Quite unintentionally a one-page story on an old Heathkit tube tester in the December 2004 edition of Elektor magazine spawned dozens of ‘Retronics’ tales appearing with a monthly cadence, and attracting a steady flow of reader feedback and contributions to the series. Since launching his Retronics columns, Elektor Editor Jan Buiting has never been short of copy to print, or vintage equipment to marvel at.
This book is a compilation of about 80 Retronics installments published between 2004 and 2012. The stories cover vintage test equipment, prehistoric computers, long forgotten components, and Elektor blockbuster projects, all aiming to make engineers smile, sit up, object, drool, or experience a whiff of nostalgia.
To reflect that our memories are constantly playing tricks on us, and honoring that “one man’s rubbish is another man’s gem”, the tales in the book purposely have no chronological order, and no bias in favor of transistor or tube, microprocessor or discrete part, audio or RF, DIY or professional, dry or narrative style.
Although vastly diff erent in subject matter, all tales in the book are told with personal gusto because Retronics is about sentiment in electronics engineering, construction and repair, be it to reminisce about a 1960s Tektronix scope with a cleaning lady as a feature, or a 1928 PanSanitor box for dubious medical use.
Owners of this book are advised to not exceed one Retronics tale per working day, preferably consumed in the evening hours under lamp light, in a comfortable chair, with a piece of vintage electronic equipment close and powered up.
RF circuit design is now more important than ever as we find ourselves in an increasingly wireless world. Radio is the backbone of today’s wireless industry with protocols such as Bluetooth, Wi-Fi, WiMax, and ZigBee. Most, if not all, mobile devices have an RF component and this book tells the reader how to design and integrate that component in a very practical fashion. This book has been updated to include today's integrated circuit (IC) and system-level design issues as well as keeping its classic ‘wire lead’ material.
Design Concepts and Tools Include
The Basics: Wires, Resistors, Capacitors, Inductors
Resonant Circuits: Resonance, Insertion Loss
Filter Design: High-pass, Bandpass, Band-rejection
Impedance Matching: The L Network, Smith Charts, Software Design Tools
Transistors: Materials, Y Parameters, S Parameters
Small Signal RF Amplifier: Transistor Biasing, Y Parameters, S Parameters
RF Power Amplifiers: Automatic Shutdown Circuitry, Broadband Transformers, Practical Winding Hints
RF Front-End: Architectures, Software-Defined Radios, ADC’s Effects
RF Design Tools: Languages, Flow, Modeling
Moderne Elektronik-Kits enthalten kaum einzelne Komponenten, sondern fertige Module. Damit kann man mit wenigen Handgriffen sehr praxistaugliche Projekte umsetzen. Dank umfangreicher Bibliotheken können die zugehörigen Sketche schnell und einfach programmiert werden.
Auf diese Art und Weise haben die Experimentierkästen-Klassiker aus den Anfangsjahren der Elektronik würdige Nachfolger gefunden. Sowohl jungen Nachwuchstüftlern und angehenden Ingenieuren als auch den alten Hasen der Elektronik-Zunft stehen damit alle Möglichkeiten der modernen Elektronik offen.
Dieses Kit bietet eine sehr reichliche Sammlung von Boards etc. für so gut wie alle Arduino-Projekte. Nicht nur eine RFID-Empfängerplatine und zwei dazugehörende Transponderchips in Form einer Karte und eines Schlüsselanhängers sind vorhanden, sondern umfangreiche Elektronik zum Messen, Datenerfassen und zur Steuerung. Neben dem Arduino Uno selbst findet sich in der praktischen Kunststoffbox unter anderem:
ein Feuchtigkeitssensor
eine Multicolor-LED
eine große LED-Matrix mit 64 integrierten Leuchtpunkten
eine vierstellige 7-Segment-Anzeige
eine Infrarot-Fernbedienung sowie ein dazu passender Empfänger
ein komplettes LCD-Modul mit I²C-Anschluss
Die in Elektor erschienenen Anwendungsbeispiele stellen einen winzigen Ausschnitt aus den vielfältigen Möglichkeiten des Kits dar, mit dem sich eine nahezu unbegrenzte Anzahl von Experimenten und Anwendungen aufbauen lässt. Es handelt sich um eine universelle Klimastation mit LC-Display und einen Türschloss mit RFID-Sicherung.
