Challenger RP2040 NFC ist ein kleiner Embedded-Computer, der mit einem fortschrittlichen integrierten NFC-Controller (NXP PN7150) im beliebten Adafruit Feather-Formfaktor ausgestattet ist. Es basiert auf einem RP2040-Mikrocontroller-Chip der Raspberry Pi Foundation, einem Dual-Core-Cortex-M0, der mit einer Taktrate von bis zu 133 MHz betrieben werden kann. NFC Der PN7150 ist eine voll ausgestattete NFC-Controllerlösung mit integrierter Firmware und NCI-Schnittstelle, die für kontaktlose Kommunikation bei 13,56 MHz konzipiert ist. Es ist vollständig mit den Anforderungen des NFC-Forums kompatibel und basiert weitgehend auf Erkenntnissen aus früheren NXP-NFC-Gerätegenerationen. Es ist die ideale Lösung für die schnelle Integration der NFC-Technologie in jede Anwendung, insbesondere in kleine eingebettete Systeme, wodurch die Stückliste (BOM) reduziert wird. Das integrierte Design mit vollständiger NFC-Forum-Konformität bietet dem Benutzer alle folgenden Funktionen: Eingebettete NFC-Firmware, die alle NFC-Protokolle als vorintegrierte Funktion bereitstellt. Direkte Verbindung zum Haupthost oder Mikrocontroller über den physischen I²C-Bus und das NCI-Protokoll. Extrem geringer Stromverbrauch im Polling-Loop-Modus. Hocheffiziente integrierte Power-Management-Einheit (PMU), die eine direkte Versorgung über eine Batterie ermöglicht. Technische Daten Mikrocontroller RP2040 von Raspberry Pi (133 MHz Dual-Core Cortex-M0) SPI Ein SPI-Kanal konfiguriert I²C Zwei I²C-Kanäle konfiguriert (dedizierter I²C für den PN7150) UART Ein UART-Kanal konfiguriert Analogeingänge 4 analoge Eingangskanäle NFC-Modul PN7150 von NXP Flash-Speicher 8 MB, 133 MHz SRAM-Speicher 264 KB (aufgeteilt in 6 Bänke) USB 2.0-Controller Bis zu 12 MBit/s Full Speed (integriertes USB 1.1 PHY) JST-Batterieanschluss 2,0 mm Teilung LiPo-Ladegerät an Bord 450 mA Standard-Ladestrom Abmessungen 51 x 23 x 3,2 mm Gewicht 9 g Hinweis: Antenne ist nicht im Lieferumfang enthalten. Downloads Datasheet Quick start example
Der DiP-Pi WiFi Master ist ein fortschrittliches WiFi-Konnektivitätssystem mit eingebetteten Sensorschnittstellen, das die meisten möglichen Anforderungen für IoT-Anwendungen auf Basis von Raspberry Pi Pico abdeckt. Es wird direkt vom Raspberry Pi Pico VBUS mit Strom versorgt. Der DiP-Pi WiFi Master enthält eine in Raspberry Pi Pico eingebettete RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf die Stromquellen von Raspberry Pi Pico einwirkt.
Der DiP-Pi WiFi Master ist mit einem WiFi ESP8266 Clone-Modul mit integrierter Antenne ausgestattet. Diese Funktion eröffnet eine breite Palette darauf basierender IoT-Anwendungen.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi WiFi Master mit eingebetteten 1-Wire-, DHT11/22-Sensoren und Micro-SD-Kartenschnittstellen ausgestattet. Die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen macht den DiP-Pi WiFi Master ideal für IoT-Anwendungen wie Datenlogger, Anlagenüberwachung, Kühlschranküberwachung usw. DiP-Pi WiFi Master wird mit zahlreichen gebrauchsfertigen Beispielen unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Kompatibel mit Raspberry Pi Pico-Pinbelegung
Unabhängige informative LEDs (VBUS, VSYS, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter mit Wirkung auf die Stromversorgung des Raspberry Pi Pico
Eingebetteter 3,3 V bei 600 mA LDO
ESP8266-Klon-WLAN-Konnektivität
ESP8266 Firmware-Upload-Schalter
Eingebettete 1-Wire-Schnittstelle
Integrierte DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Eingebettete Peripheriegeräte und Schnittstellen
Eingebettete 1-Wire-Schnittstelle
Integrierte DHT-11/22-Schnittstelle
Micro SD-Kartensteckplatz
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard-Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexiglasgehäuse
Informative LEDs
VB (VUSB)
VS (VSYS)
V3 (V3V3)
Systemschutz
Direkter Raspberry Pi Pico Hardware-Reset-Knopf
PPTC 500 mA @ 18 V Sicherung auf EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO-Überstromschutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2 ozKupfer-PCB für ordnungsgemäße Hochstromversorgung und Kühlung
6 mils Spur/6 mils Lückentechnologie 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersion Gold
Mehrschichtige Kupfer-Thermorohre für eine verbesserte thermische Reaktion des Systems und bessere passive Kühlung
Downloads
Datenblatt
Handbuch
Der Hauptprozessor des Boards ist ein stromsparender Arm® Cortex®-M0 32-bit SAMD21, wie bei den anderen Boards der Arduino MKR Familie. Für die WiFi- und Bluetooth®-Konnektivität sorgt ein Modul von u-blox, der NINA-W10, ein stromsparender Chipsatz, der im 2,4-GHz-Bereich arbeitet. Darüber hinaus wird die sichere Kommunikation durch den Microchip® ECC508 Krypto-Chip gewährleistet. Außerdem befinden sich ein Batterieladegerät und eine RGB-LED an Bord.
Offizielle Arduino WiFi-Bibliothek
Sie können Ihr Board mit jeder Art von bestehendem WiFi-Netzwerk verbinden oder es verwenden, um Ihren eigenen Arduino Access Point zu erstellen. Die spezifischen Beispiele, die wir für das MKR WiFi 1010 bereitstellen, können auf der WiFiNINA library reference page eingesehen werden.
