getestet geliefert, mit dem UF2 USB-Bootloader. Adafruit bringt auch einen Header mit, sodass Sie ihn einlöten und in ein lötfreies Steckbrett stecken können.
Ist dein Haus von Geistern heimgesucht? Oder bist du vielmehr überzeugt, dass dein Haus von Geistern heimgesucht wird, aber du konntest es nie beweisen, weil du nie eine Kamera hattest, die mit deinem Raspberry Pi Zero kompatibel war und dennoch klein genug war, dass die Geister sie nicht bemerken würden?
Zum Glück ist die Spionagekamera für den Raspberry Pi Zero kleiner als ein Daumennagel und hat eine ausreichend hohe Auflösung, um Personen, Geister oder wonach auch immer du suchst, zu erkennen. Sie hat etwa die Größe einer Handykamera – das Modul ist nur 8,6 x 8,6 mm groß – und hat nur ein 2-Zoll-Kabel, sodass du eine extra kompakte und unauffällige Spionagekamera erstellen kannst. Sie verfügt über einen Fokalwinkel von 160 Grad für einen sehr breiten/verzerrten Fischaugeneffekt, der sich hervorragend für Sicherheitssysteme oder die Überwachung eines großen Bereichs im Wohnzimmer oder auf der Straße eignet.
Wie das Raspberry Pi Kameramodul wird sie über den kleinen Steckverbinder am Rand des Boards, der dem "PWR in"-Anschluss am nächsten liegt, mit deinem Raspberry Pi Zero v1.3 oder Zero W verbunden. Diese Schnittstelle verwendet die dedizierte CSI-Schnittstelle, die speziell für die Verbindung von Kameras entwickelt wurde. Der CSI-Bus ist in der Lage, extrem hohe Datenraten zu übertragen, und er transportiert ausschließlich Pixeldaten.
Die Kamera ist über den CSI-Bus mit dem BCM2835-Prozessor auf dem Raspberry Pi verbunden, einer Verbindung mit höherer Bandbreite, die Pixeldaten von der Kamera zum Prozessor überträgt. Dieser Bus verläuft entlang des Flachbandkabels, das das Kameramodul mit dem Pi verbindet. Die Flachbandkabel sind mit sowohl dem RPi Zero v1.3 als auch dem RPi Zero W kompatibel.
Der Sensor selbst hat eine natürliche Auflösung von 5 Megapixeln und verfügt über ein festes Fokusobjektiv. Er hat ähnliche Spezifikationen wie die originale RPi-Kamera, ist aber nicht so hochauflösend wie die neue RPi-Kamera v2!
Technische Daten
Kameramodulabmessungen: 8,6 x 8,6 mm
Linsendurchmesser: 10 mm
Gesamtlänge: 60 mm
Fokalwinkel der Linse: 160 Grad
Gewicht: 1,9 g
Merkmale
Einfache Einstellung des Gleitwinkels
„Sandwich“-Schutzplatten für das Kameramodul
Hergestellt aus kristallklarem, lasergeschnittenem Acryl im Vereinigten Königreich
1/4 Zoll Loch für Stativmontage
Stabiles 4-Fuß-Gestell
Hier finden Sie die Montageanleitung .
If you enjoy DIY electronics, projects, software and robots, you’ll find this book intellectually stimulating and immediately useful. With the right parts and a little guidance, you can build robot systems that suit your needs more than overpriced commercial systems can.
20 years ago, robots based on simple 8-bit processors and touch sensors were the norm. Now, it’s possible to build multi-core robots that can react to their surroundings with intelligence. Today’s robots combine sensor readings from accelerometers, gyroscopes and computer vision sensors to learn about their environments. They can respond using sophisticated control algorithms and they can process data both locally and in the cloud.
This book, which covers the theory and best practices associated with advanced robot technologies, was written to help roboticists, whether amateur hobbyist or professional, take their designs to the next level. As will be seen, building advanced applications does not require extremely costly robot technology. All that is needed is simply the knowledge of which technologies are out there and how best to use each of them.
