Raspberry Pi 4 wurde von Pi-Enthusiasten wegen der erhöhten Rechenleistung begrüßt. Dies hatte jedoch seinen Preis. Der RPi 4 kann bis zu 3 Ampere aufnehmen, was bedeutet, dass er 15 W Leistung abführen muss. Die Kühlung des Raspberry Pi ist ein Muss. Vom einfachsten passiven Kühlkörper über aufwändige Lüftergebläse bis hin zu einer exotischen wassergekühlten Idee stehen viele Optionen zur Verfügung.
Sequent Microsystems Smart Fan hat den Formfaktor des Raspberry Pi HAT. Sein eigener kleiner 32-Bit-Prozessor empfängt Befehle vom Raspberry Pi über die I²C-Schnittstelle. Ein Step-up-Netzteil wandelt die vom Raspberry Pi bereitgestellten 5 V in 12 V um und sorgt so für eine präzise Geschwindigkeitsregelung. Mithilfe der Pulsweitenmodulation versorgt er den Lüfter gerade so stark, dass die Temperatur des Raspberry Pi-Prozessors konstant bleibt.
Der Smart Fan bewahrt alle GPIO-Pins, sodass beliebig viele Karten auf dem Raspberry Pi gestapelt werden können. Wenn eine weitere Zusatzkarte Strom abführen muss, kann ein zweiter Smart Fan zum Stapel hinzugefügt werden.
DIN-Schienenmontage
Zusammen mit mehreren Zusatzkarten kann der Smart Fan für robuste Industrieanwendungen auf der DIN-Schiene installiert werden.
Jumper auf Stapelebene
Auf jedem Raspberry Pi können zwei Smart Fans installiert werden. Es wird davon ausgegangen, dass Sie noch eine Karte im Stapel haben, die gekühlt werden muss. Auf der Unterseite des Smart Fan befindet sich ein Jumper, der am zweiten Lüfter installiert werden muss, damit der Raspberry Pi die beiden I²C-Adressen unterscheiden kann.
Features
40 x 40 x 10 mm Lüfter mit 6 CFM Luftstrom
Aufwärtsgerichtetes 12-V-Netzteil für präzise Steuerung der Lüftergeschwindigkeit
Der PWM-Controller moduliert den Lüfter, um die Pi-Temperatur konstant zu halten
Verbraucht weniger als 100 mA Strom
Ineinander stapelbar, 2 Lüfter können zum Raspberry Pi hinzugefügt werden
Vollständig stapelbar ermöglicht das Hinzufügen weiterer Karten zum Raspberry Pi
Verwendet nur die I²C-Schnittstelle und lässt alle GPIO-Pins voll nutzen
Super leise und effizient
Lieferumfang
Smart Fan HAT
40 x 40 x 10 mm Lüfter mit Befestigungsschrauben
Montagezubehör
Downloads
Bedienungsanleitung
Open-Source-Hardware-Schema
2D-CAD-Zeichnung
Befehlszeile
Python-Bibliotheken
Knotenrote Knoten
Die serielle Schnittstelle dient dem Datenaustausch zwischen Mikrocontrollern und Peripheriegeräten. Bei einer seriellen Datenübertragung werden die Bits nacheinander – also seriell – über eine Leitung übertragen. Das Wissen um diese seriellen Schnittstellen erweitert die Einsatzmöglichkeiten von Mikrocontrollern und Peripheriegeräten ungemein.
In diesem Buch werden die Grundlagen der Kommunikation für die drei seriellen Schnittstellen I²C, SPI und 1-Wire vorgestellt. Anhand praxisnaher Beispiele werden die Schnittstellen anschaulich dargestellt und deren Einsatz verdeutlicht. Software- und Hardwarebeispiele, die man in diesem Buch finden kann, wurden in Assembler für PIC-Mikrocontroller von Microchip realisiert. Die verwendeten Algorithmen und Vorgehensweisen kann man aber auf beliebige Plattform übertragen.
Um den Inhalt des Buches ansprechend zu gestalten, demonstriert der Autor den Buchinhalt an zwei Platinen. Mit diesen Platinen ist es möglich, die in diesem Buch beschriebenen Beispiele auszuprobieren und mit den Schnittstellen zu experimentieren. Beide Platinen basieren auf 8-bit-PIC-Mikrocontrollern von Microchip.
Einstieg in die mikrocontrollerbasierte Elektronik
Dieses Arduino-kompatible Bundle enthält das Motherboard, den Digitiser, das Sensor-Array und die RGB-Matrix. Mit diesen 4 Boards haben Sie alles, was Sie brauchen, um eine Uhr, einen Punktezähler, einen Timer, eine Aufgabenerinnerung, ein Thermometer, eine Luftfeuchtigkeitsanzeige, ein Geräuschmessgerät, ein Lichtmessgerät, einen Klatschauslöser, eine farbige Balkenanzeige, einen animierten Alarm und vieles mehr zu bauen!
