Wenn Sie nach einer einfachen Möglichkeit suchen, das Löten zu erlernen, oder einfach nur ein kleines Gerät herstellen möchten, das Sie tragen können, ist dieses Set eine großartige Gelegenheit. Das Reaktionsspiel ist ein Lernset, das Ihnen das Löten beibringt und am Ende Ihr eigenes kleines Spiel erhält. Ziel des Spiels ist es, den Knopf neben der LED zu drücken, sobald diese aufleuchtet. Mit jeder richtigen Antwort wird das Spiel etwas schwieriger – die Zeit, die Sie zum Drücken der Taste benötigen, verkürzt sich. Wie viele richtige Antworten können Sie bekommen?
Es basiert auf dem ATtiny404-Mikrocontroller, programmiert in Arduino. Auf der Rückseite befindet sich eine CR2032-Batterie, die das Kit tragbar macht. Es gibt auch einen Schlüsselanhängerhalter. Der Lötvorgang ist anhand der Markierung auf der Leiterplatte recht einfach.
Lieferumfang
1x Platine
1x ATtiny404 Mikrocontroller
4x LEDs
4x Drucktasten
1x Schalter
4x Widerstände (330 Ohm)
1x CR2032-Batteriehalter
1x Batterie CR2032
1x Schlüsselanhängerhalter
Verwenden Sie das richtige Werkzeug für die richtige Aufgabe. Diese Stahlstifte werden verwendet, um die Nieten auf der Leiterplatte nach dem Bohren der Löcher zu befestigen.
Sie wurden für eine optimale Leistung auf der Tinte entwickelt und stellen eine elektrische Verbindung zwischen den oberen und unteren Schichten Ihrer Leiterplatte sicher.
Erfahren Sie hier, wie Sie sie verwenden: hier.
If you enjoy DIY electronics, projects, software and robots, you’ll find this book intellectually stimulating and immediately useful. With the right parts and a little guidance, you can build robot systems that suit your needs more than overpriced commercial systems can.
20 years ago, robots based on simple 8-bit processors and touch sensors were the norm. Now, it’s possible to build multi-core robots that can react to their surroundings with intelligence. Today’s robots combine sensor readings from accelerometers, gyroscopes and computer vision sensors to learn about their environments. They can respond using sophisticated control algorithms and they can process data both locally and in the cloud.
This book, which covers the theory and best practices associated with advanced robot technologies, was written to help roboticists, whether amateur hobbyist or professional, take their designs to the next level. As will be seen, building advanced applications does not require extremely costly robot technology. All that is needed is simply the knowledge of which technologies are out there and how best to use each of them.
Each chapter in this book will introduce one of these different technologies and discuss how best to use it in a robotics application. On the hardware side, we’ll cover microcontrollers, servos, and sensors, hopefully inspiring you to design your own awe-inspiring, next-generation systems. On the software side, we’ll cover programming languages, debugging, algorithms, and state machines. We’ll focus on the Arduino, the Parallax Propeller, Revolution Education PICAXE and projects I’ve with which I’ve been involved, including the TBot educational robot, the PropScope oscilloscope, the 12Blocks visual programming language, and the ViewPort development environment. In addition, we’ll serve up a comprehensive introduction to a variety of essential topics, including output (e.g. LEDs, servo motors), and communication technologies (e.g. infrared, audio), that you can use to develop systems that interact to stimuli and communicate with humans and other robots. To make these topics as accessible as possible, handy schematics, sample code and practical tips regarding building and debugging have been included.
Hanno Sander
Christchurch, New Zealand
It is becoming important for microcontroller users to quickly learn and adapt to new technologies and architecture used in high performance 32-bit microcontrollers. Many manufacturers now offer 32-bit microcontrollers as general purpose processors in embedded applications.
ARM provide 32 and 64-bit processors mainly for embedded applications. These days, the majority of mobile devices including mobile phones, tablets, and GPS receivers are based on ARM technology. The low cost, low power consumption, and high performance of ARM processors makes them ideal for use in complex communication and mixed signal applications.
This book makes use of the ARM Cortex-M family of processors in easy-to-follow, practical projects. It gives a detailed introduction to the architecture of the Cortex-M family. Examples of popular hardware and software development kits are described.
The architecture of the highly popular ARM Cortex-M processor STM32F107VCT6 is described at a high level, taking into consideration its clock mechanisms, general input/output ports, interrupt sources, ADC and DAC converters, timer facilities, and more. The information provided here should act as a basis for most readers to start using and programming the STM32F107VCT6 microcontroller together with a development kit.
Furthermore, the use of the mikroC Pro for ARM integrated development environment (IDE) has been described in detail. This IDE includes everything required to create a project; namely an editor, compiler, simulator, debugger, and device programmer.