Kompatibel mit anderen Cloud-Diensten
Es ist auch möglich, das Board mit verschiedenen Cloud-Diensten zu verbinden, unter anderem mit dem von Arduino. Hier sind einige Beispiele, wie man das MKR WiFi 1010 zum Verbinden bringen kann:
Blynk: ein einfaches Projekt der Arduino-Gemeinschaft, das eine Verbindung zu Blynk herstellt, um Ihr Board mit wenig Code von einem Telefon aus zu bedienen
IFTTT: Ausführliche Darstellung des Aufbaus eines intelligenten Steckers, der mit IFTTT verbunden ist
AWS IoT-Kern: Arduino hat dieses Beispiel für die Verbindung zu Amazon Web Services erstellt
Azure: Besuchen Sie dieses GitHub-Repository, das erklärt, wie man einen Temperatursensor mit der Azure-Cloud verbindet
Firebase: Wenn Sie eine Verbindung zu Googles Firebase herstellen möchten, zeigt Ihnen diese Arduino-Bibliothek
Mikrokontroller
SAMD21 Cortex®-M0+ 32bit low power ARM MCU
Funkmodul
u-blox NINA-W102
Spannungsversorgung
5 V
Sicherheitselement
ATECC508
Unterstützte Batterie
Li-Po Single Cell, 3.7 V, 1024 mAh Minimum
Betriebsspannung
3.3 V
Digitale E/A-Pins
8
PWM Pins
13
UART
1
SPI
1
I2C
1
Analoge Eingangspins
7
Analoge Ausgangsstifte
1
Externe Interrupts
10
Flash-Speicher
256 KB
SRAM
32 KB
EEPROM
no
Taktgeschwindigkeit
32.768 kHz, 48 MHz
LED_Builtin
6
USB
USB-Gerät und eingebetteter Host
Länge
61.5 mm
Breite
25 mm
Gewicht
32 g
Die Pico Breakout Garden Base befindet sich unter Ihrem Pico und ermöglicht den Anschluss von bis zu sechs unserer umfangreichen Auswahl an Pimoroni-Breakouts. Sei es Umgebungssensoren, mit denen Sie die Temperatur und Luftfeuchtigkeit in Ihrem Büro im Auge behalten, eine ganze Reihe kleiner Bildschirme für wichtige Benachrichtigungen und Anzeigen und natürlich LEDs. Scrollen Sie nach unten für eine Liste der Breakouts, die derzeit mit unseren C++/MicroPython-Bibliotheken kompatibel sind! Neben einem beschrifteten Landebereich für Ihren Pico gibt es auch einen vollständigen Satz herausgebrochener Pico-Anschlüsse für den Fall, dass Sie noch mehr Sensoren, Kabel und Schaltkreise anschließen müssen. Wir haben einige Gummifüße eingebaut, um die Basis schön stabil zu halten und zu verhindern, dass sie Ihren Schreibtisch zerkratzt, oder es gibt M2,5-Befestigungslöcher an den Ecken, damit Sie sie bei Bedarf auf einer festen Oberfläche festschrauben können.
Bei den sechs stabilen schwarzen Steckplätzen handelt es sich um Kantenverbinder, die die Breakouts mit den Pins Ihres Pico verbinden. Es gibt zwei Steckplätze für SPI-Breakouts und vier Steckplätze für I²C-Breakouts. Da es sich bei I²C um einen Bus handelt, können Sie mehrere I²C-Geräte gleichzeitig verwenden, vorausgesetzt, sie haben nicht die gleiche I²C-Adresse (wir haben dafür gesorgt, dass alle unsere Breakouts unterschiedliche Adressen haben, und wir drucken sie auf der Rückseite auf). die Ausbrüche, damit sie leicht zu finden sind). Breakout Garden ist nicht nur eine praktische Möglichkeit, Ihrem Pico Funktionalität hinzuzufügen, sondern ist auch sehr nützlich für Prototyping-Projekte, ohne dass komplizierte Verkabelungen, Lötarbeiten oder Steckbretter erforderlich sind, und Sie können Ihr Setup jederzeit erweitern oder ändern.
Merkmale
Sechs stabile Kantensteckplätze für Breakouts
4x I²C-Steckplätze (5 Pins)
2x SPI-Steckplatz (7 Pins)
Landebereich mit Buchsenleisten für Raspberry Pi Pico
0,1-Zoll-Raster, 5- oder 7-polige Steckverbinder
Ausgebrochene Stifte
Verpolungsschutz (in Breakouts integriert)
Zu 99 % montiert – nur noch die Füße aufkleben!
Kompatibel mit Raspberry Pi Pico
Grove ist eine modulare elektronische Plattform für schnelles Prototyping. Jedes Modul hat eine Funktion, z. B. Berührungssensorik, Erzeugung von Audioeffekten und so weiter. Stecken Sie einfach die Module, die Sie benötigen, auf das Basisschild, dann sind Sie bereit, Ihre Ideen zu testen.
Dieses Grove Starter Kit für Arduino ist eine erweiterte Version unseres Grove Starter Kit plus. Häufig vorkommende Module wurden in dieses Kit aufgenommen, um Ihre Konzeptentwicklung zu unterstützen.
Änderungen
Optimierung der internen Schlitzstruktur, Einsatz von Technologie, um unsere Produkte im Inneren von Kunststoffboxen regelmäßiger und besser geschützt zu machen.
Upgrade Anweisungen für kreative Poster Form, mehr gestrafft und intuitive Beschreibung für jeden Grove-Sensor.
Grove-LED erhöht von drei separaten PCBA in eine. Aber wird immer noch drei verschiedene Farben von LED-Glühbirnen für Sie bereitzustellen.
Um die allgemeine Spielbarkeit des Produkterlebnisses zu berücksichtigen, haben wir die beiden Grove-Sensoren optimiert. Grove-Sound Sensor Upgrade auf V1.2; Grove-Temperatursensor Upgrade auf das neue SMD V1.1.
Datenleitung Upgrade von 24AWG Grove Kabel ist 26 AWG Grove Kabel, Drahtlänge ist auf die Länge von 200mm einheitliches Modell angepasst, die Anzahl wurde auf 10 angepasst.
Bildschirm perfektes Upgrade für die Grove-LCD-RGB-Hintergrundbeleuchtung, Farbbildschirm macht weitere verbesserte Spielbarkeit Erfahrung.