Each chapter in this book will introduce one of these different technologies and discuss how best to use it in a robotics application. On the hardware side, we’ll cover microcontrollers, servos, and sensors, hopefully inspiring you to design your own awe-inspiring, next-generation systems. On the software side, we’ll cover programming languages, debugging, algorithms, and state machines. We’ll focus on the Arduino, the Parallax Propeller, Revolution Education PICAXE and projects I’ve with which I’ve been involved, including the TBot educational robot, the PropScope oscilloscope, the 12Blocks visual programming language, and the ViewPort development environment. In addition, we’ll serve up a comprehensive introduction to a variety of essential topics, including output (e.g. LEDs, servo motors), and communication technologies (e.g. infrared, audio), that you can use to develop systems that interact to stimuli and communicate with humans and other robots. To make these topics as accessible as possible, handy schematics, sample code and practical tips regarding building and debugging have been included.
Hanno Sander
Christchurch, New Zealand
Master the software tools behind the STM32 microcontroller
This book is project-based and aims to teach the software tools behind STM32 microcontroller programming. Author Majid Pakdel has developed projects using various different software development environments including Keil MDK, IAR Embedded Workbench, Arduino IDE and MATLAB. Readers should be able to use the projects as they are, or modify them to suit to their own needs. This book is written for students, established engineers, and hobbyists. STM32 microcontroller development boards including the STM32F103 and STM32F407 are used throughout the book. Readers should also find it easy to use other ARM-based development boards.
Advanced Programming with STM32 Microcontrollers includes:
Introduction to easy-to-use software tools for STM32
Accessing the features of the STM32
Practical, goal oriented learning
Complete code available online
Producing practical projects with ease
Topics cover:
Pulse Width Modulation
Serial Communication
Watchdog Timers
I²C
Direct Memory Access (DMA)
Finite State Machine Programming
ADCs and DACs
External Interupts
Timers and Counters
Grundlagen und Simulation mit Multisim
Analoge Filterschaltungen bilden die schaltungstechnischen Grundlagen in der Elektronik, Messtechnik, Nachrichtentechnik, Computertechnik usw. Die Bauelemente Widerstand, Kondensator und Spule sind die Grundlagen der passiven Filtertechnik.
Filter haben Einfluss auf die Signalamplitude, die Signalform (zeitlicher Verlauf) und Signallaufzeit (Signalverlauf). Mit diesen Voraussetzungen werden Zweipole, Vierpole, Hoch- und Tiefpässe behandelt. Daraus resultieren Frequenz- und Phasengang, Dämpfung, Bandpass, Bandsperre und Doppel-T-Filter.
Der Operationsverstärker arbeitet als Verstärker in der aktiven Filtertechnik. Erklärt werden in diesem Buch auch aktive Hoch- und Tiefpassfilter der 1., 2., 3. und höherer Ordnung, Unterschiede zwischen Gauß-, Bessel-, Butterworth- und Tschebyscheff-Funktionen, aktive Bandpass- und Bandsperrfilter, Allpassfilter und Universalfilter.
Dieses Buch basiert auf dem bekannten Programm Multisim und Spice. Damit lassen sich alle Versuche simulieren.
Grundlagen und Simulation mit Multisim
Analoge Filterschaltungen bilden die schaltungstechnischen Grundlagen in der Elektronik, Messtechnik, Nachrichtentechnik, Computertechnik usw. Die Bauelemente Widerstand, Kondensator und Spule sind die Grundlagen der passiven Filtertechnik.
Filter haben Einfluss auf die Signalamplitude, die Signalform (zeitlicher Verlauf) und Signallaufzeit (Signalverlauf). Mit diesen Voraussetzungen werden Zweipole, Vierpole, Hoch- und Tiefpässe behandelt. Daraus resultieren Frequenz- und Phasengang, Dämpfung, Bandpass, Bandsperre und Doppel-T-Filter.
Der Operationsverstärker arbeitet als Verstärker in der aktiven Filtertechnik. Erklärt werden in diesem Buch auch aktive Hoch- und Tiefpassfilter der 1., 2., 3. und höherer Ordnung, Unterschiede zwischen Gauß-, Bessel-, Butterworth- und Tschebyscheff-Funktionen, aktive Bandpass- und Bandsperrfilter, Allpassfilter und Universalfilter.
Dieses Buch basiert auf dem bekannten Programm Multisim und Spice. Damit lassen sich alle Versuche simulieren.
