Die Molex Flexible GNSS-Antenne hat eine winzige Grundfläche von 40,40mm x 15,40mm, während das Klebepad mit 56,40mm x 20mm etwas größer ist. Noch besser: Die Antenne ist nur 0,1mm dick (oder etwa so dick wie ein Stück Papier). Entfernen Sie die Schutzfolie und kleben Sie sie auf eine beliebige Oberfläche, oder lassen Sie die Schutzfolie dran (Vorsicht mit dem zerbrechlichen U.FL-Anschluss).
Merkmale
Kabellänge: 50mm
Stecker: U.FL
Abstrahlcharakteristik: Omnidirektional
Polarisation: Linear
Gewicht: 0,466 g
Befestigungsart: Selbstklebend
Protokoll: BeiDou, Galileo, GLONASS, GPS
Rückflussdämpfung:
Spitzenverstärkung (Max): 1,1 dBi+
Wirkungsgrad:
Eingangsimpedanz 50 Ohm
Das M12-Mount-Objektiv (12 MP, 8 mm) ist ideal für den Einsatz mit dem Raspberry Pi HQ Camera Module und bietet gestochen scharfe, detailreiche Aufnahmen für eine Vielzahl von Anwendungen.
Arduino feiert das Uno-Board mit einer miniaturisierten Limited Edition
Das beliebteste Entwicklungsboard der Welt ist mini geworden. Alles in dieser Version des Arduino Uno ist einzigartig. Schwarz und Gold, Verarbeitung, elegantes Design und Verpackung, alles auf höchstem Niveau. Ein kleines Juwel, um die Arduino-Community und das, was wir all die Jahre zusammen getan haben, zu feiern.
Jeder Artikel ist einzigartig und auf der Leiterplatte nummeriert und enthält einen handsignierten Brief der Gründer. Es ist eine limitierte Auflage, also greifen Sie zu, solange der Vorrat reicht!
Für treue Arduino Uno Fans
Arduino Uno Mini Limited Edition ist ein Sammlerstück für treue Arduino-Fans: Bastler, Studenten, Maker, Neugestalter, Träumer, Hoffnungsträger, Fans, Ingenieure, Designer, Fragesteller, Konditoren, Problemlöser, Puzzler, Spieler, Debattierer, Entwickler, Unternehmer, Architekten, Zukunftsgestalter, Musiker, Wissenschaftler... 10 Millionen Projekte basierend auf (offiziellen) Uno-Boards, die zu dieser unglaublichen Geschichte beigetragen haben.
Technische Daten
Das Arduino Uno Mini (Limited Edition) ist ein Mikrocontroller-Board, das auf dem ATmega328P basiert. Es verfügt über 14 digitale Ein-/Ausgänge (6 davon können als PWM-Ausgänge verwendet werden), 6 analoge Eingänge, einen 16 MHz-Keramikresonator, einen USB-C-Anschluss und eine Reset-Taste. Es enthält alles, was zur Unterstützung des Mikrocontrollers benötigt wird. Schließen Sie es einfach mit einem USB-Kabel an einen Computer an, verwenden Sie ein Netzteil oder schließen Sie einen Akku an, um loszulegen.
Mikrocontroller
ATmega328P
USB-Anschluss
USB-C
Eingebaute LED-Pins
13
Digitale I/O-Pins
14
Analoge Eingangs-Pins
6
PWM-Pins
6
UART
Ja
I²C
Ja
SPI
Ja
Schaltungsbetriebsspannung
5 V
Eingangsspannung (Limit)
6-12 V
Batterieanschluss
Nein
Gleichstrom pro I/O-Pin
20 mA
Gleichstrom für 3,3 V Pin
50 mA
Hauptprozessor
ATmega328P (16 MHz)
USB-serieller Prozessor
ATmega16U2 (16 MHz)
Speicher ATmega328P
2 KB SRAM, 32 KB Flash, 1 KB EEPROM
Gewicht
8,05 g
Abmessungen
26,70 x 34,20 mm
Downloads
Datasheet
Der DiP-Pi PIoT ist ein fortschrittliches WiFi-Konnektivitätssystem mit integrierten Sensoren, das die meisten möglichen Anforderungen für IoT-Anwendungen auf Basis des Raspberry Pi Pico abdeckt. Es kann das System zusätzlich zum Original-Micro-USB des Raspberry Pi Pico mit bis zu 1,5 A bei 4,8 V versorgen, geliefert von 6–18 VDC für verschiedene Stromversorgungssysteme wie Autos, Industrieanlagen usw. Es unterstützt LiPo- oder Li-Ion-Akkus mit automatischem Ladegerät sowie die automatische Umschaltung von Kabelstrom auf Batteriestrom oder umgekehrt (USV-Funktionalität), wenn die Kabelstromversorgung unterbrochen wird. Die Extended Powering Source (EPR) ist mit einer rücksetzbaren PPTC-Sicherung, umgekehrter Polarität und auch ESD geschützt. Der DiP-Pi PIoT verfügt über eine in den Raspberry Pi Pico integrierte RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf alle Stromquellen (USB, EPR oder Batterie) wirkt. Der Benutzer kann (über die A/D-Pins des Raspberry Pi Pico) den Batteriestand und den EPR-Wert mit den A/D-Wandlern von PICO überwachen. Beide A/D-Eingänge sind mit 0402-Widerständen (0 Ohm) überbrückt. Wenn der Benutzer diese Pico-Pins aus irgendeinem Grund für seine eigene Anwendung verwenden muss, kann er daher problemlos entfernt werden. Das Ladegerät lädt den angeschlossenen Akku automatisch auf (sofern verwendet), aber der Benutzer kann das Ladegerät zusätzlich ein-/ausschalten, wenn seine Anwendung dies benötigt.