Kit-Inhalt:
LCD1602 with I²C
RC522 module
White card
Key chain
Joystick module
Key board
RTC module
Water level sensor
Humidity sensor
RGB module
Motor driver module
Motor
1 Channel module
MB-102 breadboard
65 pcs jumper wire
10 PCS F-M cable
Sound sensor module
Remote
10K potentiometer
1 digital tube
4 digital tube
Matrix tube
9G servo
Buzzer
2 pcs ball switches
3 pcs photoresistance
5 pcs switches with caps
9V battery with DC
15 pcs LED
30 pcs resistance
Flame sensor
IR receive sensor
74HC595
LM35DZ
Uno R3 board
Diese starre Endeffektorplatte ist als Ersatz für den standardmäßigen AxiDraw-Stiftlift-Z-Tisch konzipiert und bietet ein alternatives Montageschema für die Montage verschiedener Dinge am Ende des AxiDraw-Arms für Anwendungen, bei denen eine größere Steifigkeit, aber die Hebefähigkeit wichtig sind des Standard-Z-Tisches ist nicht erforderlich.
Der starre Endeffektor ist speziell aus Aluminium gefertigt und verfügt über sechs M3-Gewindelöcher und zwei M4-Gewindelöcher für die Montage dessen, was Sie am Ende des AxiDraw montieren möchten, um ihn als 2D-Roboterarm zu verwenden. Das Lochmuster ist mit dem AxiDraw-Stiftclip kompatibel, sodass Sie bei Bedarf den AxiDraw-Stiftclip an diesem Endeffektor montieren können. Die Installation ist unkompliziert, erfordert jedoch einen Pozidrive PZ2-Schraubendreher, der nicht im Lieferumfang enthalten ist*. Entfernen Sie den Stiftclip des AxiDraw und entfernen Sie dann die Z-Stufe für den Stiftlift, indem Sie zwei Schrauben mit dem PZ2-Schraubendreher entfernen. Installieren Sie die starre Endeffektorplatte mit den beiden mitgelieferten Montageschrauben und dem PZ2-Schraubendreher an ihrer Stelle. Möglicherweise möchten Sie auch die Kabelführungen des AxiDraw zurückbinden oder vollständig entfernen, die normalerweise zur Stromversorgung der Stifthubstufe dienen.
Spezifikationen
Material: Eloxiertes 6061-T6-Aluminium
Größe: 1,97 x 1,38 x 0,19 Zoll (50 x 35 x 4,8 mm)
Gewicht: ca. 11g
Montagematerial: im Lieferumfang enthalten (zwei selbstschneidende M4x12-Pozidrive-Schrauben)
Kompatibilität
Alle Stiftplotter der AxiDraw V3-Familie
AxiDraw V3/A3
AxiDraw SE/A3
AxiDraw MiniKit-Modelle
With the availability of free and open source C/C++ compilers today, you might wonder why someone would be interested in assembler language. What is so compelling about the RISC-V Instruction Set Architecture (ISA)? How does RISC-V differ from existing architectures? And most importantly, how do we gain experience with the RISC-V without a major investment? Is there affordable hardware available?
The availability of the Espressif ESP32-C3 chip provides a way to get hands-on experience with RISC-V. The open sourced QEMU emulator adds a 64-bit experience in RISC-V under Linux. These are just two ways for the student and enthusiast alike to explore RISC-V in this book.
The projects in this book are boiled down to the barest essentials to keep the assembly language concepts clear and simple. In this manner you will have “aha!” moments rather than puzzling about something difficult. The focus in this book is about learning how to write RISC-V assembly language code without getting bogged down. As you work your way through this tutorial, you’ll build up small demonstration programs to be run and tested. Often the result is some simple printed messages to prove a concept. Once you’ve mastered these basic concepts, you will be well equipped to apply assembly language in larger projects.
