Der RP2040 arbeitet mit zwei ARM Cortex-M0+ Prozessoren (bis zu 133MHz):
264kB eingebetteter SRAM in sechs Bänken
6 dedizierte IO für SPI Flash (unterstützt XIP)
30 Multifunktions-GPIO:
Dedizierte Hardware für häufig verwendete Peripheriegeräte
Programmierbare IO für erweiterte Peripherieunterstützung
Vier 12-Bit-ADC-Kanäle mit internem Temperatursensor (bis zu 0,5 MSa/s)
USB 1.1 Host/Device-Funktionalität
Der RP2040 wird mit den plattformübergreifenden Entwicklungsumgebungen C/C++ und MicroPython unterstützt, einschließlich einfachem Zugang zum Laufzeit-Debugging. Er verfügt über einen UF2-Boot und Fließkommaroutinen, die in den Chip integriert sind. Der eingebaute USB kann sowohl als Device als auch als Host fungieren. Er hat zwei symmetrische Kerne und eine hohe interne Bandbreite, was ihn für Signalverarbeitung und Video nützlich macht. Während der Chip ein großes internes RAM hat, enthält das Board einen zusätzlichen externen Flash-Chip.
Merkmale
Doppelte Cortex M0+ Prozessoren, bis zu 133 MHz
264 kB eingebetteter SRAM in 6 Bänken
6 dedizierte IO für QSPI-Flash, unterstützt Execute in Place (XIP)
30 programmierbare IO für erweiterte Peripherieunterstützung
SWD-Schnittstelle
Timer mit 4 Alarmen
Echtzeitzähler (RTC)
USB 1.1 Host/Device-Funktionalität
Unterstützte Programmiersprachen
MicroPython
C/C++
A Toolbox for Audio Lovers and Engineers
Without any ambition to reach scientific levels, this book aims to be a toolbox for both audio lovers and high-end equipment designers. The elementary theory presented is the bare minimum for readers to grasp the operation and practical use of electrical, electromagnetic, physics, and electronic operations available in the designers’ toolbox. Each tool is explained in a minimum of words and theory without needless coverage of underlying equations or figures.
The book chapters guide you through the process of designing quality amplifiers with vacuum tubes, from the very beginning, considering both technical and subjective requirements – in theory and practice.
The book is a compilation of the author’s notes used in his professional and educational career but was nevertheless primarily written as a result of true love for the audiophile hobby.
Seeed Studio XIAO ESP32S3 Sense integriert einen Kamerasensor, ein digitales Mikrofon und SD-Kartenunterstützung. Durch die Kombination eingebetteter ML-Rechenleistung und Fotografiefähigkeiten kann dieses Entwicklungsboard Ihr großartiges Werkzeug für den Einstieg in die intelligente Sprach- und Bild-KI sein.
Seeed Studio XIAO ESP32S3 Sense basiert auf einem hochintegrierten Xtensa-Prozessor ESP32-S3R8 SoC, der 2,4 GHz WLAN und stromsparendes Bluetooth BLE 5.0 Dual-Mode für mehrere drahtlose Anwendungen unterstützt. Es verfügt über eine Lademanagementfunktion für Lithiumbatterien.
Als erweiterte Version des Seeed Studio XIAO ESP32S3 verfügt dieses Board über einen einsteckbaren OV2640-Kamerasensor für die Anzeige der vollen Auflösung von 1600 x 1200. Die Basis ist sogar mit OV5640 kompatibel und unterstützt eine Auflösung von bis zu 2592 x 1944. Das digitale Mikrofon ist ebenfalls im Lieferumfang der Platine enthalten und dient zur Spracherkennung und Audioerkennung. SenseCraft AI bietet verschiedene vorab trainierte künstliche Intelligenz ( AI-Modelle und No-Code-Bereitstellung für XIAO ESP32S3 Sense.
Mit leistungsstarkem SoC und integrierten Sensoren verfügt dieses Entwicklungsboard über 8 MB PSRAM und 8 MB Flash auf dem Chip sowie einen zusätzlichen SD-Kartensteckplatz zur Unterstützung von bis zu 32 GB FAT-Speicher. Diese ermöglichen dem Board mehr Programmierraum und bringen noch mehr Möglichkeiten in eingebettete ML-Szenarien.
Features
Leistungsstarkes MCU-Board: Enthält den 32-Bit-Dual-Core-Xtensa-Prozessorchip ESP32S3 mit einer Taktrate von bis zu 240 MHz, mehrere Entwicklungsanschlüsse und unterstützt Arduino/MicroPython.