Although the book is based on the STM32F107VCT6 microcontroller, readers should not find it difficult to follow the projects using other ARM processor family members.
Der Traum eines jeden Modelleisenbahners ist es, seine Anlage möglichst dem großen Vorbild getreu aufzubauen und zu steuern. Entsprechend dem heutigen Stand der Technik wird hierzu die Elektronik mit ihrer gesamten Bandbreite eingesetzt: vom passiven Bauelement über das aktive, der integrierten Schaltung bis hin zum PC. Dabei passiert es leider manchem Modelleisenbahner, dass er den Anschluss verpasst, weil er keinen Zugang hat zu der modernen Technik und der damit verbundenen Elektronik.Die vierteilige Buchreihe Elektronik & Modellbahn schafft Abhilfe und bringt die Elektronik dem Modelleisenbahner näher. Jeder hat die Möglichkeit, gemäß seinem Wissensstand in die Technik einzusteigen.Buch 4 schließlich befasst sich mit der aktuell modernsten Modellbahntechnik; der digitalen Steuerung im Motorola-Format.Weitere Bücher aus dieser Reihe:
Elektronik & Modellbahn 1 (PDF)
Elektronik & Modellbahn 2 (PDF)
Elektronik & Modellbahn 3 (PDF)
309 Schaltungen – das zehnte Buch innerhalb der „Dreihunderter-Reihe“. 309 Schaltungen und neue Konzepte in einem Buch sind ein (fast) unerschöpflicher Fundus zu allen Bereichen der Elektronik: Audio & Video, Spiel & Hobby, Haus & Hof, Prozessor & Controller, Messen & Testen, PC & Peripherie, Stromversorgung & Ladetechnik sowie zu Themen, die sich nicht katalogisieren lassen.
309 Schaltungen – enthält viele komplette Problemlösungen, zumindest aber die Idee hierzu. Nicht zuletzt sind die 309 Schaltungen der Anstoß zu ganz neuen Überlegungen.
309 Schaltungen – sind eine Zusammenfassung der Beiträge aus den Halbleiterheften 2003 bis 2005. Die Halbleiterhefte sind die jährlichen Doppelausgaben Juli/August der Zeitschrift Elektor.
309 Schaltungen ist das Buch für alle, die kreativ mit der Elektronik umgehen; sei es im Beruf oder als Hobby.
Dieses Solarstrom-Managementmodul ist für 6~24 V-Solarmodule konzipiert. Es kann den wiederaufladbaren 3,7-V-Li-Akku über ein Solarpanel oder eine USB-Verbindung aufladen und bietet einen geregelten Ausgang von 5 V/1 A oder 3,3 V/1 A.
Das Modul verfügt über die MPPT-Funktion (Maximum Power Point Tracking) und mehrere Schutzschaltungen und ist daher in der Lage, mit hoher Effizienz, Stabilität und Sicherheit weiterzuarbeiten. Es eignet sich für solarbetriebene, stromsparende IoT- und andere Umweltschutzprojekte.
Features
Unterstützt die MPPT-Funktion (Maximum Power Point Tracking) und maximiert so die Effizienz des Solarpanels
Unterstützt das Aufladen des Akkus über Solarpanel/USB-Anschluss
Für 6~24 V-Solarpanel, DC-002-Klinkeneingang oder Schraubklemmeneingang
Onboard-MPPT-SET-Schalter, wählen Sie den Pegel nahe am Eingangspegel aus, um die Ladeeffizienz zu verbessern
Zwei Stromausgangsschnittstellen an Bord: USB-Anschluss für 5 V-Ausgang, Pinheader für 3,3 V- oder 5 V-Ausgang
Eingebauter Aluminium-Elektrolytkondensator mit hoher Kapazität und SMD-Keramikkondensator zur Reduzierung der Welligkeit und stabile Leistung
14500-Batteriehalter und PH2.0-Batterieanschluss zum Anschließen verschiedener Arten von wiederaufladbaren 3,7-V-Li-Batterien
Mehrere LED-Anzeigen zur Überwachung des Status von Solarpanel und Batterie
Multi-Schutzschaltungen: Überladung / Überentladung / Verpolungsschutz / Überhitzung / Überstrom, stabil und sicher in der Anwendung
Technische Daten
Solar In
6~24 V (standardmäßig 6 V)
Aufladen
USB
Batterie
3,7 V 850 mAh 14500 Li-Ionen-Akku (NICHT im Lieferumfang enthalten)
USB-Eingang
5 V (Micro-USB)
5-V-Ausgang
5 V/1 A (USB OUT, Stiftleiste) 3,3 V/1 A (Stiftleiste)
Abschaltspannung neu laden
4,2 V ±1%
Überentladungsschutzspannung
2,9 V ±1%
Effizienz beim Aufladen von Solarmodulen
~78 %
USB-Ladeeffizienz
~82 %
Batterien steigern die Effizienz im Freien
~86 %
Ruhestrom (max.)