Mit seinem Buch möchte der Autor dem Einsteiger in die analoge Elektronik helfen, sich im Dschungel der oft verwirrenden Fachbegriffe zurecht zu finden, ohne ihn dabei mit abschreckenden Formeln zu verwirren. In der Absicht, dem Leser eine möglichst breite Themenpalette darzubieten, hat er auf allzu tiefschürfende Erläuterungen verzichtet und sich auf das Wesentliche konzentriert, wobei er es sich natürlich nicht nehmen ließ, seine Lieblingsthemen, Messtechnik und Musikelektronik mit Operationsverstärkern, in den Vordergrund zu stellen.
Der Autor zeigt (nachdem er die Funktionsweise der bekanntesten elektronischen Bauelemente erklärt hat), dass sich hinter vielen komplexen Schaltungen immer wieder dieselben Grundelemente verbergen und verdeutlicht anhand zahlreicher Beispiele, wie man durch geschickte Kombination solcher „Module“ nahezu alle an die analoge Messtechnik gestellten Anforderungen erfüllen kann (Stichwort „Signalkonditionierung“), was besonders für Anwender von Mikrocontrollern im Bereich von Umweltmessungen interessant sein dürfte.
Die zahlreichen Anekdoten aus der Zeit, in welcher sich der Autor selbst noch an die „Geheimnisse“ der Elektronik herantastete, sind der Beweis dafür, dass es sich hier in erster Linie nicht um ein mit Fachchinesisch und Formeln vollgestopftes Lehrbuch handelt, sondern um einen leichten und mit Humor gewürzten Überblick über die Themen, über die ein Newcomer Bescheid wissen sollte. Das Buch, das sich stellenweise fast wie ein Roman liest, wird abgerundet durch wertvolle, auf praktischen Erfahrungen basierende Tipps. Erfahrungen, die der Autor beim Ätzen von Platinen, beim Herstellen von Frontplatten und beim Bau von Gehäusen im Laufe der Zeit gesammelt hat. Kurzum: Ein Buch, das nicht nur Kenntnisse vermittelt, sondern den Leser auch zum Entwickeln eigener Schaltungen inspiriert.
This book is intended for electronics enthusiasts and professionals alike, who want a much deeper understanding of the incredible technology conquests over the pre-digital decades that created video. It details evolution of analogue video electronics and technology from the first electro-mechanical television, through advancements in Cathode Ray Tubes, transistor circuits and signal processing, up to the latest analogue, colour-rich TV, entertainment devices and calibration equipment.
Key technological advances that enabled monochrome video and, eventually, colour are explained. The importance, compromises and techniques of maintaining crucial backward legacy compatibilities are described. The generation, signal processing and playback of analogue video signals in numerous capture, display, recording and playback devices together with operating principles and practices are examined. Technical and, often, political merits and deficiencies of key national and international video standards are highlighted. Several formats are shown to win and ultimately to co-exist.
This book begins at fairly basic levels; concepts are introduced with human physiological perceptions of light and colour explained. This leads to the subject matter of luminance and chrominance; their equations and the circuits to process. There is full, detailed analysis of waveform shapes and timings inside video equipment and relevant popular connections e.g. S-video. Several analogue video projects which you can build yourself are also included in this book; with schematics, circuit board layouts and calibration steps to help you obtain the best results. The book makes use of many colour pages where the subject matter demands it (e.g. test cards).
If you really want a deeper understanding of analogue video then this book is for you!
Untersuchen Sie Ihre Schaltkreise mit hoher Präzision und löten Sie auch kleinste SMDs und Bauteile problemlos!
Features
Das multifunktionale digitale HDMI-Mikroskop bietet Full HD, komfortable Kopffreiheit, verbesserte Ergonomie und mehrere Ausgangssignale mit unterschiedlichen Auflösungen.
Der Neigungswinkel des breiten LCD-Monitors ist einstellbar.
Fernbedienung im Lieferumfang inbegriffen.
Kann als eigenständiges Gerät verwendet werden.