Erweiterte Funktionalität: Mit OV5640-Kamerasensor, integriert zusätzliches digitales Mikrofon
Großartiger Speicher für mehr Möglichkeiten: Bietet 8 MB PSRAM und 8 MB Flash und unterstützt einen SD-Kartensteckplatz für externen 32 GB FAT-Speicher
Hervorragende HF-Leistung: Unterstützt 2,4-GHz-WLAN und BLE-Dual-Wireless-Kommunikation, unterstützt Fernkommunikation über 100 m+ bei Verbindung mit einer U.FL-Antenne
Daumengroßes, kompaktes Design: 21 x 17,5 mm, übernimmt den klassischen Formfaktor von XIAO, geeignet für Projekte mit begrenztem Platzangebot wie tragbare Geräte
Vorab trainiertes Al-Modell von SenseCraft Al für No-Code-Bereitstellung
Anwendungen
Bildbearbeitung
Spracherkennung
Videoüberwachung
Tragbare Geräte
Smart Home
Gesundheitsüberwachung
Bildung
Low Power (LP) Netzwerk
Rapid Prototyping
Technische Daten
Processor
ESP32-S3R8
Xtensa LX7 dual-core, 32-bit processor that operates at up to 240 MHz
Wireless
Complete 2.4 GHz Wi-Fi subsystem
BLE: Bluetooth 5.0, Bluetooth mesh
Built-in Sensors
oV2640 camera sensor for 1600x1200
Digital Microphone
Memory
On-chip 8 MB PSRAM & 8 MB Flash
Onboard SD Card Slot, supporting 32 GB FAT
lnterface
1x UART, 1x I²C, 1x I²S, 1x SPI, 11x GPIOs (PWM), 9x ADC, 1x User LED, 1x Charge LED, 1x B2B Connector (with 2 additional GPIOs)
1x Reset button, 1x Boot button
Dimensions
21 x 17.5 x 15 mm (with expansion board)
Power
Input voltage (Type-C): 5 V
lnput voltage (BAT): 4.2 V
Circuit operating Voltage (ready to operate):
- Type-C: 5 V @ 38.3 mA
- BAT: 3.8 V @ 43.2 mA (with expansion board)
Webcam Web application:
Type-C:
- Average power consumption: 5 V/138 mA
- Photo moment: 5 V/341 mA
Battery:
- Average power consumption: 3.8 V/154 mA
- Photo moment: 3.8 V/304 mA
Microphone recording & SD card writing:
Type-C:
- Average power consumption: 5 V/46.5 mA
- Peak power consumption: 5 V/89.6 mA
Battery:
- Average power consumption: 3.8 V/54.4 mA
- Peak power consumption: 3.8 V/108 mA
Charging battery current: 100 mA
Low Power Consumption Model (Supply Power: 3.8 V)
Modem Sleep Model: ~44 mA
Light Sleep Model: ~5 mA
Deep Sleep Model: ~3 mA
Wi-Fi Enabled Power Consumption
Active Model: ~ 110 mA (with expansion board)
BLE Enabled Power Consumption
Active Model: ~ 102 mA (with expansion board)
Lieferumfang
1x XIAO ESP32S3
1x Plug-in-Kamera-Sensorplatine
1x Antenne
Downloads
GitHub
Spezifikationen
Linsendurchmesser: 90 mm / 3,54'
Dioptrie: Linse Ø 90 mm: Dioptrie 3 – Vergrößerung: 1,75
Stromversorgung: 3 x 1,5 V AAA Batterie
Abmessungen: 210 x 170 x 110 mm / 8,3 x 6,7 x 4,3'
Gewicht: 615 g
Material:
Ständer: Edelstahl
Linse: Glas
Anschlussteile: Kupfer
Recently, the development of a tiny chip called the ESP8266 has made it possible to interface any type of microcontroller to a Wi-Fi AP. The ESP8266 is a low-cost tiny Wi-Fi chip having fully built-in TCP/IP stack and a 32-bit microcontroller unit. This chip, produced by Shanghai based Chinese manufacturer Espressif System, is IEEE 802.11 b/g/n Wi-Fi compatible with on-chip program and data memory, and general purpose input-output ports. Several manufacturers have incorporated the ESP8266 chip in their hardware products (e.g. ESP-xx, NodeMCU etc) and offer these products as a means of connecting a microcontroller system such as the Android, PIC microcontroller or others to a Wi-Fi. The ESP8266 is a low-power chip and costs only a few Dollars.
ESP8266 and MicroPython – Coding Cool Stuff is an introduction to the ESP8266 chip and describes the features of this chip and shows how various firmware and programming languages such as the MicroPython can be uploaded to the chip. The main aim of the book is to teach the readers how to use the MicroPython programming language on ESP8266 based hardware, especially on the NodeMCU.
Several interesting and useful projects are given in the e-book (pdf) to show how to use the MicroPython in NodeMCU type ESP8266 hardware:
Project “What shall I wear today?”: You will be developing a weather information system using a NodeMCU development board together with a Text-to-Speech processor module.
Project “The Temperature and Humidity on the Cloud”: You will be developing a system that will get the ambient temperature and humidity using a sensor and then store this data on the cloud so that it can be accessed from anywhere.
Project “Remote Web Based Control”: You will be developing a system that will remotely control two LEDs connected to a NodeMCU development board using an HTTP Web Server application.
Architecture, Programming and Applications
The MSP430 is a popular family of microcontrollers from Texas Instruments. In this book we will work with the smallest type, which is the powerful MSP430G2553. We will look at the capabilities of this microcontroller in detail, as it is well-suited for self-made projects because it is available in a P-DIP20 package.
We will take a closer look at the microcontroller and then build, step by step, some interesting applications, including a 'Hello World' blinking LED and a nice clock application, which can calculate the day of the week based on the date.
You also will learn how to create code for the MSP microcontroller in assembler. In addition to that, we will work with the MSP-Arduino IDE, which makes it quite easy to create fast applications without special in-depth knowledge of the microcontrollers.
All the code used in the book is available for download from the Elektor website.