Das Motherboard verfügt über ein eingebautes Echtzeituhrmodul, das die Zeit auch im ungesteckten Zustand anzeigt.
Der Digitiser kann 4 Ziffern oder Zeichen anzeigen und verfügt über 2 Tasten und ein Potentiometer, mit denen Sie die Anzeige oder die Helligkeit des Displays steuern können.
Das Sensor-Array kann Temperatur, relative Luftfeuchtigkeit, Schall und Licht messen und verfügt über einen SD-Kartensteckplatz zur Datenaufzeichnung.
Die RGB-Matrix hat 16 RGB-LEDs, die über Schieberegister gesteuert werden, so dass nur 3 oder 4 Pins der Hauptplatine benötigt werden.
Motherboard
Das Motherboard ist ein Arduino-kompatibles Mikrocontroller-Breakout-Board, das auf dem ATmega328P basiert. Die Platine wird in einem Bausatz zum Selberlöten mit allen Komponenten geliefert, die Sie benötigen, um mit mikrocontrollerbasierter Elektronik zu beginnen. Alle anderen Boards lassen sich mit diesem verbinden.
Basierend auf dem ATmega328P
Arduino-kompatibel
On-Board-RTC (Echtzeituhr)
FTDI-Header für einfache Programmierung
Bluetooth-Header
Terminalblock-Verbindungen
Digitaliser
Der Digitiser ist eine vielseitige Anzeige- und Eingabekarte. Damit können Sie Ihre Daten visualisieren. Zeigen Sie Ihre Sensorinformationen, Ziffern der Uhr an oder notieren Sie sogar den Punktestand für Ihr Lieblingskartenspiel. Der Digitiser verfügt außerdem über einige Tasten und einen Knopf, mit denen Sie die Kontrolle übernehmen können.
4x 7-Segment-Anzeigen
Verwendet 595 Schieberegister
2 Schalter und ein Potentiometer
4 farbige „Modus“-LEDs
Verkettbar mit anderen 595 Boards
Terminalblock-Verbindungen
Sensor-Array
Wie der Name schon sagt, handelt es sich beim Sensor-Array um eine Anordnung von Sensoren. Messen Sie Temperatur und relative Luftfeuchtigkeit über den DHT11, Licht über den lichtabhängigen Widerstand und Ton über die Mikrofon- und Verstärkerschaltung. Anschließend können Sie die Daten über den integrierten SD-Kartensteckplatz protokollieren.
DHT11 Temperatur & Feuchtigkeitssensor
Mikrofon- und Verstärkerschaltung
Lichtabhängiger Widerstand
MicroSD-Steckplatz zum Speichern von Daten
Logikpegelwandlerschaltung
Terminalblock-Verbindungen
RGB-Matrix
Fügen Sie Ihrem Projekt Farbe hinzu, indem Sie 16 rote, 16 grüne und 16 blaue LEDs mit nur 3 Pins Ihres Mikrocontrollers steuern. Die RGB-Matrix verwendet Schieberegister, eine Matrix und Schalttransistoren, es gibt also viel zu lernen und zu erkunden.
4x4 (16) RGB-LEDs
Verwendet 595 Schieberegister
Verkettbar mit anderen 595 Boards
Transistorschalter
Terminalblock-Verbindungen
Downloads (Handbücher)
Motherboard
Digitiser
Sensor Array
RGB Matrix
Die digitalen Speicheroszilloskope der SDS2000X Plus-Serie von Siglent sind in Bandbreiten von 100 MHz, 200 MHz und 350 MHz erhältlich, haben eine maximale Abtastrate von 2 GSa/s, eine maximale Aufzeichnungslänge von 200 Mpts/Kanal und bis zu 4 analoge Kanäle + 16 digitale Kanäle, Mixed-Signal-Analysefähigkeit.
Die SDS2000X Plus-Serie nutzt die SPO-Technologie von Siglent mit einer maximalen Wellenformerfassungsrate von bis zu 120.000 wfm/s (Normalmodus, bis zu 500.000 wfm/s im Sequenzmodus), einer Anzeigefunktion mit 256 Intensitätsstufen sowie einer Farbtemperatur Anzeigemodus. Es verwendet außerdem ein innovatives digitales Triggersystem mit hoher Empfindlichkeit und geringem Jitter. Das Triggersystem unterstützt mehrere leistungsstarke Triggermodi, einschließlich serieller Bus-Triggerung. Verlaufsaufzeichnung von Wellenformen, Sequenzerfassung sowie Such- und Navigationsfunktionen ermöglichen die Erfassung, Speicherung und Analyse erweiterter Wellenformaufzeichnungen. Eine beeindruckende Auswahl an Mess- und Mathematikfunktionen, Optionen für einen 50-MHz-Wellenformgenerator sowie serielle Dekodierung, Maskentest, Bode-Plot und Leistungsanalyse sind weitere Merkmale des SDS2000X Plus. Ein 10-Bit-Erfassungsmodus hilft dabei, Anwendungen zu erfüllen, die eine Auflösung von mehr als 8 Bit erfordern.