DiP-Pi PIoT kann für kabelbetriebene IoT-Systeme, aber auch für rein batteriebetriebene Systeme mit EIN/AUS verwendet werden. Der Status jeder Stromquelle wird durch separate Informations-LEDs angezeigt (VBUS, VSYS, VEPR, CHGR, V3V3). Der Benutzer kann jede Kapazität vom Typ LiPo oder Li-Ion verwenden; Es muss jedoch darauf geachtet werden, PCB-geschützte Batterien mit einem maximal zulässigen Entladestrom von 2 A zu verwenden. Das integrierte Batterieladegerät ist so eingestellt, dass es die Batterie mit einem Strom von 240 mA lädt. Dieser Strom wird durch einen Widerstand eingestellt. Wenn der Benutzer also mehr oder weniger benötigt, kann er ihn selbst ändern. Der DiP-Pi PIoT ist außerdem mit einem WiFi ESP8266 Clone-Modul mit integrierter Antenne ausgestattet. Diese Funktion eröffnet eine Vielzahl darauf basierender IoT-Anwendungen.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi PIoT mit eingebetteten 1-Draht-DHT11/22-Sensoren und Micro-SD-Kartenschnittstellen ausgestattet. Durch die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen eignet sich der DiP-Pi PIoT ideal für IoT-Anwendungen wie Datenlogger, Pflanzenüberwachung, Kühlschränke usw.
DiP-Pi PIoT wird durch zahlreiche gebrauchsfertige Beispiele unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Raspberry Pi Pico-Pinbelegung kompatibel
Unabhängige informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter, der auf alle Stromquellen wirkt (USB, EPR, Batterie)
Externe Stromversorgung 6–18 VDC (Autos, Industrieanwendungen usw.)
Überwachung des externen Strompegels (6-18 VDC).
Überwachung des Batteriestands
Verpolungsschutz
PPTC-Sicherungsschutz
ESD-Schutz
Automatisches Batterieladegerät (für PCB-geschütztes LiPo, Li-Ion – 2 A max.) Automatisch/Benutzersteuerung
Automatische Umschaltung von Kabelbetrieb auf Batteriebetrieb und umgekehrt (USV-Funktionalität)
Mit der USB-Stromversorgung, der externen Stromversorgung und der Batterieversorgung können verschiedene Stromversorgungsschemata gleichzeitig verwendet werden
1,5 A bei 4,8 V Abwärtswandler auf EPR
Eingebetteter 3,3 V @ 600 mA LDO
ESP8266 WLAN-Konnektivität klonen
ESP8266 Firmware-Upload-Schalter
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Externe Stromversorgung 6–18 V (über spezielle Buchse – 3,4/1,3 mm)
Externe Batterie
Unterstützte Batterietypen
LiPo mit Schutzplatine, max. Strom 2A
Li-Ion mit Schutzplatine, max. Strom 2A
Eingebettete Peripheriegeräte und Schnittstellen
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Micro-SD-Kartensteckplatz
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexi-Cut-Gehäuse
Systemüberwachung
Batteriestand über Raspberry Pi Pico ADC0 (GP26)
EPR-Level über Raspberry Pi Pico ADC1 (GP27)
Informative LEDs
VB (VUSB)
USA (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
Systemschutz
Sofortiger Raspberry Pi Pico-Hardware-Reset-Knopf
ESD-Schutz auf EPR
Verpolungsschutz bei EPR
PPTC 500 mA @ 18 V-Sicherung am EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO Über den aktuellen Schutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2-Unzen-Kupfer-Leiterplatte, hergestellt für eine ordnungsgemäße Hochstromversorgung und Kühlung
6-mil-Spur-/6-mil-Lücken-Technologie, 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersionsgold
Mehrschichtige Kupfer-Thermorohre für eine erhöhte thermische Reaktion des Systems und eine bessere passive Kühlung
Downloads
Datenblatt
Handbuch
Einfach zu lötendes Echtzeituhren-Set mit einem einzigartigen lasergeschnittenen Acrylgehäuse. Vier einzelne Acrylteile, die so zugeschnitten sind, dass sie perfekt auf die interne Platine, die Batterie und den Schalter passen. Im Lieferumfang ist ein Klettverschluss-Armband enthalten. Nach dem Löten des Solder:Time wird die Uhr gebaut, indem die Acrylteile mit der Platine gestapelt und mit den mitgelieferten Schrauben zusammengehalten werden.
Die Solder:Time wurde als Armbanduhr konzipiert. Sie muss sich nicht nur auf Ihr Handgelenk beschränken, Sie können sie auch als Anstecker oder Tischuhr verwenden.
Features
Großartig aussehendes, lasergeschnittenes Acrylgehäuse
Einzigartige Uhr
Leicht zu löten
Eigenständiges Projekt – kein Computer oder anderer Programmierer erforderlich. Einfach löten und fertig!
Integrierte Dallas DS1337+ Echtzeituhr (RTC) für äußerst genaue Zeitmessung
Jumper (unten) für ständigen Einsatz.
Hackbar: Programmier- und I²C-Pads auf der Unterseite beschriftet
Durchsichtiges Vorder- und Rückseitengehäuse zur Sicht auf die interne Elektronik
Verstellbares Armband
Kann auch als Abzeichen mit optionalem Abzeichenclip getragen werden.
Langlebiger Akku mit spezieller LED-Beleuchtungsmethode und Prozessor-Schlafmodus mit sehr geringem Stromverbrauch.
Lieferumfang
Löten: Zeitplatine mit der gesamten Elektronik
Lasergeschnittenes Acrylgehäuse mit vier Schrauben
Einfach zu verwendendes Klettverschluss-Armband (lang genug für große Handgelenke, zuschneidbar für kleinere).