Ein Elektor-Klassiker ist zurück! Das Elektor-Halbleiterheft, das Nachschlagewerk für das Elektronik-Labor, Elektroniker und Ingenieure. Über Jahrzehnte waren Elektor-Abonnenten besonders scharf auf dieses eine Heft im Jahr, das auch am Kiosk immer wieder eine deutlich erhöhte Nachfrage erfuhr. In dieser Jubiläums-Sonderausgabe finden Sie mehr als 100 Schaltungen unterschiedlichen Schwierigkeitsgrads.
Inhalt
Akku-Doppel
Aktiver Differenz-Tastkop
40-W-Verstärker im Retro-Stil
60 dB VU-Meter
Heißer Draht
Analoges LED-Lauflicht
Schwarzeneggerisator
Ofen Temperaturstabilisierung
THD-Meter für Netzspannung
Dynamikbegrenzer
LED-Farbregler
Klingelgesteuerte Beleuchtung
WC Lüfterautomat
Sparsame 7-Segment-Anzeige
TV-Ton aus!
Bleiakkulader
Binärer Klatschschalter
Nulldurchgangsdetektor
Bio-Feedback
Einfache Kapazitätsmessung
PWM-Modulator
Software Defined Röhrenradio
Universaltester für dreibeinige Bauteile
Simpler Solar-Lader
Fahrrad-Standlicht
100-W-Endstufe mit einem IC
Dämmerungsschalter
Low-cost-Funktionsgenerator
Rausch-Injektor
Signal für Wasserwaage
NiCd-Akku-Regenerierer
Elko-Messgerät
LED-Powerlampe
Einfache Alarmanlage
Automatische Hundescheuche
Galvanische Trennung für I²C-Bus
Sicherungswächter
Solar-Nachtlicht
Variable Stromsenke/Last
Rettung für die Lötstation
Einfache Frequenzverdoppler
US-Sirene
Aussteuerungsindikator mit Dual-LED
Einbereichs-Funktionsgenerator
Spike-Detektor
12-V-Lichtorgel
Künstliche Spule mit 1 kH
Schrittmotor-Steuerung
FM-Sender mit Opamp
Octopush
Bidirektionale 12-V-Motorsteuerung
Metronom
Supersimpler 12-V-Batteriemonitor
Quarz-Tester
Milliohm-Vorsatz für DVM
Leistungs-Summer
Zahnputzuhr
Einfache Schrittmotor-Steuerung
Direkte 5-V-Stromversorgung
Phantom-Speisung
Röhrensound-Konverter
Elektronische Gießkanne
Sie haben Post!
Hochspannungswandler: 90 V aus 1,5 V
Sparsames Transistorradio
Universelle Pegelanpaßstufe
Fledermausohr
Tiefentladeschutz für Wohnmobile
Spannungs/Frequenz-Umsetzer
Zündwinkel-Stroboskop
Transistor-Dipmeter
Geradeausempfänger
LED-Mikroskop-Beleuchtung
Quarztester
Single-supply-Messverstärker
Zweidraht-Gegensprech-Intercom
Solar-Feuchtesensor
Automatische Bereichsumschaltung
Mini-Endstufe
Genaues Akku-Kapatitätsmessgerät
Pico-Amperemeter
Breitband-Wienbrückenoszillator mit 1-Gang-Poti
Betriebs- und Sicherungsausfallanzeige
Gleichstrom-Dimmer
Kurzwellen-konverter
Stress-o-Meter
Treiber für dicke DC-Motoren
Schalter für ferngesteuerte Modelle
Torricelli und die Elektronik
Nachführung für Solarmodul
Vielseitiger Thermostat
Klang-Extender für E-Gitarren
Gewitter-Warner
Klirrarmer Sinusgenerator
Entschwefeler für Bleiakkus
Kellerpumpensteuerung
USB-Audioverstärker
DC-Protektor
Diskretes Netzteil
Jogging-Timer
Netzwerk-Kabeltester
Richtungsabhängige Lichtschranke
Paraphase-Klangeinsteller
Reiherschreck
Low-Drop-Konstantstromquelle
Kapazitiver Berührschalter
Batterie-Sparschaltung
Polizei-Sirene mit nur einem IC!