Betriebstemperatur
-40°C ~ 85°C
Abmessungen
65,2 x 56,2 x 22,9 mm
Hinweis: 14500-Batterie ist NICHT im Lieferumfang enthalten.
Downloads
Wiki
MDP (Mini Digital Power System) ist ein System zur programmierbaren linearen Gleichstromversorgung, das auf einem modularen Design basiert und an das verschiedene Module angeschlossen werden können, die je nach Bedarf verwendet werden. MDP-XP besteht aus einem Display-Steuerungsmodul (MDP-M01) und einem digitalen Leistungsmodul (MDP-P906).
Durch die drahtlose 2,4-GHz-Verbindung erreicht es eine freie Kombination von mehreren Kanälen mit einer Leistung von 300 W pro Kanal. Das MDP-XP ist ein kostengünstiges, programmierbares, lineares DC-Netzteil, das sich durch Indikatoren, Stabilität, Zuverlässigkeit und eine eindeutige Benutzeroberfläche auszeichnet, die mit professionellen Netzteilen vergleichbar ist; es bietet außerdem einen programmierbaren Ausgang, einen zeitgesteuerten Ausgang, eine sequentielle Steuerung, eine automatische Kompensation und andere leistungsstarke Funktionen, um die vielfältigen Testanforderungen zu erfüllen.
MDP-M01-Anzeigesteuermodul: Ausgestattet mit einem 2,8-Zoll-TFT-Bildschirm kann es die Spannungs-Strom-Wellenform in Echtzeit anzeigen, Datenstatistiken unterstützen und automatisch sechs Subs koppeln und steuern -Module (digitale Leistungsmodule), mit zwei Rändelrädern und benutzerfreundlichem 90-Grad-Scrolling-Design.
Digitales MDP-P906-Leistungsmodul: linearer Ausgang mit hohem Wirkungsgrad, 0,25-mV-Ripple-Welle, schnelles Einschwingverhalten und Unterstützung präziser Feinabstimmung.
Technische Daten (MDP-M01)
Bildschirmgröße
2,8" TFT
Bildschirmauflösung
240 x 320
Leistung
Micro-USB-Stromeingang oder Stromversorgung vom Submodul über dediziertes Stromkabel
Eingabe
DC 5 V/0,3 A
Andere Funktionen
Kann bis zu 6 Submodule steuernUpgrade der Formware über Micro USB
Abmessungen
107 x 66 x 13,6 mm
Gewicht
133 g
Technische Daten (MDP-P906)
Eingang
DC 4,2-30 V/14 A (max.)QC 3.0/PD2.0, 20 V/5 A (max.)
Ausgang
0-30 V/0-10 A, 300 W (max.)
Umwandlungseffizienz
95%
Ausgabeauflösung
10 mV/2 mA, bis zu 1 mV/1 mA über Display-Steuermodul
Ausgabegenauigkeit
0,03% + 5 mV0,05% + 2 mV
Anpassungsrate
Lastanpassungsrate Leistungsanpassungsrate
Ripple und Rauschen
Einschwingverhalten
Sicherheitsvorkehrungen
Eingangsüberspannung, Unterspannung, Verpolungsschutz, Ausgangsüberstrom, Rückflussschutz und Übertemperaturschutz
Andere
Automatisches Herunterfahren und Aufrufen des Micro-Power-ModusUnterstützt USB-Firmware-Upgrade
Abmessungen
112 x 66 x 20 mm
Gewicht
181 g
Lieferumfang
MDP-M01
1x MDP-M01 Smart-Digitalmonitor
1x Kabel (2,5 mm Klinke auf Micro USB)
MDP-P906
1x MDP-P906 Digitales Netzteil
2x Ausgangskabel
1x Benutzerhandbuch
Downloads
MDP-M01 User Manual v3.4
MDP-P906 User Manual v1.1
Firmware v1.32
Pimoroni Pico LiPo wird über USB-C mit Strom versorgt und programmiert und ist mit 16 MB QSPI (XiP) Flash ausgestattet. Mit dem Qwiic/STEMMA QT-Anschluss können Sie eine ganze Reihe verschiedener Sensoren und Breakouts anschließen, sowie einen Debug-Anschluss, wenn Sie Ihre Programmierung mit einem SWD-Debugger durchführen möchten. Es gibt eine Ein-/Aus-Taste und eine BOOTSEL-Taste, die auch als Benutzerschalter verwendet werden kann. Pimoroni Pico LiPo verfügt außerdem über ein integriertes LiPo/LiIon-Akkumanagement – dank der integrierten Ladeschaltung ist das Laden Ihres Akkus so einfach wie das Anschließen Ihres Pimoroni Pico Lipo über USB. Zwei an den Batteriekreis angeschlossene Anzeige-LEDs halten Sie über den Ein-/Aus-Status und den Ladestatus auf dem Laufenden und es ist mit allen unseren LiPo-, LiIon- und Hochleistungs-LiPo-Batterien kompatibel.