Technische Daten
Bildschirmgröße
7 Zoll (17,8 cm)
Bildsensor
4 MP
Videoausgang
UHD 2880x2160 (24fps)FHD 1920x1080 (60fps/30fps)HD 1280x720 (120fps)
Videoformat
MP4
Vergrößerung
Bis zu 270-fach (27" HDMI-Monitor)
Bildauflösung
Max. 12 MP (4032x3024)
Bildformat
JPG
Fokusbereich
Min. 5 cm
Bildrate
Max. 120fps (unter 600 Lux Helligkeit & HDP120)
Videoschnittstelle
HDMI
Speichermedium
microSD-Karte (bis zu 32 GB)
Stromversorgung
5 V DC
Beleuchtung
2 LEDs mit Standfuß
Abmessungen
20 x 12 x 19 cm
Lieferumfang
1x Andonstar AD407 Digital-Mikroskop
1x Metallstativ mit 2 LEDs
1x Optische Halterung
1x UV-Filter
1x IR-Fernbedienung
1x Schalterkabel
1x Netzadapter
1x HDMI-Kabel
2x Schrauben
1x Schraubendreher
1x Handbuch
Downloads
Manual
Modellvergleich
AD407
AD407 Pro
AD409
AD409 Pro-ES
Bildschirmgröße
7 Zoll (17,8 cm)
7 Zoll (17,8 cm)
10,1 Zoll (25,7 cm)
10,1 Zoll (25,7 cm)
Bildsensor
4 MP
4 MP
4 MP
4 MP
Videoausgang
2160p
2160p
2160p
2160p
Schnittstellen
HDMI
HDMI
USB, HDMI, WiFi
USB, HDMI, WiFi
Videoformat
MP4
MP4
MP4
MP4
Vergrößerung
Bis zu 270x
Bis zu 270x
Bis zu 300x
Bis zu 300x
Bildauflösung
Max. 4032x3024
Max. 4032x3024
Max. 4032x3024
Max. 4032x3024
Bildformat
JPG
JPG
JPG
JPG
Fokusabstand
Min. 5 cm
Min. 5 cm
Min. 5 cm
Min. 5 cm
Bildrate
Max. 120f/s
Max. 120f/s
Max. 120f/s
Max. 120f/s
Speichermedium
microSD-Karte
microSD-Karte
microSD-Karte
microSD-Karte
PC-Unterstützung
Nein
Nein
Windows
Windows
Mobile Konnektivität
Nein
Nein
WiFi + Messung
WiFi + Messung
Stromversorgung
5 V DC
5 V DC
5 V DC
5 V DC
Beleuchtung
2 LEDs mit Standfuß
2 LEDs mit Standfuß
2 LEDs mit Standfuß
2 LEDs mit Standfuß
Endoskop
Nein
Nein
Nein
Ja
Abmessungen
20 x 12 x 19 cm
20 x 18 x 32 cm
18 x 20 x 30 cm
18 x 20 x 32 cm
Gewicht
1,6 kg
2,1 kg
2,2 kg
2,5 kg
Android Open Accessory (kurz AOA) ist ein einfaches und sicheres Protokoll zur Verbindung von Mikrocontroller-gesteuerten Geräten mit einem Android-Smartphone oder -Tablet. Dieses Buch zeigt anhand von leicht nachbaubaren Schaltungen und den dazu gehörenden Programmbeispielen, wie man AOA in Verbindung mit der Mikrocontroller-Plattform Arduino verwendet, um täglich anfallende Aufgaben im Haus zu automatisieren: Beleuchtung, Belüftung, Klimatisierung und Musik-Entertainment-Systeme – bequem und komfortabel mit dem Smartphone, wohlgemerkt!Die Grundkenntnisse des Arduino-Frameworks voraussetzend, versorgt das visionäre Autorenduo Göransson/Cuartielles Ruiz den Leser mit den Werkzeugen (Tools), die er braucht, um nützliche und anspruchsvolle Projekte realisieren zu können. Detaillierte Erklärungen, hilfreiche Beispiele und verfügbare Prototypen befähigen ihn dazu, den maximalen Nutzen aus der Android-Technik zu ziehen.In diesem Buch finden Sie:• Die Bewertungen der verschiedenen Möglichkeiten, einen Arduino-basierten Prototyp mit einem Android-Smartphone zu verbinden.• Die Behandlung der Datenkommunikationsgrundlagen und die Vorstellung von MQTT.• Die Erklärung, wie man eine Android-Bibliothek baut und eine Android-Accessory-Anwendung erstellt.• Die Baubeschreibung der hier vorgestellten Prototypen und die Einbindung der verschiedenen Sensoren, Displays und Aktuatoren.Die Programmbeispiele aus diesem Buch stehen auf der Elektor-Website zum Gratis-Download bereit.