CR2032-Batterie
Downloads
Dokumentation
Erforderlich
Lötkolben, Lötzinn und Drahtscheren.
Dieses Display entspricht der Norm Nokia 5110 und ist damit ideal zum Anzeigen von Messwertdaten bzw. Messwertgraphen bei einem Mikrocontroller oder einem Einplatinencomputer. Zusätzlich ist es zu allen Raspberry Pi, Arduino, CubieBoard, Banana Pi und Mikrocontrollern kompatibel – ohne zusätzlichen Aufwand.
Technische Daten
Chipsatz
Philips PCD8544
Schnittstelle
SPI
Auflösung
84 x 48 Pixel
Spannungsversorgung
2,7-3,3 V
Besondere Merkmale
Hintergrundbeleuchtung
Kompatibel mit
Raspberry Pi, Arduino, CubieBoard, Banana Pi und Mikrocontroller
Abmessungen
45 x 45 x 14 mm
Gewicht
14 g
Das Pico-10DOF-IMU ist ein IMU-Sensor-Erweiterungsmodul, das speziell für Raspberry Pi Pico entwickelt wurde. Es enthält Sensoren wie Gyroskop, Beschleunigungsmesser, Magnetometer und Barozeptor und nutzt den I²C-Bus für die Kommunikation. In Kombination mit dem Raspberry Pi Pico können damit Umgebungsdaten wie Temperatur und Luftdruck erfasst oder ganz einfach ein Roboter gebaut werden, der Bewegungen, Gesten und Ausrichtung erkennt.
Merkmale
Standard-Raspberry-Pi-Pico-Header, unterstützt die Raspberry-Pi-Pico-Serie
Integriertes ICM20948 (3-Achsen-Gyroskop, 3-Achsen-Beschleunigungsmesser und 3-Achsen-Magnetometer) zur Erkennung von Bewegungsgesten, Ausrichtung und Magnetfeld
Integrierter Luftdrucksensor LPS22HB zur Messung des atmosphärischen Drucks der Umgebung
Kommt mit Entwicklungsressourcen und Handbuch (Raspberry Pi Pico C/C++ und MicroPython-Beispiele)
Spezifikationen
Betriebsspannung
5 V
Beschleunigungsmesser
Auflösung: 16 Bit Messbereich (konfigurierbar): ±2, ±4, ±8, ±16g Betriebsstrom: 68,9 uA
Gyroskop
Auflösung: 16 Bit Messbereich (konfigurierbar): ±250, ±500, ±1000, ±2000°/Sek Betriebsstrom: 1,23 mA
Magnetometer
Auflösung: 16 Bit Messbereich: ±4900µT Betriebsstrom: 90uA
Barozeptor Messbereich: 260 ~ 1260 hPa Messgenauigkeit (normale Temperatur): ±0,025 hPa Messgeschwindigkeit: 1Hz - 75Hz
Merkmale
Dual-Core 64-Bit RISC-V RV64IMAFDC (RV64GC) CPU / 400 MHz (normal)
Duale unabhängige FPU mit doppelter Präzision
8 MB On-Chip-SRAM mit 64 Bit Breite
Neuronaler Netzwerkprozessor (KPU) / 0,8 Tops
Feldprogrammierbares IO-Array (FPIOA)
AES, SHA256-Beschleuniger
Direct Memory Access Controller (DMAC)
Micropython-Unterstützung
Unterstützung der Firmware-Verschlüsselung
Onboard-Hardware:
Blitz: 16M Kamera: OV7740
2x Knöpfe
Statusanzeige-LED
Externer Speicher: TF-Karte/Micro SD
Schnittstelle: HY2.0/kompatibel mit GROVE
Anwendungen
Gesichtserkennung/-erkennung
Objekterkennung/-klassifizierung
Ermitteln Sie die Größe und Koordinaten des Ziels in Echtzeit
Erhalten Sie den Typ des erkannten Ziels in Echtzeit
Formerkennung, Videorecorder
Inbegriffen
1x UNIT-V (einschließlich 20 cm 4P-Kabel und USB-C-Kabel)
Dieses JOY-iT Mikrocontrollerboard eröffnet Ihnen die Welt des Programmierens und bietet ihnen die gleiche Rechenleistung des Meganbsp;2560, aber mit einer geringeren Fläche (Footprint). Es hat zudem viel mehr Anschlüsse als vergleichbare Boards (Arduino Uno). Er wird mit der Arduino-IDE betrieben und die Stromversorgung kann entweder über den USB-Anschluss oder die VIN-Pins erfolgen. Das ermöglicht Ihnen eine sichere Nutzung mit vielen anderen Geräten (z. B. Desktop-PC). Daher ist der Mega 2560nbsp;Pro hochintegrierbar.
Features
Microcontroller
ATmega2560 - 16AU
Speicherplatz
Flash 256 KB, SRAM 8 KB, EEPRom 4 KB
Pinanzahl:Digital I/OPWM OutputAnalog Input
541516
Kompatibel mit
Arduino, Desktop PCs, etc.
Besonderheiten
USB-Port oder Power Pins zur Stromversorgung
Anschlusswandler
MicroUSB zu USB-UART
Abmessungen
55 x 38 mm
Lieferumfang
JOY-iT Mega 2560 Pro mit Pins
Weitere Spezifikationen
Eingangspannung
7 - 9 Volt über Vin, 5 Volt über mUSB
Logik Level
5 Volt
Ausgangsspannung
800 mA
Sapnnungsregulator
LDO (bis zu 12 Voltspitzen)
Frequenz
16 MHz (zum Datenaustausch sind 12 MHz möglich)
Downloads
Handbuch
STEMTera ist ein programmierbares Steckplatinenmodul, kompatibel mit Arduino Uno. Es sind zwei Mikrocontroller integriert: ATmega328P und ATmega32U2. Die I/Os (40 mA pro Pin) sind ohne Verkabelung zugänglich.