Der große kapazitive 10,1"-Touchscreen unterstützt Multi-Touch-Gesten, während die Remote-Websteuerung sowie die Unterstützung für Maus und externe Tastatur die Bedieneffizienz des SDS2000X Plus erheblich verbessern.
Features
Erhältlich mit 100 MHz, 200 MHz, 350 MHz Bandbreite (aufrüstbar auf 500 MHz)
Echtzeit-Abtastrate bis zu 2 GSa/s
Aufzeichnungslänge bis zu 200 Mpts
Serieller Bus-Trigger und Decoder, unterstützt I²C, SPI, UART, CAN, LIN, CAN FD, FlexRay, I²S und MIL-STD-1553B
Bietet 10-Bit-Modus, vertikalen und horizontalen Zoom
Der kapazitive Touchscreen unterstützt Multi-Touch-Gesten
Siglent SDS2000X Plus Oszilloskope
SDS2102X Plus
SDS2104X Plus
SDS2204X Plus
SDS2354X Plus
Bandbreite
100 MHz
100 MHz
200 MHz
350 MHz
Kanäle
2
4
4
4
Echtzeit-Abtastrate
2 GSa/s
2 GSa/s
2 GSa/s
2 GSa/s
Erfassungsrate
120,000 wfm/s
120,000 wfm/s
120,000 wfm/s
120,000 wfm/s
Speichertiefe
200 Mpts/ch
200 Mpts/ch
200 Mpts/ch
200 Mpts/ch
Lieferumfang
Siglent SDS2204X Plus Oszilloskop
Passive Sonden
Netzkabel
USB-Kabel
Manual
Downloads
Datasheet
Manual
Quick guide
User manual
Firmware
Die digitalen Speicheroszilloskope der SDS2000X Plus-Serie von Siglent sind in Bandbreiten von 100 MHz, 200 MHz und 350 MHz erhältlich, haben eine maximale Abtastrate von 2 GSa/s, eine maximale Aufzeichnungslänge von 200 Mpts/Kanal und bis zu 4 analoge Kanäle + 16 digitale Kanäle, Mixed-Signal-Analysefähigkeit.
Die SDS2000X Plus-Serie nutzt die SPO-Technologie von Siglent mit einer maximalen Wellenformerfassungsrate von bis zu 120.000 wfm/s (Normalmodus, bis zu 500.000 wfm/s im Sequenzmodus), einer Anzeigefunktion mit 256 Intensitätsstufen sowie einer Farbtemperatur Anzeigemodus. Es verwendet außerdem ein innovatives digitales Triggersystem mit hoher Empfindlichkeit und geringem Jitter. Das Triggersystem unterstützt mehrere leistungsstarke Triggermodi, einschließlich serieller Bus-Triggerung. Verlaufsaufzeichnung von Wellenformen, Sequenzerfassung sowie Such- und Navigationsfunktionen ermöglichen die Erfassung, Speicherung und Analyse erweiterter Wellenformaufzeichnungen. Eine beeindruckende Auswahl an Mess- und Mathematikfunktionen, Optionen für einen 50-MHz-Wellenformgenerator sowie serielle Dekodierung, Maskentest, Bode-Plot und Leistungsanalyse sind weitere Merkmale des SDS2000X Plus. Ein 10-Bit-Erfassungsmodus hilft dabei, Anwendungen zu erfüllen, die eine Auflösung von mehr als 8 Bit erfordern.
Der große kapazitive 10,1"-Touchscreen unterstützt Multi-Touch-Gesten, während die Remote-Websteuerung sowie die Unterstützung für Maus und externe Tastatur die Bedieneffizienz des SDS2000X Plus erheblich verbessern.