Über 45 Projekte für den legendären 555-Chip (und den 556, 568)
Der 555-Timer-IC, ursprünglich um 1971 von Signetics eingeführt, gehört zweifellos zu den beliebtesten analogen integrierten Schaltkreisen, die je produziert wurden. Ursprünglich als „IC-Zeitmaschine“ bezeichnet, wurde dieser Chip über Jahrzehnte hinweg in zahlreichen zeitgesteuerten Projekten verwendet. Dieses Buch befasst sich mit der Entwicklung von Projekten, die auf dem 555-Timer-IC basieren. Es werden über 45 vollständig getestete und dokumentierte Projekte vorgestellt. Alle Projekte wurden vom Autor selbst getestet, indem sie einzeln auf einem Breadboard aufgebaut wurden. Es sind keine Programmierkenntnisse erforderlich, um die im Buch vorgestellten Projekte nachzubauen oder zu verwenden. Allerdings ist es definitiv hilfreich, über grundlegende Elektronikkenntnisse und den Umgang mit einem Breadboard zum Aufbau und Testen elektronischer Schaltungen zu verfügen. Einige der Projekte im Buch sind:
Abwechselnd blinkende LEDs
Veränderung der Blinkrate von LEDs
Touchsensor-Ein/Aus-Schalter
Ein-/Ausschaltverzögerung
Lichtabhängiger Ton
Dunkel-Hell-Lichtschalter
Tonburst-Generator
Langzeit-Timer
Lauflichter
LED-Roulette-Spiel
Ampelsteuerung
Durchgangsprüfer
Elektronisches Schloss
Kontaktentprellung für Schalter
Spielzeug-Elektronikorgel
Mehrfachsensor-Alarmsystem
Metronom
Spannungsmultiplizierer
Elektronischer Würfel
7-Segment-Display-Zähler
Motorsteuerung
7-Segment-Display-Würfel
Elektronische Sirene
Verschiedene andere Projekte
Die im Buch vorgestellten Projekte können von den Lesern für ihre eigenen Anwendungen modifiziert oder erweitert werden. Elektronikingenieur-Studenten, Leute, die gerne kleine elektronische Schaltungen entwerfen, sowie Elektronik-Hobbyisten werden die Projekte im Buch sicher lehrreich, unterhaltsam, interessant und nützlich finden.
Merkmale
Eingebaute USB-zu-Seriell-Schnittstelle
Eingebaute PCB-Antenne
Angetrieben durch Pineseed BL602 SoC mit Pinenut-Modell: 12S-Stempel
2 MB Flash
USB-C-Anschluss
Geeignet für Steckbrett-BIY-Projekte
An Bord befinden sich drei Farb-LEDs
Abmessungen: 25,4 x 44,0 mm
Hinweis: USB-Kabel ist nicht im Lieferumfang enthalten.
Das RedBoard Artemis verfügt über die verbesserte Stromaufbereitung und USB-zu-Seriell, die wir im Laufe der Jahre bei unserer RedBoard-Produktlinie verfeinert haben. Ein moderner USB-C-Anschluss macht die Programmierung einfach. Ein Qwiic-Anschluss macht I²C einfach.
Das RedBoard Artemis ist voll kompatibel mit dem Arduino-Kern von SparkFun und kann einfach unter der Arduino IDE programmiert werden. Wir haben den JTAG-Anschluss für fortgeschrittene Anwender freigelegt, die lieber die Leistung und Geschwindigkeit professioneller Tools nutzen möchten.
Wir haben ein digitales MEMS-Mikrofon für Leute hinzugefügt, die mit TensorFlow und maschinellem Lernen mit Always-On-Sprachbefehlen experimentieren wollen. Wir haben sogar einen praktischen Jumper hinzugefügt, um den Stromverbrauch für Tests mit geringem Stromverbrauch zu messen.
Mit 1MB Flash und 384k RAM haben Sie viel Platz für Ihre Skizzen. Das integrierte Artemis-Modul läuft mit 48MHz, wobei ein 96MHz-Turbo-Modus zur Verfügung steht, und Bluetooth gibt es auch noch dazu!
Merkmale
Arduino Uno R3 Footprint
1M Flash / 384k RAM
48MHz / 96MHz Turbo verfügbar
24 GPIO - alle interruptfähig
21 PWM-Kanäle
Eingebauter BLE-Funk
10 ADC-Kanäle mit 14-Bit-Präzision
2 UARTs
6 I²C-Busse
4 SPI-Busse
PDM-Schnittstelle
I²S-Schnittstelle
Qwiic-Anschluss
Offizielles Gehäuse für Raspberry Pi 3 B(+), 2 und B+ (weiß/rot)
High-quality ABS construction
Removable side panels and lid for easy access to GPIO, camera and display connectors
Light pipes for power and activity LEDs
Extraordinarily handsome
Colour: White/red
Offizielles Gehäuse für Raspberry Pi 3 B(+), 2 und B+ (schwarz/grau)
High-quality ABS construction
Removable side panels and lid for easy access to GPIO, camera and display connectors
Light pipes for power and activity LEDs
Extraordinarily handsome
Colour: black/grey
From Theory to Practical Applications in Wireless Energy Transfer and Harvesting
Wireless power transmission has gained significant global interest, particularly with the rise of electric vehicles and the Internet of Things (IoT). It’s a technology that allows the transfer of electricity without physical connections, offering solutions for everything from powering small devices over short distances to long-range energy transmission for more complex systems.
Wireless Power Design provides a balanced mix of theoretical knowledge and practical insights, helping you explore the potential of wireless energy transfer and harvesting technologies. The book presents a series of hands-on projects that cover various aspects of wireless power systems, each accompanied by detailed explanations and parameter listings.
The following five projects guide you through key areas of wireless power:
Project 1: Wireless Powering of Advanced IoT Devices
Project 2: Wireless Powered Devices on the Frontline – The Future and Challenges
Project 3: Wireless Powering of Devices Using Inductive Technology
Project 4: Wireless Power Transmission for IoT Devices
Project 5: Charging Robot Crawler Inside the Pipeline
These projects explore different aspects of wireless power, from inductive charging to wireless energy transmission, offering practical solutions for real-world applications. The book includes projects that use simulation tools like CST Microwave Studio and Keysight ADS for design and analysis, with a focus on practical design considerations and real-world implementation techniques.