Die Unterseite der Platine (112 x 80 x 17 mm) ist LEGO-kompatibel.
Technische Daten
Pin-zu-Pin-kompatibel mit Arduino Uno
Mechanisch kompatibel mit LEGO-Steinen
Zwei Mikrocontroller (41 I/O, davon 9 als PWM)
USB-Schnittstelle mit ATmega32U2 über LUFA (Lightweight USB Framework for AVRs) für Tastatur, Joystick, MIDI usw.
Programmierung mit der Arduino IDE (Micro-USB)
Reset-Taste, 4 LEDs (inkl. TX, RX, Power), Power Anschluss
Stromversorgung über Micro-USB oder 7...20 V DC auf Sockel 5,5 x 2,1 mm (+ Center)
Mehrere Programmierumgebungen:
Atmel Studio
Arduino IDE
AVR-GCC
AVR-GCC mit LUFA-Bibliothek
Scratch
usw.
Mikrocontroller
ATmega328P:
14 I/O-Pins, darunter 6 PWM
6 analoge Eingänge (10-Bit-ADC)
I²C, SPI und seriell
Interrupt Controller
ATmega32U2:
21 I/O-Pins
Flash-Speicher: 32 KB
SRAM: 2 KB
EEPROM: 1 KB
Takt: 16 MHz
Downloads
Beginner's Guide
Diese Schreibtischlampe ist ideal für Ihren Arbeitsplatz. Mit der 5-Zoll großen 5D-Linse gelingen feinste Arbeiten. Die Lampe verfügt über 80 integrierte LEDs.
Features
Linsengröße: 5 Zoll
Linsenmaterial: Glas
Dioptrie: 5D
Lichtquelle: T5 22 W fluoreszierende Energiesparlampe (80 Stück LED)
Standardmontage: Tischfuß
Spannung: 220-240 V
Leistung: 22 W
Der Raspberry Pi 5 verfügt über zwei vierspurige MIPI-Anschlüsse, von denen jeder entweder eine Kamera oder ein Display unterstützen kann. Diese Anschlüsse verwenden dasselbe 22-polige "Mini"-FPC-Format mit 0,5 mm Raster wie das Compute Module Development Kit und erfordern Adapterkabel für den Anschluss an die 15-poligen "Standard"-Anschlüsse mit 1 mm Raster an aktuellen Raspberry Pi Kamera- und Display-Produkten.
Diese Mini-zu-Standard-Adapterkabel für Kameras und Displays (beachten Sie, dass ein Kamerakabel nicht mit einem Display verwendet werden sollte und umgekehrt) sind in den Längen 200 mm, 300 mm und 500 mm erhältlich.
Die SQ-Serie der berührungslosen PCBite-Sonden von Sensepeek ist isoliert, wird mit farbcodierten Kabelhaltern geliefert und hat einen niedrigeren Schwerpunkt, was sie im Vergleich zur ursprünglichen SP-Serie der Sonden noch stabiler macht. Alle beliebten Funktionen der berührungslosen Messung, austauschbare feinrastende Testnadeln und das minimalistische Design werden beibehalten, um herkömmliche Sonden in Standardgröße und handgehaltene Sonden überflüssig zu machen.
Features
Alle berührungslosen Sonden von Sensepeek ermöglichen schnelle Messungen oder lange Trigger-Sessions.
Kein Löten von Drähten, um Ihre Sonde anzuschließen, oder komplizierte Werkzeuge zur Einrichtung erforderlich. Platzieren Sie einfach die Probennadel an einem beliebigen Prüfpunkt oder Bauteil im Signalpfad und lassen Sie sie los.
Spart Zeit und Frustration bei Entwicklung, Verifizierung und Reparaturen. Das minimalistische Design und die federbelastete Testnadel ermöglichen gleichzeitige Messungen an feinrastenden Komponenten und benachbarten Signalen.
Sowohl die Länge als auch das Gewicht der SQ-Sonden sind perfekt ausbalanciert, um sie mit PCBite PCB-Haltern und Basisplatte zu verwenden, was für die berührungslose Funktion unerlässlich ist.
Der Sondenhalter verfügt über einen leistungsstarken Magneten in der Basis, wie bei allen PCBite-Sonden und -Haltern, wodurch die Sonde einfach platziert und neu positioniert werden kann.
Die SQ-Serie der Sonden kann auch ohne den Sondenhalter von Hand verwendet werden, da sie über einen isolierten Griff verfügen. Ihr volles Potenzial wird jedoch bei berührungsloser Messung ausgeschöpft.
Lieferumfang
2x SQ10-Sonden und Stift-Tastnadeln (rot/schwarz)
2x Banane zu Dupont-Testkabel (rot/schwarz)
1x Satz Kabelhalter (rot/schwarz)
2x zusätzliche Testnadeln
Downloads
Benutzerhandbuch
Die SQ-Serie der handsfree PCBite-Sonden von Sensepeek ist isoliert, wird mit farbcodierten Kabelhaltern geliefert und hat einen niedrigeren Schwerpunkt, was sie im Vergleich zur ursprünglichen SP-Serie der Sonden noch stabiler macht. Alle beliebten Funktionen der berührungslosen Messung, des austauschbaren Feinraster-Federkugelteststifts und des minimalistischen Designs wurden beibehalten, um herkömmliche Sonden in Standardgröße und Handheld-Sonden überflüssig zu machen.
Funktionen
Alle berührungslosen Sonden von Sensepeek ermöglichen schnelle Messungen oder lange Trigger-Sitzungen.