Features
Erhältlich mit 100 MHz, 200 MHz, 350 MHz Bandbreite (aufrüstbar auf 500 MHz)
Echtzeit-Abtastrate bis zu 2 GSa/s
Aufzeichnungslänge bis zu 200 Mpts
Serieller Bus-Trigger und Decoder, unterstützt I²C, SPI, UART, CAN, LIN, CAN FD, FlexRay, I²S und MIL-STD-1553B
Bietet 10-Bit-Modus, vertikalen und horizontalen Zoom
Der kapazitive Touchscreen unterstützt Multi-Touch-Gesten
Siglent SDS2000X Plus Oszilloskope
SDS2102X Plus
SDS2104X Plus
SDS2204X Plus
SDS2354X Plus
Bandbreite
100 MHz
100 MHz
200 MHz
350 MHz
Kanäle
2
4
4
4
Echtzeit-Abtastrate
2 GSa/s
2 GSa/s
2 GSa/s
2 GSa/s
Erfassungsrate
120,000 wfm/s
120,000 wfm/s
120,000 wfm/s
120,000 wfm/s
Speichertiefe
200 Mpts/ch
200 Mpts/ch
200 Mpts/ch
200 Mpts/ch
Lieferumfang
Siglent SDS2354X Plus Oszilloskop
Passive Sonden
Netzkabel
USB-Kabel
Manual
Downloads
Datasheet
Manual
Quick guide
User manual
Firmware
Der Siglent SSA3021X Plus Spektrum-Analyzer ist ein leistungsstarkes und flexibles Werkzeug für die HF-Signal- und Netzwerkanalyse. Mit einem Frequenzbereich von 2,1 GHz bietet der Analysator zuverlässige automatische Messungen und mehrere Betriebsarten: Spektrum-Analyzer als Basis, optionale Funktionen umfassen HF-Leistungsmessung, Vektorsignal-Modulationsanalyse, Reflexionsmessung und EMI-Test.
Zu den Anwendungsbereichen gehören die Überwachung/Bewertung von Sendungen, Standortvermessung, S-Parameter-Messung, analoge/digitale Modulationsanalyse, EMI-Vorprüfung, Forschung und Entwicklung, Ausbildung, Produktion und Wartung.
Features
Frequenzbereich des Spektrum-Analyzer von 9 kHz bis 2,1 GHz
–161 dBm/Hz Angezeigter durchschnittlicher Geräuschpegel (typisch)
–98 dBc/Hz. @ 10 kHz Offset-Phasenrauschen (1 GHz, typ.)
Pegelmessunsicherheit <0,7 dB (typ.)
1 Hz Mindestauflösungsbandbreite (RBW)
Vorverstärker (Std.)
Tracking Generator (kostenlos inkl.)
Analysemodus für analoge und digitale Signalmodulation (opt.)
Reflexionsmesskit (opt.)
EMI-Filter und Quasi-Peak-Detektor-Kit (opt.)
Erweitertes Messkit (opt.)
10,1-Zoll-Multi-Touch-Bildschirm, Maus und Tastatur werden unterstützt
Webbrowser-Fernsteuerung auf PCs und mobilen Endgeräten sowie Dateibetrieb
Technische Daten
SSA3015X Plus
SSA3021X Plus
SSA3032X Plus
SSA3075X Plus
Frequenzbereich
9 kHz ~ 1,5 GHz
9 kHz ~ 2,1 GHz
9 kHz ~ 3,2 GHz
9 kHz ~ 7,5 GHz
Auflösung Bandbreite
1 Hz ~ 1 MHz
1 Hz ~ 1 MHz
1 Hz ~ 1 MHz
1 Hz ~ 3 MHz
Phasenrauschen
<–99 dBc/Hz
<–98 dBc/Hz
<–98 dBc/Hz
<–98 dBc/Hz
Genauigkeit der Gesamtamplitude
<1,2 dB
<0,7 dB
<0,7 dB
<0,7 dB
Anzeige des durchschnittlichen Geräuschpegels
–156 dBm/Hz
–161 dBm/Hz
–161 dBm/Hz
–165 dBm/Hz
Lieferumfang
Siglent SSA3021X Plus Spektrumanalysator
USB-Kabel
Netzkabel
Kurzanleitung
Downloads
Datasheet
Manual
Documentation
Firmware
Der Siglent SSA3075X Plus Spektrum-Analyzer ist ein leistungsstarkes und flexibles Werkzeug für die HF-Signal- und Netzwerkanalyse. Mit einem Frequenzbereich von 7,5 GHz bietet der Analysator zuverlässige automatische Messungen und mehrere Betriebsarten: Spektrum-Analyzer als Basis, optionale Funktionen umfassen HF-Leistungsmessung, Vektorsignal-Modulationsanalyse, Reflexionsmessung und EMI-Test.
Zu den Anwendungsbereichen gehören die Überwachung/Bewertung von Sendungen, Standortvermessung, S-Parameter-Messung, analoge/digitale Modulationsanalyse, EMI-Vorprüfung, Forschung und Entwicklung, Ausbildung, Produktion und Wartung.
Features
Frequenzbereich des Spektrum-Analyzer von 9 kHz bis 7,5 GHz
–165 dBm/Hz Angezeigter durchschnittlicher Geräuschpegel (typisch)
–98 dBc/Hz. @ 10 kHz Offset-Phasenrauschen (1 GHz, typ.)
Pegelmessunsicherheit <0,7 dB (typ.)