Apps für Smartphones gehören mittlerweile vollkommen selbstverständlich zum Alltag und sind in täglich wachsender Zahl in den entsprechenden Stores kostenlos oder für wenig Geld zu haben. Jeder Smartphone-Besitzer nutzt sie und passt sein Gerät damit seinen individuellen Bedürfnissen an. Leider sind die wenigsten Apps auf die Bedürfnisse von Elektronikern zugeschnitten, ändern kann man sie auch nicht und über die Möglichkeiten des Datenklaus durch unseriöse App-Anbieter mag man kaum nachdenken.
Gerade im Elektronikbereich stellt sich daher fast zwangsläufig die Frage, wie man eigene Projekte mit Hilfe seines Smartphones ansprechen und steuern kann oder wie sich die mit selbst gebauter Hardware gemessenen Daten auf den hochauflösenden Displays darstellen lassen.
Dieses Buch veranschaulicht anhand verschiedener Beispiele, wie man eigene Apps programmieren kann, um damit gekaufte oder selbst gebaute Elektronik auf unterschiedlichen Wegen anzusprechen.
Die zum Buch gehörenden Programmbeispiele zeigen die Grundlagen der Kommunikation mit externen Geräten zur Steuerung über SMS, E-Mails, das Netzwerk, Bluetooth oder den USB-Anschluss. In verschiedenen Projekten werden diese Programme praktisch genutzt und erläutert. Auch die Audioschnittstelle des Android-Smartphones wird zur Erzeugung von Signalen genutzt und als Eingang für ein Oszilloskop-Programm verwendet, das Spannungsverläufe auf dem Display darstellen kann.
Anhand der gezeigten Beispiele lässt sich die Funktionsweise solcher Apps leicht nachvollziehen und es wird schnell klar, wie einfach man mit dem eigenen Smartphone oder Tablet auch steuern und messen kann.
Das Ardi RFID Shield wurde im Hinblick auf Komfort und Sicherheit entwickelt und basiert auf dem EM-18-Modul, das mit einer Frequenz von 125 kHz arbeitet. Mit diesem Shield können Sie die RFID-Technologie (Radio Frequency Identification) problemlos in Ihre Projekte integrieren und so nahtlose Identifikations- und Zugangskontrollsysteme ermöglichen.
Ausgestattet mit einem leistungsstarken optoisolierten 1-Kanal-Relais bietet das Ardi RFID Shield eine zuverlässige Schaltlösung mit einer maximalen DC-Nennspannung von 30 V und 10 A sowie einer AC-Nennspannung von 250 V und 7 A. Unabhängig davon, ob Sie Lichter, Motoren oder andere Hochleistungsgeräte steuern müssen, bietet dieses Shield die erforderliche Funktionalität.
Darüber hinaus verfügt das Ardi RFID Shield über einen integrierten Summer, der für Audio-Feedback genutzt werden kann und so eine verbesserte Benutzerinteraktion und System-Feedback ermöglicht. Mit den integrierten 2-Anzeige-LEDs können Sie den Status der RFID-Kartenerkennung, der Stromversorgung und der Relaisaktivierung problemlos überwachen und so klare visuelle Hinweise auf den Betrieb Ihres Projekts geben.
Kompatibilität ist der Schlüssel und das Ardi RFID Shield gewährleistet eine nahtlose Integration mit der Arduino Uno-Plattform. In Kombination mit einem schreibgeschützten RFID-Modul eröffnet dieser Schutz eine Welt voller Möglichkeiten für Anwendungen wie Zugangskontrollsysteme, Anwesenheitsverfolgung, Bestandsverwaltung und mehr.