Kein Löten von Drähten zur Verbindung Ihrer Sonde oder komplizierte Werkzeuge zum Einrichten mehr erforderlich. Positionieren Sie einfach die Sonde auf einem beliebigen Prüfpunkt oder Bauteil im Signalpfad und lassen Sie sie los.
Spart Zeit und Frustration bei Entwicklung, Verifizierung und Reparaturen.
Das minimalistische Design und die federbelastete Testnadel ermöglichen gleichzeitige Messungen an eng beieinander liegenden Komponenten und benachbarten Signalen.
Sowohl die Länge als auch das Gewicht der SQ-Sonden sind perfekt ausbalanciert und können mit den PCBite-PCB-Haltern und der Basisplatte verwendet werden, was für die berührungslose Funktion unerlässlich ist.
Der Sondenhalter ist mit einem starken Magneten in der Basis ausgestattet, wie bei allen PCBite-Sonden und -Haltern, was das Platzieren und Neupositionieren der Sonde erleichtert.
Die SQ-Serie von Sonden kann auch ohne den Sondenhalter von Hand verwendet werden, da sie über einen isolierten Griff verfügen, ihr volles Potenzial wird jedoch bei der berührungslosen Messung genutzt.
Im Lieferumfang enthalten
4x SQ10-Sonden und Pin-Testnadeln (schwarz)
2x Banane-zu-Dupont-Testdrähte (rot/schwarz)
5x Dupont-zu-Dupont-Testdrähte
1x Satz Kabelhalter (4 Farben)
4x zusätzliche Testnadeln
Downloads
Benutzerhandbuch
Wenn Sie nach einer Möglichkeit suchen, Ihren Raspberry Pi kühl zu halten, dann ist dieser Küker die ideale Möglichkeit dafür. Der aktive Lüfter ist nach dem Aufstecken auf den 5 V und GPIO-Pin sofort einsatzbereit. Der Kühler ist kompatibel zu allen Raspberry Pis und eignet sich ideal, um diesen auch unter Volllast zu kühlen.
Spannung: 5 V
Strom: 0,2 A
Abmessungen: 30 x 30 x 7 mm
Dieses „All in One“ Raspberry Pi 4 Desktop-Starterkit enthält alle offiziellen Teile und ermöglicht einen einfachen und schnellen Start!
Das Raspberry Pi 4 Desktop Kit enthält:
Raspberry Pi Deutsche Tastatur und Maus
2x Micro-HDMI-zu-Standard-HDMI-Kabel (A/M) 1 m
Raspberry Pi 15,3 W USB-C-Netzteil (EU-Version)
Raspberry Pi 4 Gehäuse
Offizielles Raspberry Pi-Handbuch für Anfänger (in deutscher Sprache)
16 GB NOOBS mit Raspbian microSD-Karte
Raspberry Pi 4 B ist NICHT enthalten.
Heutzutage verwenden immer mehr und intelligentere Telefone und Laptops USB-C-Anschlüsse wegen ihrer leistungsstarken Funktion, mit der Strom, Daten und Videoinformationen übertragen werden können. Durch die USB-C-Lösung kann das Gerät im Vergleich zum Thunderbolt 3- oder HDMI-kompatiblen Anschluss auch viel dünner werden. Aus diesem Grund haben wir den tragbaren USB-C-Monitor CrowVi entwickelt.Der superdünne CrowVi 13,3-Zoll-Monitor verfügt über 2 USB-C-Anschlüsse, einer dient der Stromversorgung und der andere dient der Datenübertragung von Video- und Touchscreen-Befehlen. Der Bildschirm kann auch über den Mini-HDMI-kompatiblen Anschluss angeschlossen werden Port. Die Auflösung von CrowVi beträgt 1920x1080, was ein besseres Erlebnis beim Spielen und Ansehen von Filmen bietet.FeaturesDas CrowVi-Gehäuse besteht aus einer Aluminiumlegierung, ist nur 5 mm dick und der Bildschirmrand ist nur 6 mm schmal. Der gesamte Monitor sieht exquisit und elegant aus.CrowVi kann nicht nur als Dual-Monitor für Smartphones und Laptops fungieren, sondern auch als Einzelmonitor für Gaming-Geräte und einige Computer-Mainframes wie Mac mini, Raspberry Pi usw.CrowVi bietet Ihnen im Vergleich zum Smartphone eine viel größere Ansicht. Es ermöglicht bessere Erlebnisse beim Spielen und Ansehen von Filmen.Technische DatenBildschirm13,3' TFT IPS LCDBildschirmgröße294,5 x 164 mmDicke5-10 mmAuflösung1920 x 1080Helligkeit300 NitsAktualisierungsrate60 HzFarbraum16,7 Mio., NTSC 72%, sRGB bis zu 100%Kontrast800:1HintergrundbeleuchtungLEDBetrachtungswinkel178°Seitenverhältnis16:9SprecherZwei Lautsprecher 8 Ω, 2 WShellAluminiumlegierungEingabeMini-HD, USB-C, PDAusgabe3,5-mm-KopfhöreranschlussMachtPD 5-20 V oder USB-C 3.0Betriebstemperatur0-50°CAbmessungen313 x 198 x 10 mmGewicht (Smart Case)350 gGewicht (Monitor)700 gLieferumfang13,3-Zoll-Touchscreen-MonitorIntelligentes GehäuseUSB-C-auf-USB-C-Kabel (1 m)USB-A-zu-USB-C-Stromkabel (1 m)HDMI-zu-Mini-HDMI-Kabel (1 m)Netzteil (5 V/2 A)HDMI-zu-Mini-HDMI-AdapterStaubtuchHandbuchDownloadsUser manual
PÚCA DSP ist ein Arduino-kompatibles Open-Source-ESP32-Entwicklungsboard für Audio- und digitale Signalverarbeitungsanwendungen (DSP) mit umfangreichen Audioverarbeitungsfunktionen. Es bietet Audioeingänge, -ausgänge, ein rauscharmes Mikrofonarray, eine integrierte Testlautsprecheroption, zusätzlichen Speicher, Batterielademanagement und ESD-Schutz – alles auf einer kleinen, Breadboard-freundlichen Platine.