Pimoroni Pico LiPo ist mit C++, MicroPython oder CircuitPython programmierbar und das perfekte Kraftpaket für Ihre tragbaren Projekte.
Merkmale
Angetrieben von RP2040
Dual ARM Cortex M0+ mit bis zu 133 MHz
264 KB oder SRAM
16 MB QSPI-Flash mit Unterstützung für XiP
MCP73831 Ladegerät mit 215 mA Ladestrom ( Datenblatt )
XB6096I2S Batterieschutz ( Datenblatt )
USB-C-Anschluss für Stromversorgung, Programmierung und Datenübertragung
4-poliger Qw-ST-Anschluss (Qwiic / STEMMA QT).
3-poliger Debug-Anschluss (JST-SH)
2-poliger JST PH-Batterieanschluss, mit Polaritätsmarkierung auf der Platine
Schalter für Basiseingabe (dient gleichzeitig als DFU-Auswahl beim Booten)
Power-Taste
Betriebs-, Lade- und Benutzer-LED-Anzeigen
Integrierter 3V3-Regler (maximaler Reglerstromausgang 600 mA)
Eingangsspannungsbereich 3 - 5,5 V
Kompatibel mit Raspberry Pi Pico-Add-ons
Maße: ca. 53 x 21 x 8 mm (L x B x H, inklusive Anschlüsse)
Downloads
CircuitPython
Leitfaden „Erste Schritte mit CircuitPython“.
Das Erweiterungsset fügt Ihrem Experimentierkoffer 5 weitere Sensoren und Module hinzu. Die benötigten Anschlüsse dafür stellt die Port-Doubler-Platine bereit.Im Set enthalten sind ein ADC, ein Schiebepotentiometer, ein Joystick-Modul, ein Magnetsensor, ein Druck– und Temperatursensor, die Port-Doubler-Platine, ein Breadboard und ein Kabelset.Über die Port-Doubler-Platine können Sie nun auch Ihre eigenen Projekte mit dem Raspberry und dem Joy-Pi verbinden und erweitern hiermit das Anwendungs-spektrum um ein Vielfaches.Technische DatenADC (zum Anschluss analoger Sensoren): 4-Kanäle 12-Bit-Genauigkeit (ADS1115)Schiebepotentiometer: 10 kΩMagnetsensor: Linearer magnetischer Hallsensor (49E)Druck- und Temperatursensor: BMP280Joystick: Analoges 2-Achsen-Joystick-Modul mit KnopfLieferumfangPort-Doubler-PlatineJoystick-ModulADCDruck- und TemperatursensorSchiebepotentiometerMagnetsensorKabelsetBreadboard
Das OKdo E1 ist ein äußerst kostengünstiges Entwicklungsboard, das auf dem Dual-Core-Arm-Cortex-M33-Mikrocontroller LPC55S69JBD100 von NXP basiert. Das E1-Board eignet sich perfekt für industrielles IoT, Gebäudesteuerung und -automatisierung, Unterhaltungselektronik sowie allgemeine eingebettete und sichere Anwendungen.
Merkmale
Prozessor mit Arm TrustZone, Floating Point Unit (FPU) und Memory Protection Unit (MPU)
CASPER Crypto-Coprozessor zur Hardwarebeschleunigung für bestimmte asymmetrische kryptografische Algorithmen
PowerQuad Hardware Accelerator für Fest- und Gleitkomma-DSP-Funktionen
SRAM Physical Unclonable Function (PUF) zur Schlüsselgenerierung, -speicherung und -rekonstruktion
PRINCE-Modul zur Echtzeit-Verschlüsselung und Entschlüsselung von Flash-Daten
AES-256- und SHA2-Engines
Bis zu neun Flexcomm-Schnittstellen. Jede Flexcomm-Schnittstelle kann per Software als USART-, SPI-, I²C- und I²S-Schnittstelle ausgewählt werden
USB 2.0 High-Speed-Host/Geräte-Controller mit On-Chip-PHY
USB 2.0 Full-Speed Host/Geräte-Controller mit On-Chip-PHY
Bis zu 64 GPIOs Sichere digitale Ein-/Ausgabe-Kartenschnittstelle (SD/MMC und SDIO).
Spezifikationen
LPC55S69JBD100 640-KByte-Flash-Mikrocontroller
Eingebauter CMSIS-DAP v1.0.7-Debugger basierend auf LPC11U35
Interne PLL-Unterstützung für einen Betrieb mit bis zu 100 MHz, 16 MHz können für den vollen 150-MHz-Betrieb montiert werden.