Dieses Buch ist eine Einführung in das hochaktuelle Gebiet der Robotik. Dabei stehen praktische Anwendungsbeispiele im Vordergrund. Neben den technischen und mechanischen Grundlagen werden die elektronischen Komponenten und Module erläutert. Eine zentrale Rolle spielt dabei der Mikrocontroller. Für Robotik-Anwendungen haben sich zwei Controller-Boards etabliert: der Arduino und der Raspberry Pi. Dem trägt dieses Buch Rechnung und beschreibt praktische Nachbauprojekte mit diesen beiden populären Boards. Getreu der Philosophie des „Learning by Doing“ können sich auch ambitionierte, nichtprofessionelle Anwender mit dem Lernmaterial des Buches einen Überblick über den neuesten Stand der Robotertechnik und KI verschaffen. Für praktische Anwendungen können sowohl komplette Bausätze als auch einzelne Komponenten verwendet werden. Dabei wurde stets darauf geachtet, dass die Hardware möglichst universell einsetzbar ist.
Die weltweit beliebteste ROS-Plattform
TurtleBot ist der beliebteste Open-Source-Roboter für Bildung und Forschung. Die neue Generation TurtleBot3 ist ein kleiner, kostengünstiger, vollständig programmierbarer, ROS-basierter mobiler Roboter, der modular, kompakt und anpassbar ist. Er ist für Bildung, Forschung, Hobby und Produktprototyping gedacht.
Erschwingliche Kosten
TurtleBot wurde entwickelt, um die kostenbewussten Bedürfnisse von Schulen, Labors und Unternehmen zu erfüllen. TurtleBot3 ist der günstigste Roboter unter den SLAM-fähigen mobilen Robotern, die mit einem 360°-Laser-Distanzsensor LDS-01 ausgestattet sind.
Kleine Größe
Die Abmessungen des TurtleBot3 Burger betragen nur 138 x 178 x 192 mm (L x B x H). Seine Größe ist etwa 1/4 der Größe des Vorgängers. Stellen Sie sich vor, Sie könnten TurtleBot3 in Ihrem Rucksack mitnehmen und Ihr Programm entwickeln und testen, wo immer Sie sind.
ROS Standard
Die Marke TurtleBot wird von Open Robotics verwaltet, das ROS entwickelt und pflegt. Heutzutage ist ROS die bevorzugte Plattform für alle Robotiker auf der ganzen Welt geworden. TurtleBot kann mit bestehenden ROS-basierten Roboterkomponenten integriert werden, aber TurtleBot3 kann eine erschwingliche Plattform für diejenigen sein, die mit dem Erlernen von ROS beginnen wollen.
Erweiterbarkeit
TurtleBot3 ermutigt Benutzer, seine mechanische Struktur mit einigen alternativen Optionen anzupassen: Open Source Embedded Board (als Steuerplatine), Computer und Sensoren. TurtleBot3 Burger ist eine zweirädrige Plattform mit Differentialantrieb, aber sie kann strukturell und mechanisch auf viele Arten angepasst werden: Autos, Fahrräder, Anhänger und so weiter. Erweitern Sie Ihre Ideen jenseits der Vorstellungskraft mit verschiedenen SBC, Sensoren und Motoren auf einer skalierbaren Struktur.
Modularer Aktuator für mobile Roboter
TurtleBot3 ist in der Lage, durch den Einsatz von 2 DYNAMIXELs in den Radgelenken präzise räumliche Daten zu erhalten. Die DYNAMIXEL der XM-Serie können in einem von 6 Betriebsmodi betrieben werden (XL-Serie: 4 Betriebsmodi): Geschwindigkeitsregelung für die Räder, Drehmomentregelung oder Positionsregelung für die Gelenke, usw. DYNAMIXEL kann sogar für die Herstellung eines mobilen Manipulators verwendet werden, der leicht ist, aber mit Geschwindigkeits-, Drehmoment- und Positionssteuerung präzise gesteuert werden kann. DYNAMIXEL ist eine Kernkomponente, die den TurtleBot3 perfekt macht. Er ist einfach zu montieren, zu warten, zu ersetzen und neu zu konfigurieren.