Synthesizer, Installationen, Voice UI und mehr
PÚCA DSP kann für eine breite Palette von DSP-Anwendungen eingesetzt werden, unter anderem in den Bereichen Musik, Kunst, Kreativtechnik und adaptive Technologie. Beispiele aus dem Musikbereich sind digitale Musiksynthese, mobile Aufnahmen, Bluetooth-Lautsprecher, drahtlose Richtmikrofone und die Entwicklung intelligenter Musikinstrumente. Beispiele aus dem Bereich Kunst sind akustische Sensornetzwerke, Klangkunstinstallationen und Internet-Radioanwendungen. Beispiele aus dem Bereich der kreativen und adaptiven Technologie sind das Design von Sprachbenutzerschnittstellen (VUI) und Web-Audio für das Internet der Klänge.
Kompaktes, integriertes Design
PÚCA DSP wurde für den mobilen Einsatz konzipiert. In Verbindung mit einem externen 3,7-V-Akku kann er fast überall eingesetzt oder in nahezu jedes Gerät, Instrument oder jede Installation integriert werden. Sein Design entstand aus monatelangen Experimenten mit verschiedenen ESP32-Entwicklungsboards, DAC-Breakout-Boards, ADC-Breakout-Boards, Mikrofon-Breakout-Boards und Audio-Anschluss-Breakout-Boards, und – trotz seiner geringen Größe – schafft er es, all diese Funktionen in einem einzigen Board zu vereinen. Und das ohne Kompromisse bei der Signalqualität.
Technische Daten
Prozessor und Speicher
Espressif ESP32 Pico D4 Prozessor
32-bit Dual-Core 80 MHz/160 MHz/240 MHz
4 MB SPI Flash mit 8 MB zusätzlichem PSRAM (Original Edition)
Drahtloses 2,4-GHz-WLAN 802.11b/g/n
Bluetooth BLE 4.2
3D-Antenne
Audio
Wolfson WM8978 Stereo-Audio-Codec
Audio-Line-In am 3,5-mm-Stereoanschluss
Audio-Kopfhörer-/Line-Ausgang am 3,5-mm-Stereoanschluss
Stereo-Aux-Line-In, Audio-Mono-Out zum GPIO-Header geleitet
2x Knowles SPM0687LR5H-1 MEMS-Mikrofone
ESD-Schutz an allen Audioeingängen und -ausgängen
Unterstützung für Abtastraten von 8, 11,025, 12, 16, 22,05, 24, 32, 44,1 und 48 kHz
1-W-Lautsprechertreiber, auf GPIO-Header geroutet
DAC SNR 98 dB, THD -84 dB ('A'-gewichtet bei 48 kHz)
ADC SNR 95 dB, THD -84 dB (‘A’-gewichtet bei 48 kHz)
Line-Eingangsimpedanz: 1 MOhm
Line-Ausgangsimpedanz: 33 Ohm
Formfaktor und Konnektivität
Breadboard-freundlich
70 x 24 mm
11x GPIO-Pins mit 2,54 mm Rastermaß, mit Zugriff auf beide ESP32-ADC-Kanäle, JTAG und kapazitive Touch-Pins
USB 2.0 über USB-Typ-C-Anschluss
Stromversorgung
3,7/4,2 V Lithium-Polymer-Akku, USB oder externe 5 V DC-Stromquelle
ESP32 und Audio-Codec können softwaregesteuert in Energiesparmodi versetzt werden
Erkennung des Batteriespannungspegels
ESD-Schutz am USB-Datenbus
Downloads
GitHub
Datasheet
Links
Crowd Supply Campaign (includes FAQs)
Hardware Overview
Programming the Board
The Audio Codec
Die M5Stack-Bewässerungseinheit integriert Wasserpumpe und Messplatten zur Bodenfeuchtigkeitserkennung und Pumpenwassersteuerung. Sie kann für intelligente Pflanzenzuchtszenarien verwendet werden und ermöglicht problemlos die Feuchtigkeitserkennung und Bewässerungssteuerung. Die Messelektrodenplatte verwendet das kapazitive Design, wodurch das Korrosionsproblem der Elektrodenplatte im tatsächlichen Gebrauch im Vergleich zur resistiven Elektrodenplatte effektiv vermieden werden kann.