SRAM 320kB
32-kHz-Quarz für Echtzeituhr
4 Benutzerschalter
3-Farben-LED
Benutzer-USB-Anschluss
2 16-polige Erweiterungsstecker
UART über USB virtueller COM-Port
Der VL53L1X von STMicroelectronics nutzt einen VCSEL (Vertical Cavity Surface Emitting Laser), um einen Infrarotlaser zu emittieren, der die Reflexion zum Ziel zeitlich bestimmt. Das bedeutet, dass Sie in der Lage sind, die Entfernung zu einem 40 mm bis 4 m entfernten Objekt mit Millimeterauflösung zu messen! Um die Messung noch einfacher zu machen, erfolgt die gesamte Kommunikation ausschließlich über I2C, unter Verwendung unseres praktischen Qwiic-Systems, so dass keine Lötarbeiten erforderlich sind, um ihn mit dem Rest Ihres Systems zu verbinden. Dennoch haben wir die Pins im 0,1"-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Jeder VL53L1X-Sensor hat eine Präzision von 1mm mit einer Genauigkeit von etwa +/-5mm, und der minimale Leseabstand dieses Sensors beträgt 4cm. Das Sichtfeld dieses kleinen Breakouts ist mit 15°-27° recht eng und die Leserate beträgt bis zu 50Hz. Stellen Sie sicher, dass Sie die Platine mit einer angemessenen Spannung versorgen, da sie 2,6V-3,5V benötigt. Bitte entfernen Sie den Schutzaufkleber auf dem VL53L1X vor dem Gebrauch, da sonst die Messwerte verfälscht werden.
Merkmale
Betriebsspannung: 2,6V-3,5V
Leistungsaufnahme: 20 mW @10Hz
Messbereich: ~40mm bis 4.000mm
Auflösung: +/-1mm
Lichtquelle: Klasse 1 940nm VCSEL
7-Bit unshifted I2C Adresse: 0x29
Sichtfeld: 15° - 27°
Max. Leserate: 50Hz
Das JOY-iT Armor Case BLOCK ist ein robustes Aluminiumgehäuse, das speziell für den Raspberry Pi 5 entwickelt wurde. Es bietet hervorragenden Schutz vor Hitze und Stößen und eignet sich daher für anspruchsvolle Umgebungen. Durch sein kompaktes Design benötigt es keinen zusätzlichen Platz und ermöglicht eine nahtlose Integration in bestehende Projekte.
Das Gehäuse verfügt über einen großen Kühlkörper, um die Kühleffizienz zu verbessern. Die Installation ist unkompliziert, da das Gehäuse mit vier Schrauben (im Lieferumfang enthalten) am Raspberry Pi befestigt wird.
Technische Daten
Material
CNC-gefräste Aluminiumlegierung
Kühlleistung
Leerlauf: ~39°CVolllast: ~75°C
Besonderheiten
Großer Kühlkörper, Schutz vor Stößen und Hitze bei gleichem Volumen wie ohne Gehäuse
Abmessungen (Oberseite)
69 x 56 x 15,5 mm
Abmessungen (Unterseite)
87 x 56 x 7,5 mm
EAGLE – the “Easily Applicable Graphical Layout Editor“ is a professional-grade CAD (computer aided design) software package for the design and drafting of electronic schematics as well as the design and fabrication of printed circuit boards (PCBs).
This Advanced User Guide provides the experienced EAGLE user with insight into using some of the more advanced features of EAGLE software. It is not a guide to teach the reader the basic concepts of EAGLE, nor does it discuss the ‘how to’ of the EAGLE interface and the simpler operations and commands of the software. That is the purpose of the author’s previous title EAGLE V6 Getting Started Guide also published by Elektor.
This eBook is intended as an enduring document covering the more advanced modules, commands, and functions which make up EAGLE. It is hoped that this eBook will provide a quick, succinct reference to assist with more complex applications and uses of EAGLE – an ‘EAGLE User’s Companion’, if you like.
Complementing the EAGLE Advanced User Guide, the EAGLE User Language manual is included in this eBook in unabridged form, reproduced with permission of CadSoft GmbH.
At the time of writing, the material in this eBook covers version 7 of the EAGLE software suite.
This book is all about building your own DIY home control system. It presents two innovative ways to assemble such a system: By recycling old PC hardware – possibly extending the life of an old PC, or by using Raspberry Pi. In both cases, the main system outlined in this book will consist of a computer platform, a wireless mains outlet, a controller and a USB webcam – All linked together by Linux.