1 Hz Mindestauflösungsbandbreite (RBW)
Vorverstärker (Std.)
Tracking Generator (kostenlos inkl.)
Analysemodus für analoge und digitale Signalmodulation (opt.)
Reflexionsmesskit (opt.)
EMI-Filter und Quasi-Peak-Detektor-Kit (opt.)
Erweitertes Messkit (opt.)
10,1-Zoll-Multi-Touch-Bildschirm, Maus und Tastatur werden unterstützt
Webbrowser-Fernsteuerung auf PCs und mobilen Endgeräten sowie Dateibetrieb
Technische Daten
SSA3015X Plus
SSA3021X Plus
SSA3032X Plus
SSA3075X Plus
Frequenzbereich
9 kHz ~ 1,5 GHz
9 kHz ~ 2,1 GHz
9 kHz ~ 3,2 GHz
9 kHz ~ 7,5 GHz
Auflösung Bandbreite
1 Hz ~ 1 MHz
1 Hz ~ 1 MHz
1 Hz ~ 1 MHz
1 Hz ~ 3 MHz
Phasenrauschen
<–99 dBc/Hz
<–98 dBc/Hz
<–98 dBc/Hz
<–98 dBc/Hz
Genauigkeit der Gesamtamplitude
<1,2 dB
<0,7 dB
<0,7 dB
<0,7 dB
Anzeige des durchschnittlichen Geräuschpegels
–156 dBm/Hz
–161 dBm/Hz
–161 dBm/Hz
–165 dBm/Hz
Lieferumfang
Siglent SSA3075X Plus Spektrum-Analyzer
USB-Kabel
Netzkabel
Kurzanleitung
Downloads
Datasheet
Manual
Documentation
Firmware
Smart-Home-Systeme selber bauen
Smart Home- und IoT-Technik für den Arduino bietet eine Fülle von Praxisprojekten, die mit einem einzigen Kit aufgebaut werden können. Das "SunFounder Smart Home Internet of Things Kit V2.0 for Arduino" enthält über 30 Komponenten, Bauelemente und Module aus allen Bereichen der modernen Elektronik.
Damit lassen sich eine Fülle von Projekten realisieren. Für den Einsteiger werden zunächst einige einfachere Einsteigerexperimente vorgestellt. Der fortgeschrittenere Anwender kann sich dagegen gleich an die komplexeren Themen heranwagen.
Neben präzisen digitalen Thermometern, Hygrometern, Belichtungsmessern und verschiedenen Alarmanlagen entstehen auch praktisch einsetzbare Geräte und Anwendungen wie etwa
eine vollautomatische Beleuchtungssteuerung
ein digitales Thermostat
eine multifunktionale Klimamessstation
Zudem wird detailliert erklärt, wie Messdaten in das Internet übertragen werden. Dort sind sie grafisch darstellbar und können weltweit abgerufen werden. Auch auf die damit verbundenen Gefahren und die Problematik des Datenschutzes wird eingegangen.
Die vorgestellten Praxisprojekte bleiben dabei aber nicht im Status eines „Laborprototyps“ stehen. Durch entsprechende Tipps und Hinweise entstehen vielmehr praxistaugliche Geräte, die in Haushalt, Hobby und Beruf eingesetzt werden können. Selbstverständlich können sämtliche Bauteile auch einzeln beschafft werden, so dass sich die Projekte im Buch auch ohne das komplette IoT-Kit durchführen lassen.
Smart-Home-Systeme selber bauen
Smart Home- und IoT-Technik für den Arduino bietet eine Fülle von Praxisprojekten, die mit einem einzigen Kit aufgebaut werden können. Das "SunFounder Smart Home Internet of Things Kit V2.0 for Arduino" enthält über 30 Komponenten, Bauelemente und Module aus allen Bereichen der modernen Elektronik.
Damit lassen sich eine Fülle von Projekten realisieren. Für den Einsteiger werden zunächst einige einfachere Einsteigerexperimente vorgestellt. Der fortgeschrittenere Anwender kann sich dagegen gleich an die komplexeren Themen heranwagen.
Neben präzisen digitalen Thermometern, Hygrometern, Belichtungsmessern und verschiedenen Alarmanlagen entstehen auch praktisch einsetzbare Geräte und Anwendungen wie etwa
eine vollautomatische Beleuchtungssteuerung
ein digitales Thermostat
eine multifunktionale Klimamessstation
Zudem wird detailliert erklärt, wie Messdaten in das Internet übertragen werden. Dort sind sie grafisch darstellbar und können weltweit abgerufen werden. Auch auf die damit verbundenen Gefahren und die Problematik des Datenschutzes wird eingegangen.