Lieferumfang
1x Base Shield
1x Grove LCD-RGB-Hintergrundbeleuchtung
1x Grove Smart-Relais
1x Grove Buzzer
1x Grove Tonsensor
1x Grove Berührungssensor
1x Grove Drehwinkelsensor
1x Grove Temperatursensor
1x Grove LED
1x Grove Lichtsensor
1x Grove Taster
1x DIP LED Blau-Blau
1x DIP LED Grün-Grün
1x DIP LED Rot-Rot
1x Mini-Servo
10x Grove Kabel
1x 9V auf Klinkenstecker-Adapter
1x Grove-Starterkit-Handbuch
1x Grüne Plastikbox
Downloads
Schematic (PDF)
Schematic (Eagle)
Grove Button Source File
Grove LED Source File
Grove Buzzer Source File
Grove Rotary Angle Sensor Source File
Grove Relay Source File
Base Shield Source File
Grove Sound Sensor Source File
Grove Buzzer Source File
Der JOY-iT JDS2960 ist ein 2-Kanal Signalgenerator, der Signale mit bis zu 60 MHz erzeugen kann. Sein kompaktes Design und die Möglichkeit, es mit einer Powerbank zu betreiben, machen es ideal für den mobilen Einsatz.
Mit einer Vielzahl von Wellenformen, darunter Sinus, Rechteck, Dreieck, Impuls, Halbwelle und mehr, eignet es sich für verschiedene Anwendungen in der Messtechnik.
Zusätzlich verfügt der JDS2960 über eine 1-Kanal-Frequenzzuteilung. Seine hohe Frequenzgenauigkeit von ±20 ppm und eine Stabilität von ±1 ppm/3 h sorgen für eine hervorragende Signalqualität und große Flexibilität.
Das 2,4 Zoll große TFT-Farbdisplay sorgt für eine benutzerfreundliche Bedienung und ermöglicht vielfältige Einsatzmöglichkeiten.
Features
2 Kanäle
Bis zu 60 MHz
Robustes Aluminium-Gehäuse
1-Kanal Frequenzzähler
Bis zu 20 Vpp
Viele verschiedene vorprogrammierte Wellenformen und bis zu 60 benutzerdefinierte Wellenformen
Pulsfunktion
Technische Daten
Kanäle
2-Kanal Signalgenerator1-Kanal Frequenzzähler
Frequenzbereich
Sinus: 0-60 MHzQuadrat, Dreieck: 0-25 MHzTTL, Impuls: 0-6 MHz
Signalformen
Sinus, Rechteck, Dreieck, Impuls, halbe/durchgezogene Welle, exponentieller Anstieg/Abfall usw.
Messbereichs-Frequenzzähler
1-100 MHz
Frequenzgenauigkeit
±20 ppm
Frequenzstabilität
±1 ppm/3 h
Abtastrate
266 MSa/s
Display
2,4" TFT-Farb-LCD
Vertikale Wellenauflösung
14 Bit
Amplitudenbereich
<10 MHz: 0-20 Vpp>10 MHz: 0-10 Vpp
Amplitudenauflösung
1 mV
Amplitudenstabilität
±5%/5h
Amplitudenflachheit
<10 MHz: ±5%>10 MHz: ±10%
Impedanz der Ausgabe
50 Ω ±10%
Verzerrungsfaktor
<0,8% (20 Hz-20 KHz, 0 dBm)
Abmessungen
145 x 95 x 55 mm
Gewicht
900 g
Lieferumfang
1x JOY-iT JDS2960 Signalgenerator
1x Netzteil
1x BNC-BNC-Kabel
2x BNC-Krokodilklemmen-Kabel
1x USB-DC-Stromkabel
1x USB-Datenkabel
Downloads
Datenblatt
Handbuch
Software
This ebook is about the Raspberry Pi 3 computer and its use in various control and monitoring applications. The book explains in simple terms and with tested and working example projects, how to configure the Raspberry Pi 3 computer, how to install and use the Linux operating system, and how to write hardware based applications programs using the Python programming language.
The nice feature of this book is that it covers many Raspberry Pi 3 based hardware projects using the latest hardware modules such as the Sense HAT, Swiss Pi, MotoPi, Camera module, and many other state of the art analog and digital sensors. An important feature of the Raspberry Pi 3 is that it contains on-board Bluetooth and Wi-Fi modules. Example projects are given in the book on using the Wi-Fi and the Bluetooth modules to show how real-data can be sent to the Cloud using the Wi-Fi module, and also how to communicate with an Android based mobile phone using the Bluetooth module.
The book is ideal for self-study, and is intended for electronic/electrical engineering students, practising engineers, research students, and for hobbyists. It is recommended that the book should be followed in the given Chapter order.
Over 30 projects are given in the book. All the projects in the book are based on the Python programming language and they have been fully tested. Full program listings of every project are given in the book with comments and full descriptions. Experienced programmers should find it easy to modify and update the programs to suit their needs.