The Controller Area Network (CAN) was originally developed to be used as a vehicle data bus system in passenger cars. Today, CAN controllers are available from over 20 manufacturers, and CAN is finding applications in other fields, such as medical, aerospace, process control, automation, and so on.
This book is written for students, for practising engineers, for hobbyists, and for everyone else who may be interested to learn more about the CAN bus and its applications.
The aim of this book is to teach you the basic principles of CAN networks and in addition the development of microcontroller based projects using the CAN bus. In summary, this book enables the reader to:
Learn the theory of the CAN bus used in automotive industry
Learn the principles, operation, and programming of microcontrollers
Design complete microcontroller based projects using the C language
Develop complete real CAN bus projects using microcontrollers
Learn the principles of OBD systems used to debug vehicle electronics
You will learn how to design microcontroller based CAN bus nodes, build a CAN bus, develop high-level programs, and then exchange data in real-time over the bus. You will also learn how to build microcontroller hardware and interface it to LEDs, LCDs, and A/D converters.
The book assumes that the reader has some knowledge on basic electronics. Knowledge of the C programming language will be useful in later chapters of the book, and familiarity with at least one member of the PIC series of microcontrollers will be an advantage, especially if the reader intends to develop microcontroller based projects using the CAN bus.
Praktischer Einstieg mit Arduino, GnuRadio und FPGA
Das Thema „Software Defined Radio“ ist facettenreich: Neben der Schaltungstechnik ist auch eine Einarbeitung in die Programmierung von Hardware und PC wichtig. Ein schrittweises Vorgehen erleichtert Ihnen den Einstieg. Mit dem im Buch vorgestellten modularen „RF Bricks“-Konzept werden Sie zum Architekten Ihrer Signalkette. Auf einem Chassis angeordnet gewährleisten die Module einen soliden und gut abgeschirmten Aufbau, den Sie einfach verändern und mit eigenen Ideen anreichern können.
Der skalierbare Aufbau bildet Ihr Blockschaltbild auch mechanisch ab – die so gewonnene Übersicht kann in der Aus- und Weiterbildung nützlich sein. Ein Arduino in Ihrem Chassis kommuniziert nach einigen Anpassungen mit üblichen SDR-Programmen, z. B. SDRCPP, GQRX und CubicSDR auf einer Linux-Plattform. Damit können Sie Ihren Empfänger direkt per Mausklick abstimmen.
Wenn Sie Blockschaltbilder mögen, ist GnuRadio ein natürlicher Partner der „RF Bricks“. Mit einem selbst programmierten Python-Block gelingt Ihnen in GnuRadio die Fernsteuerung Ihres Empfängers. Im GnuRadio-Universum können Sie Ihre GUI stufenweise ausbauen, behalten dabei aber immer volle Kontrolle über die inneren Abläufe des Programms.
Mit einem FPGA können zeitaufwändige Operationen auch direkt in die Hardware verlagert werden. Sie bauen stufenweise einen Doppelsuperhet auf und entwickeln die Filterkoeffizienten für FIR-Filter mit Scilab. Das in VHDL realisierte Weaver-Schema rundet diesen Empfänger ab, der mit hoher Empfindlichkeit und Dynamik aufwarten kann.
Mit dem gewonnen Überblick und Ihrer neuen Hardware können Sie die einzelnen Aspekte des Themenkomplexes SDR beliebig weiter vertiefen.
Downloads
Software
MOTORSTEUERUNG MIT H-BRÜCKEN Für DC-, Schritt- und bürstenlose Motoren
DAS TEAM IM ELEKTOR-LABOR Unser Ansatz, unsere bevorzugten Werkzeuge und mehr
RASPBERRY PI ALS KVM-FERNSTEUERUNG Die Software Pi-KVM im Elektor-Labor-Test
Testbericht: IQAUDIO CODEC ZERO Eine Soundkarte für die Raspberry Pi Familie
DAS PIKVM-PROJEKT UND SEINE LEHREN Ein Interview mit Maxim Devaev* (Entwickler von PiKVM)
AUTONOMES FAHRZEUG MIT 2D-LIDAR ESP32 Pico interpretiert die Daten des Lidar-Moduls
RASPBERRY PI ZERO 2 W Ein erfreuliches und notwendiges Update
IMPRESSIONEN VOM WORLD ETHICAL ELECTRONICS FORUM 2021
MOTORSTEUERUNG Wie die Motorsteuerung weniger kompliziert wird
GRÖSSERE ELEKTROMOTORE Prinzipien und Wissenswertes
ESP32-C3: 32-BIT-RISC-EINKERNER Ein erstes Hands-on im Elektor-Labor
SCHÜTZEN SIE SICH SELBST UND ANDERE! Hauptnetzschalter für den Labortisch selbst gebaut
PROGRAMMIEREN IN PYTHON Nickname-Generator mit grafischer Benutzeroberfläche
PRODUCTRONICA FAST FORWARD AWARD 2021: DIE PREISTRÄGER
VIELSEITIGER SERVO-TESTER Servos ohne Datenblatt analysieren
MODBUS ÜBER WLAN Teil 2: Software für das Modbus-TCP-WLAN-Modul
NEURONEN IN NEURONALEN NETZEN VERSTEHEN Teil 3: Praktische Neuronen
IM INNEREN EINES OPEN-SOURCE-PROZESSOREN Ein Beispiel-Kapitel: Lattice- und Xilinx-FPGAs im Vergleich
ALLER ANFANG ... muss nicht schwer sein: Die Spule lässt uns nicht los!