Die vorgestellten Praxisprojekte bleiben dabei aber nicht im Status eines „Laborprototyps“ stehen. Durch entsprechende Tipps und Hinweise entstehen vielmehr praxistaugliche Geräte, die in Haushalt, Hobby und Beruf eingesetzt werden können. Selbstverständlich können sämtliche Bauteile auch einzeln beschafft werden, so dass sich die Projekte im Buch auch ohne das komplette IoT-Kit durchführen lassen.
SMD-Magazine sind spritzgegossene Behälter und eine hervorragende Möglichkeit, SMD-Teile zu organisieren und zu verbrauchen. Sie sind speziell für die Lagerung von Bauteilen und deren Bereitstellung zur Kommissionierung konzipiert. Sie können bis zu 12 mm breite und 9,5 mm hohe Bänder laden. Sie ersetzen diese schwer zu findenden Plastiktüten und sind gleichzeitig eine hervorragende Quelle für Teile, die mit Pixel Pump aufgenommen und platziert werden können.
Jede SMD-Magazinschiene präsentiert bis zu acht Magazine im perfekten Winkel, damit Sie ihre Komponenten mit der Pixel Pump aufnehmen und platzieren können. Sie können diese Schienen auch verwenden, um Komponenten für bestimmte Projekte zu gruppieren. Sie sind mit rutschfesten Gummifüßen ausgestattet und für zusätzliche Stabilität beschwert.
Eine SMD-Magazinschiene fasst bis zu acht SMD-Magazine. Eine bestimmte Schiene kann zur unbegrenzten Aufnahme eines projektspezifischen Magazinsatzes verwendet werden. Zeitschriften werden im rechten Winkel gehalten und können von Pixel Pump entnommen und platziert werden.
Jede SMD-Magazinschiene präsentiert bis zu acht Magazine im perfekten Winkel, damit Sie ihre Komponenten mit der Pixel Pump aufnehmen und platzieren können. Sie können diese Schienen auch verwenden, um Komponenten für bestimmte Projekte zu gruppieren. Sie sind mit rutschfesten Gummifüßen ausgestattet und für zusätzliche Stabilität beschwert.
Die Prototypen-Fertigungslinie SMD Starter I besteht aus dem Schablonendrucker TSD240, dem SMD-Bestückungsgerät PlaceMAN und dem Reflow-Ofen 3LHR10.
Schablonendrucker SD240 (+ Metallrakel 155 mm)
Schablonengröße: max. 175 x 255 mm
Platinengröße: max. 180 x 240 mm
Gerätegröße: 410 x 270 x 110 mm
Gewicht: 6,7 kg
inkl. Metallrakel 155 mm
inkl. 8 Magnete zum Halten der Leiterplatte, 6 davon mit M3-Madenschraube
inkl. transparente Platzierhilfe und Faserschreiber
Manuelles SMD-Bestückungsgerät PlaceMAN für Standardbauteile inkl. Vakuumpumpe (ohne Zuführungen, Kamera, Monitor und Dispenser)
Ausgestattet mit leichtgängigem Bestückungsarm, Bestückungskopf mit Einhandbedienung, Rotation der Z-Achse und automatischer Vakuumabschaltung, inkl. Leiterplattenhalterung, Vakuumeinheit und 2 Bestückungsnadeln mit Gummisaugern.
Kapazität an Feeder (nicht im Lieferumfang enthalten)
2x Feederkassette für 10 x 8 mm Rollen links
4x Feederkassette für Stangenfeeder für jeweils 5 Stangen
weiter Zuführsysteme sind innerhalb des Bestückungsbereiches möglich, z. B. Strip-Feeder Stecksystem
Abmessungen
Grundgerät (LxBxH): 765 x 390 x 210 mm
Mit Feederkassette für 10 x 8 mm Rollen (LxBxH): 765 x 390 x 210 mm
Mit Feederkassette für 10 x 8 mm Rollen und Feederkassette für Stangenfeeder (LxBxH): 765 x 430 x 210 mm (Höhe kann durch die Stangenlänge variieren)
Mit Feederkassette für 10 x 8 mm Rollen inkl. Halter für 10 Rollen und Feederkassette für Stangenfeeder (LxBxH): 765 x 430 x 210 mm (Höhe kann durch die Stangenlänge variieren)
Technische Daten
Gewicht Grundgerät: ca. 6 kg
Verfahrweg der Achsen (x,y,z): 470 x 230 x 15 mm
Max. Arbeitsbereich: 380 x 240 mm
Max. PCB-Größe: 230 x 360 mm
Stromversorgung Netzteil: 230/12 V, 800 mA
Stromversorgung Vakuumpumpe: 230 V, 6 W
3LHR10 Reflow-Ofen (programmierbar für bleifreie Lötungen mit manueller Schublade und Tablet-Steuerung)
Reflow-Ofen mit IR und Konvektionsheizung. Die erzwungene Heißluftkonvektion sorgt für ein gleichmäßiges Temperaturprofil in der gesamten Kammer. Nach dem manuellen Öffnen der Tür werden die Lüfter eingeschaltet und die gelötete Leiterplatte schnell abgekühlt.