The following sub-headings are given for each project to make it as easy as possible for the readers to follow the projects:
Project title
Description
Aim of the project
Raspberry Pi type
Block diagram
Circuit diagram
Program listing
Das Buch ist im Wesentlichen zweigeteilt: Im ersten Teil werden Techniken vorgestellt, mit denen parallele Programmabläufe realisiert werden können. Diese reichen von der einfachen automatischen Ablaufsteuerung eines Hintergrundprozesses durch Interrupts bis zur Implementierung eines an die beschränkten Möglichkeiten von AVR-Mikrocontrollern angepassten RTOS. Die Realisierung von Hintergrundprozessen lässt sich auf bequeme Weise mit Interrupts durchführen. Auf die Probleme der Synchronisierung mit Hintergrundprozessen wird ausführlich eingegangen. Interrupts werden zwar auch in ihrer „natürlichen“ Umgebung vorgestellt, aber es werden auch „exotische“ Einsätze von Interrupts beschrieben, z. B. der Einsatz eines Timer-Interrupts als Programmschleifenzähler. Dass sinnvolles Multitasking auch für die kleineren Mikrocontroller der AVR-Serie möglich ist, wird mit Kleinsystemen demonstriert, die auch auf einem ATtiny2313 ablaufen können. Für Controller mit besserer Ausstattung ist das System SLIMOS gedacht – in dem Prozesse dynamische Objekte sind – in dem Prozesse mit Semaphoren und Ereignissen synchronisiert werden können – welches Interrupts als Ereignisse integriert und eine Zeitablaufsteuerung für inaktive Prozesse besitzt.Der zweite Teil des Buches ist der Numerik gewidmet. Höhepunkt ist die Implementierung einer AVR-freundlichen Fließkommaarithmetik, die dennoch den Standard IEEE 754 soweit umsetzt, wie das bei den kleinen AVR-Prozessoren sinnvoll erscheint. Der Vorstellung und Erläuterung dieses Standards ist ein eigenes Kapitel gewidmet. Zusätzlich gibt es noch ein vorbereitendes Kapitel, in dem die Grundbegriffe der Fließkommaarithmetik erklärt werden, das aber auch esoterische Aspekte erläutert, wie etwa das vom Standard geforderte Rechnen mit Unendlichkeiten. Ein weiteres Kapitel beschreibt die Erzeugung von Zufallszahlen. Es wird gezeigt, wie Zufallszahlen mit diskreter Verteilung, Gleichverteilung, Exponentialverteilung und Normalverteilung berechnet werden können. Sie werden als sehr schnelle Versionen in Fixkommaarithmetik bereit gestellt, woraus dann Fließkommaversionen entwickelt werden. Ein Beispiel für ihren Einsatz ist im Simulationsabschnitt des SLIMOS-Kapitels zu finden.Der Anhang bietet u. a. eine sehr AVR-freundliche Realisierung der Methode von Fletcher und die Implementierung von Funktoren, die elegante Problemlösungen gestatten.Alle Programme sind so ausführlich erläutert und kommentiert, dass der Leser keine Schwierigkeiten damit haben dürfte, sie an eigene Bedürfnisse anzupassen. Der für alle Programme verwendete Assembler wird vom Hersteller der AVR-Mikrocontroller kostenlos zur Verfügung gestellt.Band 2 ist als gedrucktes Buch erhältlich:
Systemprogrammierung II für AVR-Mikrocontroller
Der Arduino ist inzwischen zu einer festen Größe in der Maker-Welt geworden. Der Einstieg in die Controller-Technik ist damit nicht mehr nur Experten vorbehalten. Anders sieht es aus, wenn es um Hardware-Erweiterungen geht. Hier ist der Anwender immer noch weitgehend auf sich selbst gestellt. Wenn man wirklich innovative Projekte umsetzen möchte, muss man sich direkt mit elektronischen Bauelementen befassen. Dies stellt aber viele Einsteiger vor größere Probleme.
Genau hier setzt das vorliegende Buch an, in dem es nicht nur um RFID geht. Es bietet eine Fülle an Praxisprojekten, die mit einem einzigen Kit aufgebaut werden können. Dieses Kit, das RFID-Starterkit für Arduino Uno, enthält über 30 Komponenten, Bauelemente und Module aus allen Bereichen der modernen Elektronik.
Neben den einfachen Elementen wie LEDs und Widerständen sind auch komplexe und hochmoderne Module enthalten, beispielsweise
ein Feuchtigkeitssensor
eine Multicolor-LED
eine LED-Matrix mit 64 integrierten Leuchtpunkten
eine vierstellige 7-Segment-Anzeige
eine Infrarot-Fernbedienung
ein komplettes LCD-Display-Modul
ein Servomotor
ein Schrittmotor mit Steuermodul
eine komplette RFID-Platine mit Schlüsselkarte
Neben präzisen digitalen Thermometern, Hygrometern, Belichtungsmessern und verschiedenen Alarmanlagen entstehen auch praktisch einsetzbare Geräte und Anwendungen wie etwa ein vollautomatischer Regensensor, eine schallgesteuerte Fernbedienung, eine multifunktionale Klimamessstation und vieles mehr.
Alle Projekte lassen sich dabei mit den Komponenten aus dem Elektor-Kit realisieren.
Schon jeder hat erlebt, dass bei medizinischen Untersuchungen nicht ausreichend erklärt wird, was durch und mit den eingesetzten Geräte konkret vor sich geht. Dieses Buch kann hier unterstützend eingreifen und beschreibt auf verständliche Weise, wie die Medizintechnik funktioniert. Sowohl diejenigen, die nur eine oberflächliche Erklärung suchen als auch der Personenkreis, der etwas tiefer ins Details gehen will, finden in diesem Buch eine Antwort auf viele Fragen.
Zunächst werden die biologischen Grundlagen soweit erklärt, wie sie für das weitere Verständnis nötig sind. Danach wird auf die biologische Messtechnik und die Messaufnehmer sowie auf die elektronische Verarbeitung eingegangen. Gerüstet mit diesem Wissen folgt dann die Beschreibung verschiedener Anwendungen (z. B. EKG, EEG, EMG, Biofeedback) anhand einfacher Schaltungen. Weitere Anwendungen, wie beispielsweise die Kernspintomografie und Bestrahlungen, runden das Buch ab.
Wer sich dieser Thematik auf eine eher spielerische Art und Weise annähern möchte, findet hier ein eigenes Kapitel, in dem faszinierende parapsychologische Effekte anhand von telekinetischen Anwendungen vorgestellt werden, wie z. B. eine gedankenmanipulierte Eisenbahnsteuerung.
Moderne Mikrocontroller werden immer leistungsfähiger und können vielfältige Aufgaben übernehmen, für die vor wenigen Jahren noch ein kompletter Computer nötig gewesen wäre. Gerade für die Entwicklung tragbarer Geräte bringt die Prozessorfamilie der MSP430-Mikrocontroller von Texas Instruments alle nötigen Peripheriekomponenten integriert mit, um ohne aufwendige externe Beschaltung komplexe Funktionen einfach zu realisieren. Die RISC-Architektur des Prozessors ist dabei ganz auf Rechengeschwindigkeit, aber gleichzeitig auch auf Energie-Effizienz getrimmt.Dieses Buch eröffnet einen schrittweisen Einstieg in die Welt der Mikrocontrollerprogrammierung und führt mit ausführlichen Anwendungsbeispielen in die Fähigkeiten dieser außergewöhnlichen Prozessorfamilie ein. Jede Komponente des Prozessors wird ausführlich erklärt und deren Funktion in kleinen Beispielprogrammen gleich umgesetzt. Abgerundet wird jedes Kapitel mit einigen Übungsaufgaben. So entsteht neben dem eigentlichen Lerneffekt gleichzeitig eine Referenzbibliothek von Funktionsmodulen, die später in eigenen Anwendungen leicht weiter verwendet werden können.DownloadsDie Listings der im Buch beschriebenen Programmbeispiele (ausschließlich in 'C') und weitere Infos finden Sie hier.