PROJEKT 2.0 Korrekturen, Updates und Leserbriefe
FARBE ZU KLANG Wie man einen Farbsensor über I2C ausliest
BATTLAB EINS Betriebsdauer von batteriebetriebenen Geräten messen und optimieren!
EINFACHER ERDSCHLUSSPRÜFER Isolationstester für Netzspannungsinstallationen
ARMUT UND ELEKTRONIK 1. Ziel für nachhaltige Entwicklung
HEXADOKUS Das Original von Elektorized Sudoku
Mit Arduino – Schaltungsprojekte für Profis wird der Leser umfassend in die Hardware und Software der Arduino-Plattform eingeführt. Einfache, leicht verständliche Projekte am Anfang des Buches führen Schritt für Schritt in die Open-Source-Plattform ein. Die Projekte werden dann zunehmend komplexer, um dem Leser möglichst viele konkrete Lösungsmöglichkeiten aufzuzeigen, die mit dem Arduino-Mikrocontroller auch für angehende Profis zur Verfügung stehen.
Dabei wird neben den erforderlichen theoretischen Grundlagen stets größter Wert auf eine praxisorientierte Ausrichtung gelegt. So werden wichtige Techniken wie AD-Wandlung, Timer oder Interrupts stets in Praxisprojekte eingebettet. Es entstehen Lauflichteffekte, ein Aufwachlicht, voll funktionsfähige Voltmeter, präzise Digitalthermometer, Uhren in allen Variationen, Reaktionszeitmesser oder mausgesteuerte Roboterarme. Und ganz nebenbei hat der Leser die Grundlagen der zugehörigen Controller-Technik verstanden und im wahrsten Sinne des Wortes begriffen.
Based on PIC microcontrollers and Arduino
Every mobile phone includes a GSM/GPRS modem which enables the phone to communicate with the external world. With the help of the GSM modems, users can establish audio conversations and send and receive SMS text messages. In addition, the GPRS modem enables users to connect to the internet and to send and receive large files such as pictures and video over the internet.
This book is aimed for the people who may want to learn how to use the GSM/GPRS modems in microcontroller based projects. Two types of popular microcontroller families are considered in the e-book: PIC microcontrollers, and the Arduino. The highly popular mid-performance PIC18F87J50 microcontroller is used in PIC based projects together with a GSM Click board. In addition, the SIM900 GSM/GPRS shield is used with the Arduino Uno projects. Both GSM and GPRS based projects are included in the e-book.
The book will enable you to control equipment remotely by sending SMS messages from your mobile phone to the microcontroller, send the ambient temperature readings from the microcontroller to a mobile phone as SMS messages, use the GPRS commands to access the internet from a microcontroller, send temperature readings to the cloud using UDP and TCP protocols and so on.
It is assumed that the reader has some basic working knowledge of the C language and the use of microcontrollers in simple projects. Although not necessary, knowledge of at least one member of the PIC microcontroller family and the Arduino Uno will be an advantage. It will also be useful if the user has some knowledge of basic electronics.
Autor Robert Lacoste, ein hochrangiger Elektronikingenieur, hat für professionelle Elektronik-Zeitschriften eine Serie von Grundlagenartikeln geschrieben, die hier in einem Buch zusammengefasst sind. Wichtige Themen wie Taktgeber, Filter, analoge Signalverarbeitung, digitale Kommunikation und viele weitere werden verständlich erklärt. Der Autor zeigt Ihnen dabei, wie Sie die Thematik besser verstehen und Ihr Wissen erweitern können, ohne mathematischen Ballast. Mit einfachen Worten erklärt der Autor, wie es funktioniert, und warum es manchmal nicht so funktioniert, wie man es will. Damit stoßen Sie nicht nur an Ihre eigenen Grenzen, sondern wissen auch, wo die Grenzen der von Ihnen verwendeten Geräte liegen. So wird es Ihnen ermöglicht, den tatsächlichen technischen Fortschritt von rein kommerziellen Aussagen zu trennen. Woher kommt die Empfindlichkeit eines Funkwellenempfängers? Warum läuft das Herunterladen eines Videos auf ein Handy auf dem Land viel langsamer ab als in der Innenstadt? Wenn für Sie die technischen Antworten auf Fragen wie diese nicht offensichtlich sind, wird Ihnen dieses Buch helfen, die Dinge klarer zu sehen.
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!
Sie sind noch kein Mitglied? Hier klicken!
Digitale Last für HochstromtestsVon der Notwendigkeit zur Innovation
GesangsentfernerInstant-Karaoke-Schaltung
Audio-Eingangswahlschalter mit VerstärkungseinstellungSchaltet von Mikrofon- auf Line-Eingänge um
Ladeschaltung für LIR2032Optimierte Ladung = längere Haltbarkeit
Touch-Sensing leicht gemachtEin DIY-Leitfaden für jeden Mikrocontroller
Universeller Infrarot-FernschalterEin neues Leben für alte Fernbedienungen
Mikrocontroller-gesteuerte MuhdoseBovine Klänge mit einem Mikrocontroller erzeugen
USB-Batterieschnittstelle
Stromversorgung von Low-Power-Geräten mit PowerbanksEine Stay-Alive-Lösung
Kleiner Klasse-A-Audioverstärker mit StromausgangLautsprecher mit Strom statt mit Spannung ansteuern
Pseudosymmetrisches ModulHohes Gleichtaktunterdrückungsverhältnis trotz asymmetrischen Audioverbindungen
Automatisches Ladegerät für Ni-MH-ZellenFüllen Sie alle Ihre Akkupacks in einem Rutsch auf!