Features
Onboard 125 kHz EM18 RFID kleines, kompaktes Modul
Onboard hochwertige Relais Relais mit Schraubanschluss und NO/NC-Schnittstellen
Abschirmung kompatibel mit 3,3 V- und 5 V-MCU
3 integrierte LEDs für Stromversorgung, Relais-EIN/AUS-Status und RFID-Scan-Status
Mehrton-Summer an Bord für Audiowarnungen
Wird direkt auf ArdiPi, Ardi32 oder andere Arduino-kompatible Boards montiert
Technische Daten
RFID-Betriebsfrequenz: 125 kHz
Leseabstand: 10 cm, abhängig vom TAG
Integrierte Antenne
Maximale Schaltspannung des Relais: 250 V AC/30 V DC
Maximaler Schaltstrom des Relais: 7 A/10 A
Dieses Shield wurde mit modernster Technologie entwickelt und bringt die Leistung von Ultrahochfrequenz-RFID (UHF) an Ihre Fingerspitzen.
Mit dem Ardi UHF Shield können Sie mühelos bis zu beeindruckende 50 Tags pro Sekunde lesen und ermöglichen so eine schnelle und effiziente Datenerfassung. Das Shield verfügt über eine integrierte UHF-Antenne, die eine zuverlässige und genaue Tag-Erkennung auch in anspruchsvollen Umgebungen gewährleistet.
Ausgestattet mit einem leistungsstarken 0,91-Zoll-OLED-Display bietet das Ardi UHF Shield ein klares und prägnantes visuelles Feedback, das die Überwachung und Interaktion mit den RFID-Messwerten erleichtert. Ganz gleich, ob Sie den Bestand verfolgen, die Zugangskontrolle verwalten, oder die Implementierung eines intelligenten Anwesenheitssystems, dieser Schutz ist genau das Richtige für Sie.
Mit einer bemerkenswerten Leseentfernung von 1 Meter bietet das Ardi UHF Shield eine erweiterte Reichweite für die Erfassung von RFID-Daten. Verabschieden Sie sich von den Einschränkungen berührungsbasierter RFID-Systeme und genießen Sie die Flexibilität und den Komfort einer größeren Lesereichweite.
Das Shield bietet Lese-/Schreibfunktionen, so dass Sie nicht nur Informationen von RFID-Tags abrufen, sondern bei Bedarf auch Daten aktualisieren oder ändern können. Diese Vielseitigkeit eröffnet eine Welt voller Möglichkeiten für fortschrittliche Anwendungen und maßgeschneiderte Lösungen.
Features
Onboard-Hochleistungs-UHF-RFID-Lesemodul
Normalerweise 24 Stunden x 365 Tage in Betrieb
0,91-Zoll-OLED-Display für visuelle Interaktion mit dem Shield
Mehrton-Summer an Bord für Audiowarnungen
Abschirmung kompatibel mit 3,3 V- und 5 V-MCU
Wird direkt auf ArdiPi, Ardi32 oder andere Arduino-kompatible Boards montiert
Technische Daten
OLED-Auflösung 128x32 Pixel
I²C-Schnittstelle für OLED
UHF-Frequenzbereich (EU/UK): 865,1–867,9 MHz
UHF-Modultyp: Lesen/Schreiben
Unterstützte Protokolle: EPCglobal UHF Class 1 Gen 2 / ISO 18000-6C
Leseentfernung: 1 Meter
Kann über 50 Tags gleichzeitig identifizieren
Kommunikationsschnittstelle: TTL UART-Schnittstelle für UHF
Kommunikationsbaudrate: 115200 bps (Standard und empfohlen) – 38400 bps
Betriebsstrom: 180 mA bei 3,5 V (26 dBm Ausgang, 25°C), 110 mA bei 3,5 V (18 dBm Ausgang, 25°C)
Arbeitsfeuchtigkeit <95 % (+25 °C)
Wärmeableitungsmethode Luftkühlung (keine Installation einer Kühlrippe erforderlich)
Tags-Speicherkapazität: 200 Stück Tags bei 96-Bit-EPC
Ausgangsleistung: 18-26 dBm
Genauigkeit der Ausgangsleistung: +/-1 dB
Tags RSSI-Unterstützung
ArdiPi ist die ultimative Arduino Uno-Alternative voller leistungsstarker Spezifikationen und aufregender Funktionen im Arduino Uno-Formfaktor. Sie profitieren von einer kostengünstigen Lösung mit Zugang zu den größten Support-Communitys für Raspberry Pi.
Die ArdiPi-Variante wird von Raspberry Pi Pico W angetrieben. Die integrierte Wi-Fi- und Bluetooth-Konnektivität des Boards ist ideal für IoT-Projekte oder Projekte, die drahtlose Kommunikation erfordern.