Wenn Sie die Auflösungsgrenzen des V-One erweitern möchten, helfen Ihnen diese Dosierspitzen bei der Umsetzung Ihrer experimentellen Projekte. Dieses Set enthält 4 extra feine Düsen mit einem Innendurchmesser von 0,150 mm (6 mil).
Verwenden Sie diese Düsen nicht mit Lötpaste! Es wird verstopfen!
Der SparkFun RP2350 Pro Micro bietet eine leistungsstarke Entwicklungsplattform, die auf dem RP2350-Mikrocontroller basiert. Dieses Board verwendet den aktualisierten Pro Micro-Formfaktor. Es umfasst einen USB-C-Anschluss, einen Qwiic-Anschluss, eine adressierbare WS2812B-RGB-LED, Boot- und Reset-Tasten, eine rücksetzbare PTC-Sicherung sowie PTH- und zinnenförmige Lötpads.
Der RP2350 ist ein einzigartiger Dual-Core-Mikrocontroller mit zwei ARM Cortex-M33-Prozessoren und zwei Hazard3 RISC-V-Prozessoren, die alle mit bis zu 150 MHz laufen! Das bedeutet jedoch nicht, dass der RP2350 ein Quad-Core-Mikrocontroller ist. Stattdessen können Benutzer auswählen, welche zwei Prozessoren stattdessen beim Booten ausgeführt werden sollen. Sie können zwei Prozessoren desselben Typs oder jeweils einen davon betreiben. Der RP2350 verfügt außerdem über 520 kB SRAM in zehn Bänken, eine Vielzahl von Peripheriegeräten, darunter zwei UARTs, zwei SPI- und zwei I²C-Controller sowie einen USB 1.1-Controller für Host- und Geräteunterstützung.
Der Pro Micro verfügt außerdem über zwei erweiterte Speicheroptionen: 16 MB externer Flash und 8 MB PSRAM, verbunden mit dem QSPI-Controller des RP2350. Der RP2350 Pro Micro arbeitet mit C/C++ unter Verwendung der Entwicklungsumgebungen Pico SDK, MicroPython und Arduino.
Features
RP2350-Mikrocontroller
8 MB PSRAM
16 MB Flash
Versorgungsspannung
USB: 5 V
RAW: 5,3 V (max.)
Pro Micro Pinbelegung
2x UART
1x SPI
10x GPIO (4 werden für UART1 und UART0 verwendet)
4x Analog
USB-C-Anschluss
USB 1.1-Host-/Geräteunterstützung
Qwiic-Connector
Buttons
Reset
Boot
LEDs
WS2812 Adressierbare RGB-LED
Rote Power-LED
Abmessungen: 33 x 17,8 mm
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
RP2350 MicroPython Firmware (Beta 04)
SparkFun Pico SDK Library
Arduino Pico Arduino Core
Datasheet (RP2350)
Datasheet (APS6404L PSRAM)
RP2350 Product Brief
Raspberry Pi RP2350 Microcontroller Documentation
Qwiic Info Page
GitHub Repository
Merkmale
Integrierte Vergleichsstellenkompensation
Unterstützte Typen (bezeichnet durch NIST ITS-90): Typ K, J, T, N, S, E, B und R Vier programmierbare Temperaturalarmausgänge:
Überwachen Sie Hot- oder Cold-Junction
Temperaturen
Erkennen Sie steigende oder fallende Temperaturen
Bis zu 255 °C oder programmierbare Hysterese
Programmierbarer digitaler Filter für Temperatur
Geringer Strom
Abmessungen: 20 mm x 40 mm x 18 mm
Gewicht: 18g
Anwendung
Petrochemisches Wärmemanagement
Handmessgeräte
Wärmemanagement für Industrieanlagen
Öfen
Wärmeüberwachung für Industriemotoren
Temperaturerkennungsregale
Downloads
Eagle-Dateien
Github-Bibliothek
Datenblatt
ArdiPi ist die ultimative Arduino Uno-Alternative voller leistungsstarker Spezifikationen und aufregender Funktionen im Arduino Uno-Formfaktor. Sie profitieren von einer kostengünstigen Lösung mit Zugang zu den größten Support-Communitys für Raspberry Pi.
Die ArdiPi-Variante wird von Raspberry Pi Pico W angetrieben. Die integrierte Wi-Fi- und Bluetooth-Konnektivität des Boards ist ideal für IoT-Projekte oder Projekte, die drahtlose Kommunikation erfordern.
Features
Arduino Uno-Formfaktor, so dass Sie 3,3 V-kompatible Arduino-Shields anschließen können
SD-Kartensteckplatz für Speicherung und Datenübertragung
Drag-and-Drop-Programmierung mit Massenspeicher über USB
Multifunktions-GPIO-Breakout mit Unterstützung für allgemeine E/A, UART, I²C, SPI, ADC und mehr. PWM-Funktionen.
Multi-Tune-Summer, um dem Projekt einen Audioalarm hinzuzufügen
SWD-Pins-Breakout für serielles Debugging
Unterstützung mehrerer Plattformen wie Arduino IDE, MicroPython und CircuitPython.
Verfügt über HID-Unterstützung, sodass das Gerät eine Maus oder Tastatur simulieren kann
Technische Daten
Angetrieben von einem RP2040-Mikrocontroller, einem Dual-Core-Arm-Cortex-M0+-Prozessor, 2 MB integriertem Flash-Speicher und 264 KB RAM.