By using the Raspberry Pi in conjunction with Arduino (used as an advanced I/O system board), it is possible to construct a small, compact, embedded control system offering enhanced capacity for USB integration, webcams, thermal monitoring and communication with the outside world.
The experience required to undertake the projects within this book are minimal exposure to PC hardware and software, the ability to surf the internet, burn a CD-ROM and assemble a small PCB.
Atmel AVR ist eine 8-bit-Mikrocontroller-Familie des Herstellers Atmel. Diese Controller sind wegen ihres einfachen Aufbaus, ihrer leichten Programmierbarkeit, den kostenlosen Entwicklungswerkzeugen und der Verfügbarkeit in DIP-Gehäuseformen auch bei Elektronikern und Makern äußerst beliebt. Darüber hinaus sind diese Controller bereits ab zwei Euro erhältlich. Im Arduino Uno-Board wird der ATmega328 verwendet.
AVR-Programmierung für Quereinsteiger besteht aus zwei Teilen. Im ersten Teil wird in einfachen Worten erklärt, wie eine MCU (= Micro Controller Unit) im Detail arbeitet. Dem folgt eine Einführung in die Programmiersprache C. Anschließend taucht der Leser im zweiten Teil des Buches in die Welt der Register und ihre Bits ein. Dort findet man auch ein umfangreiches Glossar aller Register- und Bit-Namen. Das Buch dient somit auch als Nachschlagewerk, wenn man sich durch das Datenblatt oder andere Texte arbeiten muss.
Das Buch wendet sich an alle, die bisher mit dem Arduino programmiert haben und nun nach technischen Möglichkeiten und Wegen suchen, ihre Elektronik- und Programmierkenntnisse zu erweitern. Dazu eignet sich die AVR-Programmierung im besonderen Maße.
Dieses Flash-Speicher-Modul ermöglicht es Ihnen, über die SPI-Schnittstelle Ihres Mikrocontrollers Daten extern zu speichern und zu lesen.
Die Ansteuerung des Moduls erfolgt genau wie bei einer herkömmlichen SD-Karte und ist daher besonders einfach.
Das Modul eignet sich besonders gut für mobile Aufbauten, bei denen normale SD-Karten aus dem SD-Kartenslot rutschen könnten.
Technische Daten
Besondere Merkmale
3 V und 5 V Betrieb durch integrierten Spannungswandler
Versorgungsspannung Vcc
3-5 V
Logiklevel
Vcc
Schnittstelle
SPI
Speichergröße
512 MB
Taktfrequenz
Bis zu 50 MHz
Abmessungen
18 x 22 x 12 mm
Gewicht
3 g
Dieser Programmer wurde speziell zum Brennen von Bootloadern (ohne Computer) auf Arduino-kompatiblen ATmega328P/ATmega328PB-Entwicklungsboards entwickelt.
Schließen Sie den Programmierer einfach an die ICSP-Schnittstelle an, um den Bootloader neu zu brennen. Es ist auch mit neuen Chips kompatibel, sofern der IC funktionsfähig ist.
Hinweis: Durch das Brennen eines Bootloaders werden alle vorherigen Chipdaten gelöscht.
Features
Arbeitsspannung: 3,1–5,3 V
Arbeitsstrom: 10 mA
Kompatibel mit Arduino Uno R3-basierten Boards (ATmega328P oder ATmega328PB)
Abmessungen: 39,6 x 15,5 x 7,8 mm
Dieses All-in-One Raspberry Pi 5 Desktop Kit enthält alle offiziellen Teile und ermöglicht Ihnen den schnellen und einfachen Einstieg mit dem Raspberry Pi 5.
Lieferumfang
Offizielles 27-W-Netzteil für Raspberry Pi 5 (EU, weiß)
Offizielles Gehäuse für Raspberry Pi 5 (weiß/rot)
Offizielle Raspberry Pi-Tastatur (DE)
Offizielle Raspberry Pi-Maus
2x Micro-HDMI-auf-Standard-HDMI-Kabel (A/M) 1 m
microSD-Karte mit vorinstalliertem Raspberry Pi OS (32 GB)
Das offizielle Raspberry Pi-Handbuch für Einsteiger (5. Auflage)
Nicht enthalten
Raspberry Pi 5
Das MDP-P906 verfügt über einen eingebauten Lüfter und eine maximale Ausgangsleistung von bis zu 300 W, die einen größeren Bereich von Prüfanforderungen und Anwendungsszenarien abdeckt. Über die drahtlose 2,4-GHz-Kommunikation kann es mit dem Smart-Digital-Monitor-Modul MDP-M01 verbunden werden, um die freie Kombination von mehreren Kanälen mit 300 W pro Kanal zu ermöglichen.