Kleiner Reflow-Ofen mit manueller Türöffnung
Industrie 4.0 bereit, Bluetooth-Kommunikation + Tablet
IR + Konvektionsheizung.
Android-Anwendung zur Verbindung mit Tablet oder Smartphone
100 verschiedene Benutzerprogramme
Lieferumfang: 3LHR10, Tablet mit App, Schutzhülle für Tablet, 4 Leiterplattenhalter, externes Thermoelement, Handbuch im Tablet
Anwendung
Schließen Sie den Ofen an die Stromversorgung an und schließen Sie die optional erhältliche Absaugung (3LFE10S) an den Abluftstutzen an. Nach dem ersten Einschalten sucht der Ofen nach einem Tablet oder Smartphone. Wenn beide in der Android-App verbunden sind, wählen Sie die Programmierung des Ofens. Hier sind programmierbare Temperatur und Vorheizzeit sowie Temperatur und andere Daten einzustellen. Registrieren Sie sich mit dem Tablet, um den vollen Umfang der Software nutzen zu können. Wenn der Ofen bereits programmiert ist, kann der Benutzer den Vorgang mit Tasten und Anzeige auf der Vorderseite steuern. Nach Abschluss des Reflow-Vorgangs ertönt ein akustisches Signal. Ein Signal wird auch auf dem Tablet/Smartphone angezeigt. Die Schublade muss nun manuell geöffnet werden. Die Android-Anwendung zeigt Prozessstatus, Zeit und Temperatur oder andere Informationen an.
Technische Daten
Netzanschluss: 230 V, 50 Hz
Maximale Leistung: 3100 W
Temperaturen: 50-260°C
Abmessungen: 510 x 370 x 340 mm
Maximales Gewicht: 16 kg
Gitterabmessungen: 350 x 220 mm
Maximale Abmessungen der Leiterplatte: 300 x 200 mm
Maximale Komponentenhöhe auf der Leiterplatte: 50 mm oben, 30 mm unten
Lieferumfang
Schablonendrucker TSD240
SMD-Bestückungsgerät PlaceMAN
Reflow-Ofen 3LHR10
Mit dem Voice Interaction Satellite Kit können Sie die Reichweite Ihrer Basisstation auf jeden Raum in Ihrem Haus erweitern und es Ihnen ermöglichen, mit der Hardware zu interagieren, je nachdem, wo Sie Ihre Befehle erteilen! Sie können in Ihrem Zuhause mehrere Satelliten-Kits anordnen, um dem Basis-Kit oder jedem anderen intelligenten Lautsprecher neue Funktionen hinzuzufügen und so Ihre Sprachsteuerung auf mehrere Räume auszudehnen.
Das Voice Interaction Satellite Kit wird von einem Raspberry Pi Zero W und dem ReSpeaker 2-Mics Pi HAT angetrieben. Zusammen mit dem Kit sind ein Lautsprecher, ein Grove-Temperatur- und Feuchtigkeitssensor (SHT31), ein Grove-Relais und eine Stecktafel zum Aufhängen an der Wand oder zum Erstellen eines praktischen Ständers enthalten.
Hinweis
Alle Satelliten-Kits erfordern ein Basis-Kit (Link zum Snips Voice Interaction Base Kit) oder Raspberry Pi, um wie vorgesehen zu funktionieren.
Die Kurzwellen-Empfangstechnik entwickelt sich ständig weiter. Im Mai 2007 wurde von Elektor das „Software Defined Radio mit USB-Schnittstelle“ vorgestellt. Ziel war ein möglichst einfacher Empfänger, der durch den Einsatz geeigneter Software überzeugende Empfangsergebnisse liefert. Die benötigten Programme stehen auf der Elektor-Website und im Internet gratis zur Verfügung. Schon nach wenigen Monaten hatte dieser neue Empfänger eine weite Verbreitung gefunden. Zahlreiche Software-Autoren unterstützten das Projekt. Auch Bedienungshinweise, Erweiterungen sowie Tipps und Tricks findet man im Netz. Die Vielfalt der Möglichkeiten erschwert die Orientierung. Deshalb wurde dieses Buch geschrieben. Das Ziel ist ein Überblick über Aufbau, Software und Bedienung des SDR. Außerdem werden Selbstbauprojekte vorgestellt, die es erlauben, mit geringsten Kosten eigene Empfänger zu entwerfen; denn das Thema entwickelt sich laufend weiter...