Integrierte drahtlose Single-Band-2,4-GHz-Schnittstellen (802.11n) für WLAN und Bluetooth 5 (LE)
WPA3 & Soft Access Point, der bis zu vier Clients unterstützt
Betriebsspannung der Pins 3,3 V und Platinenversorgung 5 V
25 Mehrzweck-GPIOs-Breakout im Arduino-Stil für einfache Peripherieschnittstellen
Unterstützung für I²C-, SPI- und UART-Kommunikationsprotokolle
2 MB integrierter Flash-Speicher
Plattformübergreifende Entwicklung und Unterstützung mehrerer Programmiersprachen
Lo-Fi (ESP32 + LoRa-Kombination) ist die perfekte Lösung für alle, die eine drahtlose Kommunikation über große Entfernungen in einer Vielzahl von Anwendungen mit WiFi-Funktionen aufbauen möchten. LoRa bietet eine außergewöhnliche Reichweite und einfache Konnektivität und ermöglicht Ihnen die nahtlose Kommunikation mit Geräten in einer Entfernung von bis zu 5 m.
Geräte bieten neben dem WLAN-Zugang eine effiziente und vertrauenswürdige Wahl für die drahtlose Kommunikation über große Entfernungen, um Internet-Clouds zu verbinden, die sich am besten für Internet-of-Things-Anwendungen eignen und Konnektivität in abgelegenen und anspruchsvollen Umgebungen ermöglichen.
Funktionen
Gerät mit leistungsstarkem ESP32 S3 WROOM-1, das über einen Xtensa Dual-Core-32-Bit-LX7-Mikroprozessor mit bis zu 240 MHz verfügt
Integriertes WLAN & Bluetooth LE für drahtlose Konnektivität
Typ-C-Schnittstelle für Programmierung/Stromversorgung
1,14-Zoll-TFT-Display für visuelle Interaktionen
GPIO-Breakouts für den Anschluss zusätzlicher Peripheriegeräte
Breadboard-kompatibel für einfache DIY-Breadboarding-Projekte
2 separate, vom Benutzer programmierbare Tasten sowie Reset- und Boot-Tasten
3,7-V-Lithiumbatterieanschluss für einen tragbaren Anwendungsfall mit integrierter Ladeoption
Verwenden Sie das LoRa-Spreizspektrum der neuen Generation, um eine stabile Kommunikation sicherzustellen
Für LoRa höhere Geschwindigkeit und eine größere Datenübertragungsreichweite von bis zu 5 km
Anwendungen
Internet der Dinge (IoT)
Smart Home-Automatisierung
Landwirtschaftliche Automatisierung
Notfalldienste
Umweltüberwachung
Industrielle Automatisierung
Technische Daten
Mikrocontroller: ESP32 S3 WROOM-1
Drahtlose Schnittstelle: WiFi, BLE, LoRa
Protokoll: 802.11b/g/n, Bluetooth 5.0
Speichergröße: 16 MB Flash, 384 kB ROM, 8 MB SRAM
Versorgungsspannung: 5 V
Betriebsspannung: 3,3 V
Displaygröße: 1,14 Zoll
Anzeigetyp: TFT
Anzeigeauflösung: 135 x 240 Pixel
Anzeigetreiber: ST7789V
Anzeigedarstellung: RGB
Anzeigefarbe: 4k/65k/252k
Display-Leuchtdichte: 400 Cd/m²
Betriebstemperatur: -20 bis 70°C
Lagertemperatur: -30 bis 80°C
LoRa-Modulspezifikationen:
Trägerfrequenz (lizenzfreies ISM): 868 MHz
Chip: Basierend auf dem SX1262 RF-Chip
Reichweite: 5 km
Sendeleistung: 22 dBm
Empfangsempfindlichkeit: -147 dBm
Datenrate: Bis zu 62,5 kbps
Kommunikationsport: UART seriell
Downloads
Getting started guide
Hardware design files
Lieferumfang
1x Lo-Fi Board
1x Antenne (868 MHz)
Der Arduino Nano 33 BLE Sense Rev2 mit Headers ist Arduinos 3,3 V AI-fähiges Board im kleinstmöglichen Formfaktor und mit einer Reihe von Sensoren ausgestattet, die es Ihnen ermöglichen, ohne externes Zubehör sofort mit der Programmierung Ihres nächsten Projekts zu beginnen.
Mit dem Arduino Nano 33 BLE Sense Rev2 können Sie:
Tragbare Geräte bauen, die mithilfe von KI Bewegungen erkennen können.
Ein Raumtemperaturüberwachungsgerät bauen, das Änderungen am Thermostat vorschlagen oder vornehmen kann.
Ein Gesten- oder Spracherkennungsgerät unter Verwendung des Mikrofons oder des Gestensensors in Kombination mit den KI-Fähigkeiten des Boards bauen.
Unterschiede zwischen Rev1 und Rev2:
Austausch des IMU von LSM9DS1 (9-Achsen) durch eine Kombination aus zwei IMUs (BMI270 - 6-Achsen-IMU und BMM150 - 3-Achsen-IMU)
Austausch des Temperatur- und Feuchtigkeitssensors von HTS221 durch HS3003
Austausch des Mikrofons von MP34DT05 durch MP34DT06JTR
Austausch der Stromversorgung MPM3610 durch MP2322
Hinzufügen eines VUSB-Lötjumpers auf der Oberseite des Boards
Neuer Testpunkt für USB, SWDIO und SWCLK
Specifications
Microkontroller
nRF52840 (Datenblatt)
Betriebsspannung
3.3 V
Eingangsspannung (Grenzwert)
21 V
DC-Strom pro I/O-Pin
15 mA
Taktgeschwindigkeit
64 MHz
CPU-Flash-Speicher
1 MB (nRF52840)
SRAM
256 KB (nRF52840)
EEPROM
None
Digitale Ein-/Ausgangspins
14
PWM-Pins
Alle digitalen Pins
UART
1
SPI
1
I²C
1
Analogeingangspins
8 (ADC 12 bit 200 k samples)
Analogausgangspins
Only through PWM (no DAC)
Externe Unterbrechungen
Alle digitalen Pins
LED_BUILTIN
13
USB
Nativ im nRF52840-Prozessorr
IMU
BMI270 (Datenblatt) and BMM150 (Datenblatt)
Mikrofon
MP34DT06JTR (Datenblatt)
Geste, Licht, Nähe, Farbe
APDS9960 (Datenblatt)
Barometrischer Druck
LPS22HB (Datenblatt)
Temperatur, Luftfeuchtigkeit
HS3003 (Datenblatt)
Downloads
Datenblatt
Schaltpläne
Inventor 2040 W ist ein Multitalent-Board, das (fast) alles kann, was Sie von einem Roboter, einer Requisite oder einer anderen mechanischen Sache erwarten. Ein paar schicke Motoren mit angeschlossenen Encodern antreiben? Ja! Bis zu sechs Servos hinzufügen? Sicher? Einen kleinen Lautsprecher anbringen, damit man Lärm machen kann? Kein Problem! Es verfügt außerdem über einen Batterieanschluss, sodass Sie Ihre Erfindungen mit AA/AAA- oder LiPo-Batterien betreiben und Ihren Miniaturautomaten/animierten Zylinder/Schatztruhe, der Ihre Feinde anbrüllt, ungebunden bei sich tragen können. Sie erhalten auch eine Menge Optionen zum Anschließen von Sensoren und anderen Anschlüssen – es gibt zwei Qw/ST-Anschlüsse (und einen unbestückten Breakout Garden-Steckplatz) zum Anbringen von Breakouts, drei ADC-Pins für analoge Sensoren, Fotowiderstände und dergleichen sowie drei zusätzliche digitale GPIOs Könnte für LEDs, Tasten oder digitale Sensoren verwendet werden. Apropos LEDs: Das Board verfügt über 12 adressierbare LEDs (auch Neopixel genannt) – eine für jeden Servo- und GPIO/ADC-Kanal.