Features
Arduino Uno-Formfaktor, so dass Sie 3,3 V-kompatible Arduino-Shields anschließen können
SD-Kartensteckplatz für Speicherung und Datenübertragung
Drag-and-Drop-Programmierung mit Massenspeicher über USB
Multifunktions-GPIO-Breakout mit Unterstützung für allgemeine E/A, UART, I²C, SPI, ADC und mehr. PWM-Funktionen.
Multi-Tune-Summer, um dem Projekt einen Audioalarm hinzuzufügen
SWD-Pins-Breakout für serielles Debugging
Unterstützung mehrerer Plattformen wie Arduino IDE, MicroPython und CircuitPython.
Verfügt über HID-Unterstützung, sodass das Gerät eine Maus oder Tastatur simulieren kann
Technische Daten
Angetrieben von einem RP2040-Mikrocontroller, einem Dual-Core-Arm-Cortex-M0+-Prozessor, 2 MB integriertem Flash-Speicher und 264 KB RAM.
Integrierte drahtlose Single-Band-2,4-GHz-Schnittstellen (802.11n) für WLAN und Bluetooth 5 (LE)
WPA3 & Soft Access Point, der bis zu vier Clients unterstützt
Betriebsspannung der Pins 3,3 V und Platinenversorgung 5 V
25 Mehrzweck-GPIOs-Breakout im Arduino-Stil für einfache Peripherieschnittstellen
Unterstützung für I²C-, SPI- und UART-Kommunikationsprotokolle
2 MB integrierter Flash-Speicher
Plattformübergreifende Entwicklung und Unterstützung mehrerer Programmiersprachen
Pfiffige Lösungen mit Arduino Pro Mini und ATmega328-Boards
Mit einem einfachen Arduino Pro Mini Board und ein paar weiteren Bauteilen lassen sich heute für wenig Geld Projekte realisieren, die vor 20 oder 30 Jahren noch undenkbar waren oder ein kleines Vermögen gekostet hätten. Von einfachen LED-Effekten bis zur Ladestation – die den Akku auf Herz und Nieren prüft – ist in diesem Buch vieles dabei.
Als Mikrocontroller dient bei allen beschriebenen Projekten der ATmega328, der mit seinen 20 Ein- und Ausgangsleitungen unzählige Möglichkeiten zum Messen, Schalten und Steuern bietet. Mit einem 7-Segment-Display und ein paar Widerständen lässt sich daraus z. B. ein Voltmeter bauen oder mittels NTC ein Thermometer. Die Arduino-Plattform bietet dabei die perfekte Entwicklungsumgebung zum Programmieren der Boards.
Neben den ganz konkreten Projekten soll das Buch aber auch das nötige Wissen vermitteln, um eigene Ideen zu realisieren. Wie misst man was? Welches ist der geeignete Transistor, um verschiedene Verbraucher zu schalten? Wann ist man mit einem IC besser bedient, oder wie schaltet man Netzspannung? Auch batteriebetriebene Projekte mit LilyPad sind ausführlich thematisiert. Ebenso vielerlei Motoren, vom einfachen Gleichstrommotor bis zum Schrittmotor.
Sensoren sind ein weiteres spannendes Thema. Nur zwei Beispiele: Mit einem winzigen Bauteil lässt sich tatsächlich messen, dass der Luftdruck am Fußboden höher ist als auf Tischhöhe. Mit einem simplen Infrarot-Empfänger kann man ausgedienten Fernbedienungen ein zweites Leben schenken und die Wohnung damit steuern.
Arduinonext is an initiative powered by an electronics and microcontrollers specialist team aiming to help all those who are entering in the technology world, using the well-known Arduino platform to take the next step in electronics.
We strive to bring you the necessary knowledge and experience for developing your own electronics applications; interacting with environment; measuring physical parameters; processing them and performing the necessary control actions.
This is the first title in the 'Hands-On' series in which Arduino platform co-founder, David Cuartielles, introduces board programming, and demonstrates the making of an 8-bit Sound Generator.
Das Board enthält alles, was zur Unterstützung des Mikrocontrollers benötigt wird; schließen Sie es einfach mit einem Micro-USB-Kabel an einen Computer an oder versorgen Sie es mit einem AC/DC-Adapter oder einer Batterie, um loszulegen. Das Due ist mit allen Arduino Shields kompatibel, die mit 3,3V arbeiten und mit der Arduino 1.0 Pinbelegung konform sind.