Open Control Board für ROS
Die Steuerplatine ist sowohl hardware- als auch softwareseitig für die ROS-Kommunikation offengelegt. Die Open-Source-Steuerungsplatine OpenCR1.0 ist leistungsfähig genug, um nicht nur DYNAMIXELs, sondern auch ROBOTIS-Sensoren zu steuern, die häufig für grundlegende Erkennungsaufgaben auf kostengünstige Weise verwendet werden. Verschiedene Sensoren wie z. B. Berührungssensor, Infrarotsensor, Farbsensor und eine Handvoll weiterer sind verfügbar. Das OpenCR1.0 hat einen IMU-Sensor im Inneren des Boards, so dass es die präzise Steuerung für unzählige Anwendungen verbessern kann. Das Board verfügt über 3,3 V, 5 V und 12 V Stromversorgungen, um die verfügbaren Computergeräte zu verstärken.
Starke Sensoraufbauten
TurtleBot3 Burger verwendet ein verbessertes 360°-LiDAR, eine 9-achsige Trägheitsmesseinheit und einen präzisen Encoder für Ihre Forschung und Entwicklung.
Open Source
Die Hardware, Firmware und Software des TurtleBot3 sind Open Source, was bedeutet, dass die Benutzer willkommen sind, die Quellcodes herunterzuladen, zu ändern und zu teilen. Alle Komponenten des TurtleBot3 werden aus Kostengründen im Spritzgussverfahren aus Kunststoff hergestellt, die 3D-CAD-Daten sind jedoch auch für den 3D-Druck verfügbar.
Technische Daten
Maximale Translationsgeschwindigkeit
0,22 m/s
Maximale Rotationsgeschwindigkeit
2,84 rad/s (162,72 Grad/s)
Maximale Nutzlast
15 kg
Größe (L x B x H)
138 x 178 x 192 mm
Gewicht (+ SBC + Batterie + Sensoren)
1 kg
Kletterschwelle
10 mm oder weniger
Erwartete Betriebszeit
2h 30m
Erwartete Ladezeit
2h 30m
SBC (Single Board Computer)
Raspberry Pi 4 (2 GB RAM)
MCU
32-bit ARM Cortex-M7 mit FPU (216 MHz, 462 DMIPS)
Aktuator
XL430-W250
LDS (Laser Distance Sensor)
360 Laser-Abstandssensor LDS-01 or LDS-02
IMU
3-Achsen-Gyroskop3-Achsen-Beschleunigungsmesser
Stromanschlüsse
3,3 V/800 mA5 V/4 A12 V/1 A
Erweiterungspins
GPIO 18 PinsArduino 32 Pins
Peripherie
3x UART, 1x CAN, 1x SPI, 1x I²C, 5x ADC, 4x 5-pin OLLO
DYNAMIXEL-Ports
3x RS485, 3x TTL
Audio
Mehrere programmierbare Signaltonfolgen
Programmierbare LEDs
4x Benutzer-LED
Status-LEDs
1x Board-Status-LED1x Arduino-LED1x Power-LED
Tasten und Schalter
2x Drucktasten, 1x Reset-Taste, 2x Dip-Schalter
Batterie
Lithiumpolymer 11,1 V 1800 mAh / 19,98 Wh 5C
PC-Verbindung
USB
Firmware-Upgrade
via USB / via JTAG
Netzadapter (SMPS)
Eingang: 100-240 VAC 50/60 Hz, 1,5 A @maxAusgang: 12 VDC, 5 A
Downloads
ROS Robot Programming
GitHub
E-Manual
Community
Weltweit beliebteste ROS-Plattform
TurtleBot ist der beliebteste Open-Source-Roboter für Bildung und Forschung. Die neue Generation TurtleBot3 ist ein kleiner, kostengünstiger, voll programmierbarer, ROS-basierter mobiler Roboter. Er ist für Bildung, Forschung, Hobby und Produktprototyping gedacht.
Erschwingliche Kosten
TurtleBot wurde entwickelt, um die kostenbewussten Bedürfnisse von Schulen, Laboren und Unternehmen zu erfüllen. TurtleBot3 ist der erschwinglichste Roboter unter den SLAM-fähigen mobilen Robotern, die mit einem 360°-Laser-Distanzsensor LDS-01 ausgestattet sind.
ROS Standard
Die Marke TurtleBot wird von Open Robotics verwaltet, das ROS entwickelt und pflegt. Heutzutage ist ROS die bevorzugte Plattform für alle Robotiker auf der ganzen Welt geworden. TurtleBot kann mit bestehenden ROS-basierten Roboterkomponenten integriert werden, aber TurtleBot3 kann eine erschwingliche Plattform für diejenigen sein, die mit dem Erlernen von ROS beginnen möchten.