Merkmale
Raspberry Pi Pico W an Bord
Dual Arm Cortex M0+ mit bis zu 133 MHz und 264 kB SRAM
2 MB QSPI-Flash mit XiP-Unterstützung
Stromversorgung und Programmierung über USB Micro-B
2,4 GHz kabellos
2 JST-SH-Stecker (6-polig) zum Anschließen von Motoren
Dual-H-Bridge-Motortreiber (DRV8833)
Pro Motorstrombegrenzung (425 mA)
LEDs zur Richtungsanzeige je Motor
2-poliger (Picoblade-kompatibler) Anschluss zum Anschließen des Lautsprechers
JST-PH-Anschluss (2-polig) zum Anschließen der Batterie (Eingangsspannung 2,5–5,5 V)
6 Sätze Stiftleisten zum Anschluss von 3-poligen Hobby-Servos
6 Sätze Stiftleisten für GPIO (davon 3 ADC-fähig)
12x adressierbare RGB-LEDs/Neopixel
Benutzertaste
Reset-Knopf
2x Qw/ST-Anschlüsse zum Anbringen von Breakouts
Unbefüllte Header zum Hinzufügen eines Breakout Garden-Slots
Komplett montiert
Kein Löten erforderlich (es sei denn, Sie möchten den Breakout Garden-Steckplatz hinzufügen).
C/C++- und MicroPython-Bibliotheken
Schematisch
Downloads
Laden Sie die Piratenmarke MicroPython herunter
Erste Schritte mit Raspberry Pi Pico
Referenz zur Motorfunktion
Servofunktionsreferenz
MicroPython-Beispiele
C++-Beispiele
Das SparkFun MicroMod mikroBUS Carrier Board nutzt die Vorteile der MicroMod-, Qwiic- und mikroBUS-Ökosysteme und ermöglicht es Ihnen, schnell Prototypen zu erstellen, indem Sie sie kombinieren. Der MicroMod M.2-Anschluss und der mikroBUS 8-Pin-Header bieten Benutzern die Freiheit, mit jedem Prozessorboard im MicroMod-Ökosystem und jedem Click-Board im mikroBUS-Ökosystem zu experimentieren. Dieses Board verfügt außerdem über zwei Qwiic-Anschlüsse, um Hunderte von Qwiic-Sensoren und Zubehör nahtlos in Ihr Projekt zu integrieren.
Der mikroBUS-Anschluss besteht aus einem Paar weiblicher 8-Pin-Header mit einer standardisierten Pin-Konfiguration. Die Pins bestehen aus drei Gruppen von Kommunikationspins (SPI, UART und I²C), sechs zusätzlichen Pins (PWM, Interrupt, Analogeingang, Reset und Chip-Select) und zwei Stromgruppen (3,3 V und 5 V).
Während ein moderner USB-C-Anschluss das Programmieren erleichtert, ist das Carrier Board auch mit einem MCP73831 Single-Cell Lithium-Ionen-/Lithium-Polymer-Lade-IC ausgestattet, mit dem Sie einen angeschlossenen LiPo-Akku mit einer Zelle aufladen können. Das Lade-IC erhält Strom über die USB-Verbindung und kann bis zu 450 mA bereitstellen, um einen angeschlossenen Akku aufzuladen.
Features
M.2 MicroMod (Prozessorboard) Anschluss
USB-C-Anschluss
3,3 V 1 A Spannungsregler
2x Qwiic-Anschlüsse
mikroBUS-Anschluss
Boot/Reset-Tasten
Ladekreis
JTAG/SWD PTH-Pins
Downloads
Schaltplan
Eagle-Dateien
Platinenabmessungen
Anschlussanleitung
Erste Schritte mit Necto Studio
mikroBUS-Standard
Qwiic Info-Seite
GitHub-Hardware-Repo
Wollten Sie schon immer ein automatisiertes Haus? Oder einen intelligenten Garten? Mit dem Arduino IoT Cloud kompatiblen Board Nicla Vision können Sie Ihr nächstes smartes Projekt bauen. Sie können Geräte verbinden, Daten visualisieren, Ihre Projekte von überall auf der Welt steuern und teilen.
Nicla Vision kombiniert einen leistungsstarken STM32H747AII6 Dual ARM Cortex M7/M4 IC Prozessor mit einer 2 MP Farbkamera, die TinyML unterstützt, sowie einem intelligenten 6-Achsen Bewegungssensor, integriertem Mikrofon und Abstandssensor. Sie können ihn problemlos in jedes Projekt einbinden, da er mit allen Arduino Portenta und MKR-Produkten kompatibel ist, vollständig in OpenMV integriert ist, MicroPython unterstützt und sowohl WiFi als auch Bluetooth Low Energy Konnektivität bietet. Er ist so kompakt – mit seinem Formfaktor von 22,86 x 22,86 mm – dass er in die meisten Szenarien passt und so wenig Energie benötigt, dass er für Standalone-Anwendungen mit einer Batterie betrieben werden kann.