Das MDP-P906 hat einen Index, eine Stabilität und eine Zuverlässigkeit, die mit denen eines professionellen Netzteils vergleichbar sind. Es kann reinen Strom ausgeben und bietet leistungsstarke Funktionen wie programmierbarer Ausgang, Timing-Ausgang, Timing-Steuerung, automatische Kompensation, Boost-Modus usw., was es zu einem echten kostengünstigen, intelligenten und kundenspezifischen programmierbaren linearen DC-Netzteil macht.
Das MDP-P906 verfügt über ein präzises, CNC-gefrästes Gehäuse aus einer Aluminiumlegierung, das mit seiner feinen Verarbeitung, seinem neuartigen, kleinen und schönen Aussehen das starre Bild der traditionellen Desktop-Stromversorgung vollständig umstößt. Mit dem stapelbaren, modularen Design und der drahtlosen Kommunikationsfunktion kann MDP-P906 unabhängig oder gepaart arbeiten, sowohl auf der Werkbank, als auch für die Vor-Ort-Wartung durchgeführt werden. Das MDP-P906 ist eine perfekte Lösung für Elektronikingenieure, insbesondere für Ingenieure im Außendienst, die unterschiedliche Anforderungen an Stromquellen erfüllen müssen.
Eingebauter leiser Lüfter, sofortige Kühlung, sorgen für eine stabile und effiziente Leistung!
Intelligente lineare Kompensation, konstante Spannung & Konstantstrom
Positiv & negativer Ausgang, Serienanhebung, parallele Stromaufteilung
Anwendungen
Universelle Tests und Lehrexperimente im F&E-Labor
Wartung digitaler Produkte
Eigenschaftsprüfung und Fehlerdiagnose von Geräten und Schaltungen
Notstromversorgung für Modellflugzeuge und Fahrzeuge
Testen der Stromversorgung von HF- und Mikrowellenschaltkreisen oder -modulen
Qualitätskontrolle und Qualitätsprüfung
Versorgen Sie hochpräzise Digital-Analog-Hybridschaltkreise und Hi-Fi-Audiogeräte mit gereinigtem Strom
Technische Daten
Eingang
DC 4,2-30 V/14 A (max.)QC 3.0/PD2.0, 20 V/5 A (max.)
Ausgang
0-30 V/0-10 A, 300 W (max.)
Umwandlungseffizienz
95%
Ausgabeauflösung
10 mV/2 mA, bis zu 1 mV/1 mA über Display-Steuermodul
Ausgabegenauigkeit
0,03% + 5 mV0,05% + 2 mV
Anpassungsrate
Lastanpassungsrate Leistungsanpassungsrate
Ripple und Rauschen
Einschwingverhalten
Sicherheitsvorkehrungen
Eingangsüberspannung, Unterspannung, Verpolungsschutz, Ausgangsüberstrom, Rückflussschutz und Übertemperaturschutz
Andere
Automatisches Herunterfahren und Aufrufen des Micro-Power-ModusUnterstützt USB-Firmware-Upgrade
Abmessungen
112 x 66 x 20 mm
Gewicht
181 g
Lieferumfang
1x MDP-P906 Digitales Netzteil
2x Ausgangskabel
1x Benutzerhandbuch
Downloads
User Manual v1.1
Firmware v1.32
Raspberry Pi Pico EVB kombiniert mit dem WizFi360-PA
WizFi360-EVB-Pico basiert auf dem Raspberry Pi RP2040 und bietet eine Wi-Fi-Konnektivität mithilfe des WizFi360. Es ist pin-kompatibel mit dem Raspberry Pi Pico-Board und kann für die Entwicklung von IoT-Lösungen verwendet werden.
Spezifikationen
RP2040 Mikrocontroller mit 2 MByte Flash
Dual-Core Cortex M0+ mit einer Taktrate von bis zu 133 MHz
264 kByte Multi-Bank High Performance SRAM
Externer Quad-SPI-Flash mit eXecute In Place (XIP)
Enthält WizFi360-PA
Unterstützt kabelgebundene Internetprotokolle: TCP, UDP, WOL über UDP, ICMP, IGMPv1/v2, IPv4, ARP, PPPoE
WiFi 2,4G, 802.11 b/g/n
Unterstützt Betriebsmodi Station / SoftAP / SoftAP+Station
Unterstützt "Data pass-through" und "AT command data transfer" Modus
Unterstützt serielle AT-Befehlskonfiguration
Unterstützt TCP Server / TCP Client / UDP Betriebsmodus
Unterstützt Konfiguration des Betriebskanals 0 ~ 13
Unterstützt automatische 20 MHz / 40 MHz Bandbreite
Unterstützt WPA_PSK / WPA2_PSK-Verschlüsselung
Unterstützt eingebaute eindeutige MAC-Adresse und benutzerkonfigurierbare MAC-Adresse
Industrietauglich (Betriebstemperaturbereich: -40°C ~ 85°C)
CE-, FCC-Zertifizierung
Enthält 16 MBit Flash-Speicher
Micro-USB-B-Anschluss für Strom und Daten (und zum erneuten Programmieren des Flash-Speichers)
40-polige 21×51 'DIP'-Platine mit einer Dicke von 1 mm und Stiftleisten mit 0,1" Durchmesser und Randkaskaden
3-poliger ARM Serial Wire Debug (SWD) Anschluss
Eingebauter LDO
Downloads
Dokumentation
Dieses Trägerboard kombiniert ein 2,4"-TFT-Display, sechs adressierbare LEDs, einen Onboard-Spannungsregler, einen 6-poligen IO-Anschluss und einen microSD-Steckplatz mit dem M.2-Steckplatz, sodass es mit kompatiblen Prozessorboards in unserem MicroMod-Ökosystem verwendet werden kann. Außerdem haben wir dieses Trägerboard mit dem ATtiny84 von Atmel mit 8kb programmierbarem Flash bestückt. Dieser kleine Kerl ist vorprogrammiert, um mit dem Prozessor über I2C zu kommunizieren und Tastendrücke zu lesen.