Erweiterbarkeit
TurtleBot3 ermutigt Benutzer, seine mechanische Struktur mit einigen alternativen Optionen anzupassen: Open Source Embedded Board (als Steuerplatine), Computer und Sensoren. Der TurtleBot3 Waffle Pi ist eine zweirädrige Plattform mit Differentialantrieb, kann aber strukturell und mechanisch in vielerlei Hinsicht angepasst werden: Autos, Fahrräder, Anhänger und so weiter. Erweitern Sie Ihre Ideen jenseits der Vorstellungskraft mit verschiedenen SBC, Sensoren und Motoren auf einer skalierbaren Struktur.
Modularer Aktuator für mobilen Roboter
TurtleBot3 ist in der Lage, durch den Einsatz von 2 DYNAMIXEL's in den Radgelenken präzise räumliche Daten zu erhalten. Die DYNAMIXEL der XM-Serie können in einem von 6 Betriebsmodi betrieben werden (XL-Serie: 4 Betriebsmodi): Geschwindigkeitsregelung für die Räder, Drehmomentregelung oder Positionsregelung für die Gelenke, usw. DYNAMIXEL kann auch für die Herstellung eines mobilen Manipulators verwendet werden, der leicht ist, aber mit Geschwindigkeits-, Drehmoment- und Positionssteuerung präzise gesteuert werden kann. DYNAMIXEL ist eine Kernkomponente, die den TurtleBot3 perfekt macht. Er ist einfach zu montieren, zu warten, zu ersetzen und neu zu konfigurieren.
Offene Steuerplatine für ROS
Die Steuerplatine ist sowohl hardware- als auch softwareseitig für die ROS-Kommunikation offengelegt. Die Open-Source-Steuerungsplatine OpenCR1.0 ist leistungsfähig genug, um nicht nur DYNAMIXELs, sondern auch ROBOTIS-Sensoren zu steuern, die häufig für grundlegende Erkennungsaufgaben auf kostengünstige Weise verwendet werden. Verschiedene Sensoren wie z. B. Berührungssensor, Infrarotsensor, Farbsensor und eine Handvoll weiterer sind verfügbar. Das OpenCR1.0 verfügt über einen IMU-Sensor im Inneren des Boards, so dass es die präzise Steuerung für unzählige Anwendungen verbessern kann. Das Board verfügt über 3,3 V, 5 V und 12 V Stromversorgungen, um die verfügbaren Computergeräte zu verstärken.
Open Source
Die Hardware, Firmware und Software von TurtleBot3 sind Open Source, was bedeutet, dass die Benutzer willkommen sind, die Quellcodes herunterzuladen, zu ändern und zu teilen. Alle Komponenten des TurtleBot3 werden aus kostengünstigem Kunststoff im Spritzgussverfahren hergestellt, die 3D-CAD-Daten sind jedoch auch für den 3D-Druck verfügbar.