All dies macht Nicla Vision zur idealen Lösung für die Entwicklung oder den Prototypenbau mit geräteinterner Bildverarbeitung und maschinellem Sehen an der Schnittstelle, für die Verfolgung von Anlagen, die Objekterkennung, die vorausschauende Wartung und vieles mehr - einfacher und schneller als je zuvor. Trainieren Sie das Erkennen von Details, damit Sie sich auf das große Ganze konzentrieren können.
Features
Winziger Formfaktor von 22,86 x 22,86 mm
Leistungsstarker Prozessor zum Hosten von Intelligenz am Rand
Ausgestattet mit einer 2 MP-Farbkamera, die TinyML unterstützt, einem intelligenten 6-Achsen-Bewegungssensor, einem Mikrofon und einem Abstandssensor
WLAN- und Bluetooth Low Energy-Konnektivität
Unterstützt MicroPython
Standalone bei Batteriebetrieb
Bestehendes Projekt mit Sensorfunktionen erweitern, MV-Prototyping beschleunigen
Alles automatisieren
Überprüfen Sie, ob jedes Produkt etikettiert ist, bevor es die Produktionslinie verlässt; Entriegeln Sie Türen nur für autorisiertes Personal und nur, wenn es die PSA korrekt trägt; verwenden Sie KI, um Nicla Vision zu trainieren, regelmäßig analoge Messgeräte zu überprüfen und Messwerte in die Cloud zu übertragen; Bringen Sie ihm bei, durstige Pflanzen zu erkennen und bei Bedarf die Bewässerung einzuschalten.Immer wenn Sie handeln oder eine Entscheidung treffen müssen, lassen Sie Nicla Vision beobachten, entscheiden und für Sie handeln.
Fühlen Sie sich gesehen
Interagieren Sie mit Kiosken mit einfachen Gesten, schaffen Sie immersive Erlebnisse, arbeiten Sie mit Cobots an Ihrer Seite. Nicla Vision ermöglicht es Computern und intelligenten Geräten, Sie zu sehen, zu erkennen, Ihre Bewegungen zu verstehen und Ihr Leben einfacher, sicherer, effizienter und besser zu machen.
Halten Sie die Augen offen
Lassen Sie Nicla Vision Ihre Augen sein: Erkennen Sie Tiere auf der anderen Seite der Farm, lassen Sie Ihre Türklingel vom Strand aus beantworten, überprüfen Sie ständig die Vibrationen oder den Verschleiß Ihrer Industriemaschinen. Es ist Ihr immer aktiver, immer präziser Ausguck, wo immer Sie ihn brauchen.
Downloads
Schematics
Datasheet
Merkmale
Implementiert CAN V2.0B mit bis zu 1 Mb/s
9-poliger Sub-D-Stecker nach Industriestandard
OBD-II- und CAN-Standard-Pinout wählbar.
Wechselbarer Chip-Select-Pin
Programmierbarer CS-Pin für TF-Kartensteckplatz
Auswechselbarer INT-Pin
Schraubklemme für den einfachen Anschluss von CAN_H und CAN_L
Arduino Uno Stiftleisten
MicroSD - Kartenhalter
2 Grove-Anschlüsse (I2C und UART)
SPI-Schnittstelle mit bis zu 10 MHz
Standard (11 Bit) und erweiterte (29 Bit) Daten und Remote Frames
Zwei Empfangspuffer mit priorisiertem Nachrichtenspeicher
Dieser Grove - PIR-Bewegungssensor (Passiv-Infrarot-Sensor) kann durch Bewegung verursachte Infrarotsignale erkennen. Wenn der PIR-Sensor die Infrarotenergie wahrnimmt, wird der Bewegungsmelder ausgelöst und der Sensor gibt HIGH an seinem SIG-Pin aus. Der Erfassungsbereich und die Reaktionsgeschwindigkeit können mit 2 Potentiometern auf der Platine eingestellt werden. Die Reaktionsgeschwindigkeit liegt zwischen 0,3s und 25s, der Erfassungsbereich beträgt maximal 6 Meter.
Der Grove - PIR Bewegungssensor (Passiv-Infrarot-Sensor) ist ein einfach zu bedienender Bewegungssensor mit Grove-kompatibler Schnittstelle. Durch einfaches Anschließen an das Base Shield und Programmierung kann er als geeigneter Bewegungsmelder für Arduino-Projekte verwendet werden. Der PIR-Bewegungssensor wird zum Beispiel häufig in Sicherheitsalarmsystemen und automatischen Beleuchtungsanwendungen eingesetzt.
Merkmale
Grove-kompatible Schnittstelle
Spannungsbereich: 3 V - 5 V
Größe: 20 mm x 40 mm
Erfassungswinkel: 120 Grad
Maximale Erfassungsdistanz: 6 m (standardmäßig 3 m)
Einstellbarer Erfassungsabstand und Haltezeit
Anwendungen
Bewegungsmelder
Bewegungsdetektor
Sicherheitsalarmsystem
Menschen-Detektionssystem
Technische Spezifikationen
Dimensionen
40 mm x 20 mm x 15 mm
Gewicht
12 g
Batterie
Nicht Enthalten
Spannungsbereich
3 V – 5 V
Detektionswinkel
120 Grad
Erkennungsabstand
max. 6 m (standardmäßig 3 m)
Merkmale
Wählbares Ausgabeformat: Uart oder Wiegand.
4Pins elektronische Brick-Schnittstelle
Hohe Empfindlichkeit
Spezifikationen
Abmessungen: 44 mm x 24 mm x 9,6 mm
Gewicht: 15g
Batterie: Ausschließen
Spannung: 4,75 V – 5,25 V
Arbeitsfrequenz: 125 kHz
Erfassungsabstand (maximal): 70 mm
TTL-Ausgang: 9600 Baudrate, 8 Datenbits, 1 Stoppbit und kein Prüfbit
Wiegand-Ausgabe: 26-Bit-Wiegand-Format, 1 gerades Verifizierungsbit, 24 Datenbits und 1 ungerades Verifizierungsbit