Sicherheit durch thyristor-basierte Strombegrenzung
Fingerabdruck-Sensor-SchalterEin nützliches Gerät zum Identitätsnachweis
3-A-GleichspannungswandlerBessere Nutzung Ihrer Festspannungsquellen
Innovationen aus dem Arduino-Project-HubNeue Projekte aus der Community
Fernkontrolle eines BoilersSpannungs- und Stromdetektion für Netzspannungsleitungen
Abschwächer für AudiosignaleTeil 1. Einstellbar über Jumper
Autobatterie-Ladegerät aufgemotztTeil 1. Wiederverwenden statt wegwerfen!
Eine Platine für „The Blue One“Platine für Alps-Motorpotentiometer mit Rückmeldung
50-Hz-Referenz aus 60-Hz-NetzspannungWie man 50-Hz-Elektronik in 60-Hz-Umgebungen verwendet
Digitale IsolatorenGalvanische Trennung einfach realisieren
Kompakter 12-W-Hi-Fi-MonoverstärkerKlein, aber leistungsstark
LM386-Rampengenerator
DrehstromgeneratorMit Raspberry Pi Pico
Türöffner für musikalisch Begabte
Elektor-Klassiker: Surf-SynthesizerMeereswassersporthintergrundgeräuschgenerator (Mwsh3g)
Autobatterie-Ladegerät aufgemotztTeil 2. Ladesteuerung analog und digital
LampenstromüberwachungMit Raspberry Pi Pico
Infrarot-Telegraphie
Fnirsi SWM-10Reparatur von Batteriepacks mit tragbarem intelligentem Punktschweißgerät
Stereo-Audio-Codec für ESP32 und Co.Keine Angst vor Audio-Messtechnik
Die Kunst des LötensLötzinn-Techniken für einwandfreie Verbindungen
Abschwächer für AudiosignaleTeil 2. Umschalten per Relais
USB-C-PowerStrom aus USB-C-Netzteilen beziehen
Drei Schaltungen mit zwei und drei Zähler-ICs4017-ICs im Zusammenspiel
Aktive Bauelemente – Die Diode
Timer für extrem lange VerzögerungenEinstellen und vergessen!
Klinke rein, Klinke rausEine nützlicher Anschluss für Audioschaltungen
ESP32 mit nur einer Lithium-Zelle versorgen
Hexadoku
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!
Sind Sie noch kein Mitglied? Hier klicken!
Projekt-Update: Energiemessgerät mit ESP32 Nächste Schritte beim Prototyping
Balkonkraftwerke optimieren Überlegungen, Wissenswertes und Kalkulationen
Für Balkonkraftwerke: ESP32 mit OpenDTU Daten kleiner Wechselrichter per µC auslesen
Variables lineares Stromversorgungs-Ensemble 0...50 V / 0...2 A + Doppelsymmetrische Versorgung
Energiespeicherung heute und morgen Ein Interview mit Simon Engelke
2024: Eine Odyssee in die KI Weiter, immer weiter...
Bluetooth LE auf dem STM32 Auf dem Weg zum fernabgelesenen Messgerät
Intelligentes Kücheninventarsystem Mehr als eine Küchenwaage
MAUI: Programmieren für PC, Tablet und Smartphone Das neue Framework in Theorie und Praxis
ChatMagLev Der KI-Weg der Levitation
Einfacher PV-Energieregler für Inselanlagen Bauen Sie ein voll funktionsfähiges PV-Energiemanagement-System
Kaltkathodenröhre Bemerkenswerte Bauteile
Aus dem Leben gegriffen Nostalgie
Aller Anfang ... ... muss nicht schwer sein: Vom FET zum Opamp
CAN-Bus-Tutorial für den Arduino UNO R4 Zwei UNO R4 nehmen den Bus!
Infografik: Strom und Energie
Umfangreiche Unterstützung bei Design und Entwicklung Arrow Ingenieurdienstleistungen
Leistungsdichte vs. Wirkungsgrad
Aluminium-Elektrolytkondensatoren Störpotential in der Audiotechnik?
USB-Tester FNB58 von Fnirsi
Pixel Pump Das Pick-and-Place Tool Vereinfachung der manuellen SMD-Bestückung
HomeLab-Führungen Vor nicht allzu langer Zeit in einem weit entfernten Land...
„In der Welt der Ethik in der Elektronik können auch kleine Schritte eine große Wirkung haben.“
Ethik in der Elektronik Die OECD-Leitsätze und das deutsche Lieferkettengesetz
Intelligentes Ni-MH-Ladegerät/Entladegerät Das Leserprojekt „Chadèche“ in Kürze
Projekt 2.0 Korrekturen, Updates und Leserbriefe
Programmierung in Assembler und C am Beispiel der ATtiny-Familie
Dieses Buch bietet einen eingehenden Blick auf die 8-Bit-AVR-Architektur in ATtiny- und ATmega-Mikrocontrollern, hauptsächlich aus der Sicht der Software und der Programmierung. Erforschen Sie die AVR-Architektur unter Verwendung von C und Assembler in Microchip Studio (früher Atmel Studio) mit ATtiny-Mikrocontrollern.