Merkmale
Kapazitive Messplatte (korrosionsbeständig)
Integrierte 5 W Leistungswasserpumpe
LEGO-kompatible Löcher
Anwendung
Pflanzenanbau
Bodenfeuchteerkennung
Intelligente Bewässerung
Inbegriffen
1x Bewässerungseinheit
2x Saugrohr
1x HY2.0-4P-Kabel
Pumpenleistung
5 Watt
Gewicht
78 g
Maße
192,5 mm x 24 mm x 33 mm
Das SparkFun GPS-RTK2 legt die Messlatte für hochpräzises GPS höher und ist das neueste in einer Reihe von leistungsstarken RTK-Karten mit dem ZED-F9P-Modul von u-blox. Das ZED-F9P ist ein Spitzenmodul für hochgenaue GNSS- und GPS-Ortungslösungen, einschließlich RTK mit einer dreidimensionalen Genauigkeit von 10 mm. Mit dieser Karte werden Sie in der Lage sein, die X-, Y- und Z-Position Ihres (oder eines beliebigen Objekts) innerhalb der Breite Ihres Fingernagels zu bestimmen! Das ZED-F9P ist einzigartig, da es sowohl als Rover als auch als Basisstation eingesetzt werden kann. Durch die Verwendung unseres praktischen Qwiic-Systems ist kein Löten erforderlich, um ihn mit dem Rest Ihres Systems zu verbinden. Dennoch haben wir die Pins im 0,1"-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Wir haben sogar eine wiederaufladbare Backup-Batterie eingebaut, um die neueste Modulkonfiguration und Satellitendaten bis zu zwei Wochen lang verfügbar zu halten. Diese Batterie hilft beim "Warm-Start" des Moduls und verkürzt die Zeit bis zur ersten Reparatur drastisch. Das Modul verfügt über einen "Survey-in"-Modus, der es ermöglicht, das Modul als Basisstation zu verwenden und RTCM 3.x-Korrekturdaten zu erzeugen. Die Konfigurationsmöglichkeiten des Moduls
Die Anzahl der Konfigurationsmöglichkeiten des ZED-F9P ist unglaublich! Geofencing, variable I2C-Adresse, variable Update-Raten, sogar die hochgenaue RTK-Lösung kann auf 20Hz erhöht werden. Der GPS-RTK2 hat sogar fünf Kommunikationsanschlüsse, die alle gleichzeitig aktiv sind: USB-C (der sich als COM-Port enumeriert), UART1 (mit 3,3V TTL), UART2 für den RTCM-Empfang (mit 3,3V TTL), I2C (über die beiden Qwiic-Anschlüsse oder ausgebrochene Pins) und SPI.
Sparkfun hat außerdem eine umfangreiche Arduino-Bibliothek für u-blox-Module geschrieben, um das GPS-RTK2 einfach über das Qwiic Connect System auszulesen und zu steuern. Lassen Sie NMEA hinter sich! Verwenden Sie eine viel leichtere binäre Schnittstelle und gönnen Sie Ihrem Mikrocontroller (und seinem einen seriellen Port) eine Pause. Die SparkFun Arduino-Bibliothek zeigt, wie man Breitengrad, Längengrad, sogar Kurs und Geschwindigkeit über I2C auslesen kann, ohne dass ständige serielle Abfragen nötig sind.
Features
Gleichzeitiger Empfang von GPS, GLONASS, Galileo und BeiDou
Empfang der Bänder L1C/A und L2C
Spannung: 5 V oder 3,3 V, aber alle Logik ist 3,3 V
Strom: 68 mA - 130 mA (variiert mit Konstellationen und Tracking-Status)
Zeit bis zum ersten Fix: 25 s (kalt), 2 s (heiß)
Max Navigation Rate:
PVT (Basisortung über UBX-Binärprotokoll) - 25 Hz
RTK - 20 Hz
Raw - 25 Hz
Horizontale Positionsgenauigkeit:
2,5 m ohne RTK
0,010 m mit RTK
Max. Höhe: 50k m
Max. Geschwindigkeit: 500 m/s
Gewicht: 6,8 g
Abmessungen: 43,5 mm x 43,2 mm
2 x Qwiic-Stecker
Dieser Polysilizium-Solarmodul (18 V/10 W) bietet eine stabile Leistung bei einem hohen Umwandlungswirkungsgrad von >20%. Technische Daten Solarzellentyp Polysilizium Ausgangsleistungstoleranz ±3 % Betriebsspannung 17,6 V Leerlaufspannung 21,6 V Zellenanzahl 36 (4x9) Leistung 10 Wp (max.) Gesprächseffizienz >20 % Betriebsstrom 0,57 A Kurzschlussstrom 0,61 A Standard-Systemspannung 1000 V (max.) Betriebstemperatur -40°C ~ +85°C Druck auf das Panel 30 m/s (200 kg/m²) (Max) Kabel Länge 90 cm, DC-Stecker, Außendurchmesser 3,5 mm, Innendurchmesser 1,35 mm Rahmenmaterial Aluminiumlegierung mit anodischer Oxidation Abmessungen 340 x 232 x 17 mm Gewicht 0,935 kg
Der SDRplay RSPduo ist ein hochleistungsfähiger 14-Bit-SDR-Empfänger mit zwei Tunern. In einem hochwertigen Stahlgehäuse untergebracht, kann jeder Tuner einzeln im Bereich von 1 kHz bis 2 GHz mit bis zu 10 MHz Bandbreite oder beide Tuner können gleichzeitig im Bereich von 1 kHz bis 2 GHz mit bis zu 2 MHz Bandbreite pro Tuner arbeiten.
Dank einer hochstabilen Referenz und externen Taktgebern eignet sich dieses Gerät ideal für industrielle, wissenschaftliche und Bildungsanwendungen.