Features
M.2 MicroMod-Anschluss
240 x 320 Pixel, 2,4" TFT-Display
6 adressierbare APA102 LEDs
Magnetischer Buzzer
USB-C-Anschluss
3,3 V 1 A Spannungsregler
Qwiic-Anschluss
Boot/Reset-Tasten
RTC-Backup-Batterie & Ladeschaltung
microSD
Phillips #0 M2,5 x 3 mm Schraube enthalten
Diese Antenne funktioniert auch mit Arduino MKR FOX 1200 / Ardunio MKR GSM 1400 / Arduino MKR WAN 1300.
Anschluss der Antenne: U.FL
GSM 433/868/915 MHz
Mit diesem FeatherWing können Sie ganz einfach Datenprotokollierung zu jedem Feather Board hinzufügen. Sie erhalten sowohl eine I²C-Echtzeituhr (PCF8523) mit 32-kHz-Quarz und Batterie-Backup als auch einen microSD-Sockel, der an die SPI-Port-Pins (+ zusätzlicher Pin für CS) angeschlossen wird.
Hinweis: FeatherWing wird ohne microSD-Karte geliefert.
Zur Nutzung der RTC-Batterie-Backup-Funktionen ist eine CR1220-Knopfzelle erforderlich. Wenn Sie den RTC-Teil des FeatherWing nicht verwenden, ist keine Batterie erforderlich.
Zur Kommunikation mit dem microSD-Kartensteckplatz wird die Standard-SD-Bibliothek von Arduino empfohlen. Zum Anbringen der Header am Wing sind leichte Lötarbeiten erforderlich.
Pinbelegung
Stromanschlüsse
In der unteren Reihe werden der 3,3-V-Pin (zweiter von links) und der GND- Pin (vierter von links) verwendet, um die SD-Karte und RTC mit Strom zu versorgen (um die Knopfzellenbatterie zu entlasten, wenn Netzstrom verfügbar ist).
RTC- und I²C-Pins
Oben rechts werden SDA (ganz rechts) und SCL (links von SDA) verwendet, um mit dem RTC-Chip zu kommunizieren.
SCL - I²C-Taktpin zum Anschluss an die I²C -Taktleitung Ihres Mikrocontrollers. Dieser Pin verfügt über einen 10 kΩ Pull-Up-Widerstand gegen 3,3 V
SDA - I²C-Datenpin zum Anschluss an die I²C -Datenleitung Ihres Mikrocontrollers. Dieser Pin verfügt über einen 10 kΩ Pull-Up-Widerstand gegen 3,3 V
Es gibt auch einen Breakout für INT , den Ausgangspin der RTC. Er kann als Interrupt-Ausgang oder auch zum Erzeugen einer Rechteckwelle verwendet werden. Beachten Sie, dass dieser Pin ein Open Drain ist. Sie müssen den internen Pull-Up an dem digitalen Pin aktivieren, mit dem er verbunden ist.
SD- und SPI-Pins
Von links beginnend haben Sie
SPI-Takt (SCK) - Ausgabe von der Feder zum Flügel
SPI Master Out Slave In (MOSI) - Ausgabe von der Feder zum Flügel
SPI Master In Slave Out (MISO) - Eingabe vom Flügel zur Feder
Diese Pins befinden sich bei jedem Feather an der gleichen Stelle. Sie werden für die Kommunikation mit der SD-Karte verwendet. Wenn die SD-Karte nicht eingelegt ist, sind diese Pins völlig frei. MISO wird immer dann in den Tri-State-Zustand versetzt, wenn der SD CS-Pin (Chip Select) hochgezogen wird.