Lernen Sie die Details der internen Funktionsweise von AVR-Mikrocontrollern kennen, einschließlich der internen Register und des Speicherplans von ATtiny-Bausteinen.
Programmieren Sie Ihren ATtiny-Mikrocontroller mit einem Atmel-ICE-Programmiergerät/Debugger oder verwenden Sie ein preiswertes Hobby-Programmiergerät oder sogar einen Arduino Uno als Programmiergerät.
Die meisten Code-Beispiele können mit dem Microchip Studio AVR-Simulator ausgeführt werden.
Lernen Sie, Programme für ATtiny-Mikrocontroller in Assembler zu schreiben.
Erfahren Sie, wie Assemblersprache in Maschinencodebefehle umgewandelt wird.
Finden Sie heraus, wie Programme, die in der Programmiersprache C geschrieben wurden, in Assemblersprache und schließlich in Maschinencode umgewandelt werden.
Verwenden Sie den Microchip Studio Debugger in Kombination mit einem Hardware-USB-Programmierer/Debugger, um Assembler- und C-Programme zu testen oder verwenden Sie den Microchip Studio AVR-Simulator.
ATtiny-Mikrocontroller im DIP-Gehäuse werden verwendet, um eine einfache Nutzung auf Breadboards zu ermöglichen.
Erfahren Sie mehr über Timing und Taktimpuls in AVR-Mikrocontrollern mit ATtiny-Bausteinen.
Werden Sie zu einem AVR-Experten mit fortgeschrittenen Debugging- und Programmierfähigkeiten.
Für den sensiblen und kritischen HiFi-Hörer ist die Röhrenverstärkung noch immer der "musikalischste" Weg der Signalaufbereitung in der Übertragungskette Signalquelle, Verstärker und Lautsprecher. Transparenz, Räumlichkeit, Tiefe, Klangfülle, Wärme... alle diese oder ähnliche Charakterisierungen versuchen etwas zu umschreiben, was kaum zu beschreiben ist, bei dem die Sprache scheinbar "versagt": das Hörerlebnis "Röhre".
Moderne Audio-Röhren-Spitzengeräte sind im Schnitt sündhaft teuer; bei den niedrigen, ausschließlich in Handarbeit gefertigten Stückzahlen ist das erklärlich. Schaltungstechnisch gibt es bei den Röhrenverstärkern kaum mehr Geheimnisse, denn die Röhrentechnologie wurde bereits vor rund 30 Jahren "erwachsen". Allenfalls die Herstellung hochwertiger Ausgangsübertrager wird teilweise als gut gehütetes Fabrikationsgeheimnis behandelt.
Was für den Audio-Hörer gilt, gilt auch für die meisten – nicht nur technisch interessierten – Gitarrenspieler allemal: für sie produziert die Röhre "the singing voice", die das Gitarrenspiel erst lebendig erscheinen lässt.
Dieses Buch macht alle diese Dinge dem technisch interessierten Leser deutlich. Es zeigt dem praxisorientierten Audio-Hörer und Musiker Alternativen auf, wie man durch Selbstbau zu einem preiswerten Röhren-Equipment kommen kann. Dazu gehört, dass auch einige theoretische Zusammenhänge nicht ganz aus dem Blickfeld geraten.
Der ESP8266 ist ein programmierbares WLAN-Funkmodul mit zahlreichen Schnittstellen wie UART, I²C und SPI. Das Board ist sehr preiswert und bereits für unter 3 Euro verfügbar. Die UART-Schnittstelle sorgt dabei für eine einfache Integration in Mikrocontrollerprojekte. Das ESP8266-Modul kann hervorragend mit dem Arduino zusammenarbeiten und ermöglicht ihm über die serielle Schnittstelle den Zugang zum Netzwerk und Internet. Es existiert eine Implementierung des ESP8266-Moduls in die Arduino-Entwicklungsumgebung. Aber auch als Standalone-Modul kann das ESP8266 eigenständig Programme abarbeiten und mit dem Internet kommunizieren, da es über einen eigenen Mikroprozessor und Speicher auf dem Board verfügt.Mittlerweile existiert auch das Entwickler-Board NodeMCU, auf dem der ESP8266-Chip mit einem USB/Seriell-Adapter versehen wurde. Mit den integrierten Sockelleisten ist ein direkter Einsatz auf üblichen Breadboards möglich. Über den USB-Anschluss wird das Board mit Strom versorgt und kann über eine Software direkt angesprochen werden. Auch das NodeMCU-Board ist sehr preiswert und bereits für unter 5 Euro zu haben.Der Bestseller-Autor Erik Bartmann hat sich ausführlich mit dem ESP8266 und dem NodeMCU beschäftigt. Heraus gekommen ist dabei Das ESP8266-Praxisbuch, in dem er die Leser Schritt für Schritt in die Arbeit mit diesen neuen, preiswerten Bauteilen einführt, mögliche technische Stolpersteine ausführlich behandelt und in zahlreichen Projekten die Praxistauglichkeit – angefangen bei einem selbst gebauten Webserver bis hin zu klugen Relay-Ansteuerung – belegt.