Features
Dual-Tuner bietet unabhängige Abdeckung von 1 kHz bis 2 GHz unter gleichzeitiger Verwendung von 2 Antennenanschlüssen
14-Bit-ADC-Siliziumtechnologie
Bis zu 10 MHz sichtbare Bandbreite (Single-Tuner-Modus) oder 2 Slices von 2 MHz Spektrum (Dual-Tuner-Modus)
3 per Software auswählbare Antennenanschlüsse (2x 50Ω und 1x 1kΩ hochohmiger symmetrischer/unsymmetrischer Eingang)
Hochohmiger Antennenanschluss (1 kHz bis 30 MHz) mit wählbarem MW-Sperrfilter und 2 Vorselektionsfiltern zur Auswahl
Per Software wählbare AM/FM- und DAB-Rundfunkband-Sperrfilter für die 2 SMA-Antennenanschlüsse (1 kHz bis 2 GHz)
Externer Takteingang und -ausgang ermöglichen die einfache Synchronisierung mit mehreren RSPs oder einem externen Referenztakt
Stromversorgung über das USB-Kabel mit einer einfachen Typ-B-Buchse
11 hochselektive, eingebaute Front-End-Vorwahlfilter an den beiden SMA-Antennenanschlüssen
Per Software wählbarer mehrstufiger rauscharmer Vorverstärker
Bias-T-Netzteil zur Versorgung des an der Antenne montierten LNA
In einem robusten, schwarz lackierten Stahlgehäuse untergebracht
SDRuno – SDR-Software der Extraklasse (für Windows)
Dokumentierte API für die Entwicklung neuer Anwendungen
Technische Daten
Frequenzbereich
1 kHz – 2 GHz
Antennenanschluss
SMA
Antennenimpedanz
50 Ohm
Stromverbrauch (typisch)
Single-Tuner Mode: 180 mA (ohne Bias-T)Dual-Tuner Mode: 280 mA (ohne Bias-T)
USB-Anschluss
USB-B
Maximale Eingangsleistung
+0 dBm kontinuierlich+10 dBm kurzzeitig
ADC Abtastraten
2-10,66 MSPS
ADC Anzahl der Bits
14 bit 2-6,048 MSPS12 bit 6,048-8,064 MSPS10 bit 8,064-9,216 MSPS8 bit >9,216 MSPS
Bias-T
4,7 V100 mA garantiert
Referenz
0,5ppm 24 MHz TCXO.Frequenzfehler auf 0,01ppm im Feld trimmbar.
Betriebstemperatur
−10˚C bis +60˚C
Abmessungen
98 x 94 x 33 mm
Gewicht
315 g
Downloads
Datasheet
Detailed Technical Information
Software
RSPdx-R2 vs RSPduo
RSPdx-R2
RSPduo
Kontinuierlicher Bereich von 1 kHz bis 2 GHz
✓
✓
Bis zu 10 MHz sichtbare Bandbreite
✓
✓
14-Bit-ADC-Siliziumtechnologie plus mehrere Hochleistungs-Eingangsfilter
✓
✓
Per Software wählbare AM/FM- und DAB-Rundfunkband-Sperrfilter
✓
✓
4,7 V Bias-T für die Versorgung eines externen Antennenverstärkers
✓
✓
Stromversorgung über das USB-Kabel mit einer einfachen Typ-B-Buchse
✓
✓
50Ω SMA-Antenneneingang(e) für 1 kHz bis 2 GHz Betrieb (per Software wählbar)
2
2
Zusätzlicher per Software wählbarer Hi-Z-Eingang für bis zu 30 Mhz-Betrieb
✓
Zusätzlicher per Software wählbarer 50-Ω-BNC-Eingang für den Betrieb mit bis zu 200 MHz
✓
Zusätzlicher LF/VLF-Filter für unter 500 kHz
✓
24 MHz Referenztakt-Eingang (+ Ausgang auf RSPduo)
✓
✓
Duale Tuner ermöglichen den Empfang auf 2 völlig unabhängigen 2-MHz-Bereichen
✓
Zwei Tuner ermöglichen Diversity-Empfang mit SDRuno
✓
Robustes schwarz lackiertes Stahlgehäuse
✓
✓
Gesamtleistung unter 2 MHz für MW und LF
++
+
Mehrere gleichzeitige Anwendungen
+
++
Leistung unter schwierigen Fading-Bedingungen (*mit Diversity-Abstimmung)
+
*++
Mit dem Pirate Audio Headphone Amp können Sie eine kompakte, tragbare Wiedergabeeinheit für lokale Audiodateien (MP3, FLAC usw.) oder zum Streamen von Musikdiensten wie Spotify erstellen. Um Ihnen den Einstieg zu erleichtern, hat Pimoroni Plugins für Mopidy entwickelt, mit denen Sie wunderschöne Albumcover anzeigen, Ihre Titel abspielen/pausieren und die Lautstärke anpassen können. Der DAC und der Kopfhörerverstärker liefern Ihnen kristallklaren, digital verstärkten Sound über Ihre verkabelten Kopfhörer.
Pirate Audio ist eine Reihe von All-in-One-Audio-Boards für Raspberry Pi mit hochwertigem digitalen Audio, einem gestochen scharfen IPS-Display für Albumcover, taktilen Tasten für die Wiedergabesteuerung und einer benutzerdefinierten Pirate Audio Software und Installationsprogramm, um die Einrichtung zum Kinderspiel zu machen.
Features
Verstärktes digitales Audio (24-Bit / 192 kHz) über I2S
PAM8908 Kopfhörerverstärker-Chip
Low-Gain / High-Gain-Schalter (High-Gain erhöht um 12 dB)
PCM5100A DAC-Chip
3,5-mm-Stereobuchse
1,3-Zoll-IPS-Farb-LCD (240x240px) (ST7789 Treiber)
Vier taktilen Tasten
Mini HAT-Formatplatine
Vollständig montiert
Kompatibel mit allen Raspberry Pi-Modellen mit 40-Pin-Header
Abmessungen: 65x30,5x9,5 mm
Software
Die Pirate Audio Software und das Installationsprogramm installieren die Python-Bibliothek für das LCD, konfigurieren den I2S-Audio- und SPI-Bus und installieren anschließend Mopidy und die benutzerdefinierten Pirate Audio-Plugins, um Albumcover und Titelinformationen anzuzeigen und die Tasten zur Wiedergabesteuerung zu verwenden.
So starten Sie:
Erstellen Sie eine SD-Karte mit der neuesten Version von Raspberry Pi OS.
Verbinden Sie sich mit Wi-Fi oder einem kabelgebundenen Netzwerk.
Öffnen Sie ein Terminal und geben Sie Folgendes ein:git clone https://github.com/pimoroni/pirate-audiocd pirate-audio/mopidysudo ./install.sh
Starten Sie Ihren Pi neu
Downloads
PAM8908 Datenblatt
PCM5100A Datenblatt
Pirate Audio Software