Technische Daten
Maximale Translationsgeschwindigkeit
0,26 m/s
Maximale Rotationsgeschwindigkeit
1,82 rad/s (104.27 deg/s)
Maximale Nutzlast
30 kg
Abmessungen (L x B x H)
281 x 306 x 141 mm
Gewicht (+ SBC + Batterie + Sensoren)
1,8 kg
Schwelle des Kletterns
10 mm oder niedriger
Voraussichtliche Betriebsdauer
2h
Voraussichtliche Ladezeit
2h 30m
SBC (Single Board Computer)
Raspberry Pi 4 (2 GB RAM)
MCU
32-bit ARM Cortex-M7 mit FPU (216 MHz, 462 DMIPS)
Fernbedienung
RC-100B + BT-410 Set (Bluetooth 4, BLE)
Aktuator
XL430-W210
LDS (Laser-Abstandssensor)
360 Laser-Abstandssensor LDS-01 or LDS-02
Kamera
Raspberry Pi Camera Module v2.1
IMU
Gyroskop 3 AchsenBeschleunigungsmesser 3 Achsen
Stromanschlüsse
3,3 V/800 mA5 V/4 A12 V/1 A
Erweiterungspins
GPIO 18 PinsArduino 32 Pin
Peripherie
3x UART, 1x CAN, 1x SPI, 1x I²C, 5x ADC, 4x 5-pin OLLO
DYNAMIXEL Ports
3x RS485, 3x TTL
Audio
Several programmable beep sequences
Programmierbare LEDs
4x User LED
Status-LEDs
1x Board Status LED1x Arduino-LED1x Power-LED
Tasten und Schalter
2x Drucktasten, 1x Reset-Taste, 2x Dip-Schalter
Akku
Lithium Polymer 11,1 V 1800 mAh / 19,98 Wh 5C
PC-Verbindung
USB
Firmware-Upgrade
via USB / via JTAG
Netzadapter (SMPS)
Eingang: 100-240 VAC 50/60 Hz, 1,5 A @maxAusgang: 12 VDC, 5 A
Downloads
ROS Robot Programming
GitHub
E-Manual
Community
Aus dem Inhalt
Lieferbarkeit von Röhren
Passive Übeltäter – Einfluss der Kondensatoren auf den Klang
Übertragerwissen
Theorie der Trioden
Der richtige Einsatz von Gleichrichterröhren
Line-Vorverstärker mit Klangsteller
Vollverstärker mit 2 x 50 W oder 2 x 40 W
HiFi-CD-Player mit Playstation 1
CD-Filter
Nachlese
In dem Artikel "Moderne Triodenendstufe mit der legendären 2A3" ab Seite 66 wurden bei den Platinenabbildungen die Maßangaben nicht abgedruckt. Hier die Maße der Originalgrößen:
Netzteilplatine (S. 68) 123 x 80 mm
Stabilisierung (S. 69) 70 x 85 mm
Hauptplatine (S. 71) 295 x 135 mm
Inhalt
Grundlagen
Kathodengegenkopplung – bei Endröhren durch eine Übertragerwicklung
Der Zwischenübertrager
Bauanleitungen
Eintakt-A-Endstufe mit 4x 6V6 – 6V6 quatroSE – ernsthafter Eintakter mit 16 W, nicht nur für hocheffiziente Lautsprecher
CD-Vorverstärker mit CD-Filter
Moderne Hybridendstufe
Die Kathedrale in der Streichholzschachtel – Elektronische Hallspirale
UKW-Mischteil – mit der Doppeltriode ECC2000 und der Triode/Pentode ECF80
Technik
In die Röhre geschaut – Computer-tomografische Bilder vom Röhreninneren
6L6GC – with best Regards from the United States of America
Röhrensockel
Info
Die Röhren-Sonderheft-Reihe hat die runde Zahl 10 erreicht
Nachruf Jan Jurco – Gründer von JJ Electronic
Buchbesprechung
Röhrendaten
Auf 100 Seiten finden Sie interessante und informative Themen zu Röhrentechnik. Unter anderem werden die nachfolgenden Fragen beantwortet:
Wie verhalten sich Röhren in Gitarrenverstärkern?
Welche Vorstufenröhre ist die richtige?
Welchen Einfluss hat die Qualität des Vakuums?
Sind Röhrenmikrofone noch immer das Maß aller Dinge?
Bauprojekte sind u. a.:
Mikrofonvorverstärker in Röhrentechnik
Experimentiernetzteil für Röhren
Federhall
Wah-Wah
HiFi-Endstufe für Einsteiger
Auf 116 Seiten finden Sie interessante und informative Themen, u. a. diese:
Mikrofonie: Wie lässt sie sich messen und nachweisen?
Rauschen: Wie lässt es sich auf ein Minimum beschränken?
Getter: Welchen Einfluss hat es auf die Qualität des Vakuums?
EL34: Welche Qualität hat die heute am weitesten verbreitete Endröhre der verschiedenen Hersteller?