Der Due folgt der 1.0 Pinbelegung:
TWI: Die SDA- und SCL-Pins liegen in der Nähe des AREF-Pins.
IOREF: ermöglicht es einem angeschlossenen Shield mit der richtigen Konfiguration, sich an die vom Board bereitgestellte Spannung anzupassen. Dies ermöglicht die Kompatibilität des Shields mit einem 3,3V-Board wie dem Due und AVR-basierten Boards, die mit 5V arbeiten.
Ein nicht angeschlossener Pin, reserviert für zukünftige Verwendung.
Technische Daten
Betriebsspannung
3,3 V
Eingangsspannung
7-12 V
Digitaler E/A
54
Analoge Eingangs-Pins
12
Analoge Ausgangsstifte
2 (DAC)
Gesamt-DC-Ausgangsstrom auf allen E/A-Leitungen
130 mA
Gleichstrom pro E/A-Pin
20 mA
DC Strom für 3.3 V Pin
800 mA
DC Strom für 5 V Pin
800 mA
Flash-Speicher
512 KB verfügbar für alle Benutzeranwendungen
SRAM
96 KB
Taktfrequenz
84 MHz
Länge
101.52 mm
Breite
53.3 mm
Gewicht
36 g
Bitte beachten Sie: Im Gegensatz zu den meisten Arduino-Boards läuft das Arduino Due-Board mit 3,3 V. Die maximale Spannung, die die E/A-Pins tolerieren können, beträgt 3,3 V. Applying voltages higher than 3.3V to any I/O pin could damage the board.
Program and build Arduino-based ham station utilities, tools, and instruments
In addition to a detailed introduction to the exciting world of the Arduino microcontroller and its many variants, this book introduces you to the shields, modules, and components you can connect to the Arduino. Many of these components are discussed in detail and used in the projects included in this book to help you understand how these components can be incorporated into your own Arduino projects. Emphasis has been placed on designing and creating a wide range of amateur radio-related projects that can easily be built in just a few days.
This book is written for ham radio operators and Arduino enthusiasts of all skill levels, and includes discussions about the tools, construction methods, and troubleshooting techniques used in creating amateur radio-related Arduino projects. The book teaches you how to create feature-rich Arduino-based projects, with the goal of helping you to advance beyond this book, and design and build your own ham radio Arduino projects.
In addition, this book describes in detail the design, construction, programming, and operation of the following projects:
CW Beacon and Foxhunt Keyer
Mini Weather Station
RF Probe with LED Bar Graph
DTMF Tone Encoder
DTMF Tone Decoder
Waveform Generator
Auto Power On/Off
Bluetooth CW Keyer
Station Power Monitor
AC Current Monitor
This book assumes a basic knowledge of electronics and circuit construction. Basic knowledge of how to program the Arduino using its IDE will also be beneficial.
Program and build Arduino-based ham station utilities, tools, and instruments
In addition to a detailed introduction to the exciting world of the Arduino microcontroller and its many variants, this book introduces you to the shields, modules, and components you can connect to the Arduino. Many of these components are discussed in detail and used in the projects included in this book to help you understand how these components can be incorporated into your own Arduino projects. Emphasis has been placed on designing and creating a wide range of amateur radio-related projects that can easily be built in just a few days.
This book is written for ham radio operators and Arduino enthusiasts of all skill levels, and includes discussions about the tools, construction methods, and troubleshooting techniques used in creating amateur radio-related Arduino projects. The book teaches you how to create feature-rich Arduino-based projects, with the goal of helping you to advance beyond this book, and design and build your own ham radio Arduino projects.
In addition, this book describes in detail the design, construction, programming, and operation of the following projects:
CW Beacon and Foxhunt Keyer
Mini Weather Station
RF Probe with LED Bar Graph
DTMF Tone Encoder
DTMF Tone Decoder
Waveform Generator
Auto Power On/Off
Bluetooth CW Keyer
Station Power Monitor
AC Current Monitor
This book assumes a basic knowledge of electronics and circuit construction. Basic knowledge of how to program the Arduino using its IDE will also be beneficial.