Bauprojekte sind u. a.:
High-End-Kopfhörerverstärker
Röhrenempfänger für digitales Radio
Studio-Kondensator-Mikrofon
Modulares Endstufen-Verstärkersystem
100 W / 200 W Studio-Endstufe
Retronik life – Restaurierung alter Röhrenradios
Aus dem Inhalt
Kompakter High-End-Vollverstärker mit PCL 86
Schaltungen mit der neuen Röhre EL 84 T als echte Triode
UKW Stereo-Empfänger in Hybrid-Technik
Frequenzanzeige für UKW-Tuner mit Nixie-Röhren
Kompaktes Labornetzteil zur Entwicklung von Röhrenschaltungen
Symmetrix – Vollsymmetrische Endstufe für hochwertigen Hifi- und Studioeinsatz
Hybridendstufe
Röhrenkennlinien aufnehmen mit dem PC
Röhrenvoltmeter
Aus dem Inhalt
Lohnt sich der Selbstbau von Verstärkern noch?
Warum HiFi-Geräte unterschiedlich klingen
Elkos, Gleichrichter und ihr korrekter Einsatz
PPP-Endstufe mit der Röhre EL 84 T
Mittelwellen-Zweikreisempfänger
0-V-2-Kurzwellenaudion mit ECC 88
Kaffeewärmer mit Röhrenantrieb
Vielseitige Experimentierplatinen
Röhrensound-Konverter
Mikrofonverstärker mit Röhren
EL34, 6L6GC oder KT88
Magische Augen, Fächer und Bänder
Kampf den Exemplarstreuungen
Einfache Röhrenprüfung
Kummer mit minderwertigen Röhren
Das SRPP-Prinzip
Aus dem Inhalt
Neues von den Röhrenherstellern
Dem Klang auf der Spur
Wirkung und Anwendung von Gettermaterialien für Vakuum-Röhren
Klanghersteller und Klang beeinflussende Elemente im NF-Verstärker
Eintakt-A-Endstufe mit EL 156 in Trioden- und Pentodenschaltung
Kopfhörerverstärker mit Ausgangübertrager
Mehr Sound
My first Super
Netzfilter
Messfilter
Messergebnisse relativ, absolut und interpretiert
Welche Röhre klingt besser?
Moderne HiFi-Technik und DIN 45 500
Röhrenverstärker, Energieverbrauch und Recycling
Röhrendaten mit Sockelschaltungen
Aus dem Inhalt
Über ein Jahrhundert Triode
Neues vom Röhrenmarkt
Siebketten mit Drossel, Widerstand und Kondensatoren
Inserentenverzeichnis
Eintakt-A-Endstufe mit der Triode 833
Gegentakt-AB-Endstufe mit der 6C33
Gegentakt-Triodenstufe mit ECC 99 und ECC 832
Phonovorstufe in Röhrentechnik
Mehrkanalverstärker
High-End-Audio Digital-Analog-Converter (DAC)
Röhrensound mit Halbleitern
Leserbrief
CD-Two MKII
Röhrendaten mit Sockelschaltungen
Aus dem Inhalt
Sieben Jahre Elektor Röhren-Sonderhefte
Der Kompressionseffekt oder das Geheimnis des Schirmgitters
Phasenumkehrstufen
Gitterwiderstand und Gitterstrom
Eintakt-A-Endstufe mit der 6C33
Single-Ended-Endstufe mit der legendären Röhre 300B
Eintaktverstärker: Eine Handvoll gutklingender Watt
Parallel-Push-Pull-Monoblock mit 140 Watt
Ruhestromsteuerung von Röhrenendstufen mithilfe eines Mikrocontrollers
Kompakter Stereo-Röhrenverstärker mit der ECL 85
2-V-1-Audion für Mittel- und Kurzwelle
Hi-Fi-Röhren-Endstufe
Das Klanggeheimnis von sauerstofffreiem Kupferkabel
Stereo-Basisbreite
Röhrendaten mit Sockelschaltungen
Aus dem Inhalt
Neues von den Röhrenherstellern
Übertragereigenschaften
Röhrenverstärker im Kopfhörerbetrieb
Line-Vorverstärker mit Trioden
Eintakt-A-Endstufe mit KT 120
Leistungsstarke Gegentakt-AB-Endstufe mit KT 120
Elektronischer Laustärkesteller
Aktivantenne mit der Röhre EF 183
Wobbelgenerator zum Abgleich von Rundfunkempfängern
Die Sorgen mit dem bleifreien Lötzinn
Röhrengrenzdaten
Die 300B – ein Vergleich
Technik zum Anfassen
Röhrendaten mit Sockelschaltungen
Hinweis
Einige Platinenlayouts sind im Heft unscharf abgebildet worden. Die entsprechenden Zeichnungen stehen als PDF zum Download.
Röhren sind wieder „in". High-Tech-Audiogeräte wie MP3-Player, CD-Player oder der digitale Rundfunk kommen erst richtig zur Geltung, wenn ein Röhrenverstärker den perfekten Sound veredelt. Am Ausgang der PC-Soundkarte kann statt IC-bestückter Aktivboxen auch ein selbst gebautes Röhrengerät arbeiten. Der Einbau eigener Röhrenschaltungen in den PC selbst bringt den individuellen Geschmack erst richtig zur Geltung. Wenn statt einer LED das geheimnisvolle Glühen einer Röhrenkathode die Betriebsbereitschaft signalisiert, dann hebt sich das Gerät deutlich aus der Masse ab.
In der Regel arbeiten Röhren mit hohen Spannungen, was nicht ganz ungefährlich ist. Eine Röhre, die ursprünglich für eine Anodenspannung von 250 Volt entwickelt wurde, kann durchaus aber auch bei 12 Volt arbeiten. So gilt für dieses Buch prinzipiell: Röhrenschaltungen funktionieren auch mit ungefährlichen Spannungen.
Dieses Buch richtet sich an Leser, die technischen Abenteuern gegenüber aufgeschlossen sind. Teilweise handelt es sich um eine Reise zurück in die Geschichte der Röhrentechnik. Mehr als 50 Jahre alte Konzepte werden in einem neuen Gewand wieder entdeckt. Teilweise aber werden alte Röhren völlig neuartig eingesetzt. High-Tech und Tradition treffen hier aufeinander.
Röhrenverstärker produzieren Verzerrungen. Aber abweichend von den üblichen Standardschaltungen existieren Schaltungsvarianten, die sich durch minimale Klirrfaktoren bei außerordentlich großen Ausgangsamplituden von 50 oder gar 100Vp auszeichnen. Solche Verstärkerstufen wurden unter den Bezeichnungen SRPP, µ-Follower und _-Follower bekannt.Eine große Zahl von Veröffentlichungen setzt sich mit diesen besonderen Schaltungen auseinander – leider aber auch häufig in fehlerhafter Form. Ganz offenbar steckt der Teufel im Detail. Ohne ausreichende Kenntnis der hinter diesen reizvollen Konzepten stehenden Theorie und den daraus abzuleitenden Dimensionierungsvorschriften besteht die Gefahr, die exzellenten Eigenschaften von SRPPs und deren Verwandten zunichte zu machen.Im ersten Teil des vorliegenden Buches werden die Ursachen von Verzerrungen untersucht; anschließend geht es um die praktische Umsetzung der theoretischen Hintergründe.Röhren-Interessierten wird nicht entgangen sein, dass das Internet eine Fülle von meist ausgesprochen aufwendig konzeptionierten Schaltungen bietet. Aufmerksames und kritisches Überprüfen solcher Entwürfe beweist aber in fast allen Fällen, dass solche „Exoten“ bei Weitem nicht die Übertragungsqualitäten erreichen, die sie zu versprechen vorgeben. In einem gesonderten Kapitel über fehlerhafte SRPPs und µ-Follower wird gezeigt, wie teilweise bizarr anmutende Fehler zu Schaltungen führen, die dann einfacher und zielführender durch gängige Standardschaltungen zu ersetzen wären.Des Weiteren werden Gegentakt-Endstufen und ihr Zusammenwirken mit SRPPs genauer besprochen. Ausgehend von der Urversion der gegen Ende der Röhrenära entwickelten eisenlosen Endstufe (OTL) – der HF 303 von Philips – wird vertieft auf diese äußerst bemerkenswerte Variante der Röhren-Leistungsverstärker eingegangen.Nicht zuletzt wird die Aufmerksamkeit auch auf den Frequenzgang und das Übertragungsverhalten, die Netzteile und die nicht ganz unkomplizierte Heizungsversorgung der Röhrenverstärker gerichtet.Auch die Praxis kommt nicht zu kurz: Für einige der besprochenen Schaltungsentwürfe wurden ausführliche konkrete Hinweise für deren praktische Realisierung in diesem Buch mit aufgenommen.