Praktischer Einstieg mit Arduino, GnuRadio und FPGA
Das Thema „Software Defined Radio“ ist facettenreich: Neben der Schaltungstechnik ist auch eine Einarbeitung in die Programmierung von Hardware und PC wichtig. Ein schrittweises Vorgehen erleichtert Ihnen den Einstieg. Mit dem im Buch vorgestellten modularen „RF Bricks“-Konzept werden Sie zum Architekten Ihrer Signalkette. Auf einem Chassis angeordnet gewährleisten die Module einen soliden und gut abgeschirmten Aufbau, den Sie einfach verändern und mit eigenen Ideen anreichern können.
Der skalierbare Aufbau bildet Ihr Blockschaltbild auch mechanisch ab – die so gewonnene Übersicht kann in der Aus- und Weiterbildung nützlich sein. Ein Arduino in Ihrem Chassis kommuniziert nach einigen Anpassungen mit üblichen SDR-Programmen, z. B. SDRCPP, GQRX und CubicSDR auf einer Linux-Plattform. Damit können Sie Ihren Empfänger direkt per Mausklick abstimmen.
Wenn Sie Blockschaltbilder mögen, ist GnuRadio ein natürlicher Partner der „RF Bricks“. Mit einem selbst programmierten Python-Block gelingt Ihnen in GnuRadio die Fernsteuerung Ihres Empfängers. Im GnuRadio-Universum können Sie Ihre GUI stufenweise ausbauen, behalten dabei aber immer volle Kontrolle über die inneren Abläufe des Programms.
Mit einem FPGA können zeitaufwändige Operationen auch direkt in die Hardware verlagert werden. Sie bauen stufenweise einen Doppelsuperhet auf und entwickeln die Filterkoeffizienten für FIR-Filter mit Scilab. Das in VHDL realisierte Weaver-Schema rundet diesen Empfänger ab, der mit hoher Empfindlichkeit und Dynamik aufwarten kann.
Mit dem gewonnen Überblick und Ihrer neuen Hardware können Sie die einzelnen Aspekte des Themenkomplexes SDR beliebig weiter vertiefen.
Downloads
Software
Praktischer Einstieg mit Arduino, GnuRadio und FPGA
Das Thema „Software Defined Radio“ ist facettenreich: Neben der Schaltungstechnik ist auch eine Einarbeitung in die Programmierung von Hardware und PC wichtig. Ein schrittweises Vorgehen erleichtert Ihnen den Einstieg. Mit dem im Buch vorgestellten modularen „RF Bricks“-Konzept werden Sie zum Architekten Ihrer Signalkette. Auf einem Chassis angeordnet gewährleisten die Module einen soliden und gut abgeschirmten Aufbau, den Sie einfach verändern und mit eigenen Ideen anreichern können.
Der skalierbare Aufbau bildet Ihr Blockschaltbild auch mechanisch ab – die so gewonnene Übersicht kann in der Aus- und Weiterbildung nützlich sein. Ein Arduino in Ihrem Chassis kommuniziert nach einigen Anpassungen mit üblichen SDR-Programmen, z. B. SDRCPP, GQRX und CubicSDR auf einer Linux-Plattform. Damit können Sie Ihren Empfänger direkt per Mausklick abstimmen.
Wenn Sie Blockschaltbilder mögen, ist GnuRadio ein natürlicher Partner der „RF Bricks“. Mit einem selbst programmierten Python-Block gelingt Ihnen in GnuRadio die Fernsteuerung Ihres Empfängers. Im GnuRadio-Universum können Sie Ihre GUI stufenweise ausbauen, behalten dabei aber immer volle Kontrolle über die inneren Abläufe des Programms.
Mit einem FPGA können zeitaufwändige Operationen auch direkt in die Hardware verlagert werden. Sie bauen stufenweise einen Doppelsuperhet auf und entwickeln die Filterkoeffizienten für FIR-Filter mit Scilab. Das in VHDL realisierte Weaver-Schema rundet diesen Empfänger ab, der mit hoher Empfindlichkeit und Dynamik aufwarten kann.
Mit dem gewonnen Überblick und Ihrer neuen Hardware können Sie die einzelnen Aspekte des Themenkomplexes SDR beliebig weiter vertiefen.
Downloads
Software
Der SOLDERED CONNECT Programmer vereinfacht die Programmierung von Boards basierend auf ESP8266- und ESP32-Mikrocontrollern enorm. Er enthält die gesamte notwendige Elektronik und Logik. Die Programmierung erfolgt durch einfaches Anschließen eines USB-Kabels an den CONNECT Programmer und dessen Verbindung mit dem Programmier-Header. Die integrierte Schaltung übernimmt Timing und Signalsequenzierung automatisch und versetzt den ESP-Mikrocontroller ohne manuelles Eingreifen in den Bootloader-Modus.
Features
IC: CH340
Pin-Layout: GPIO0, RESET, RX, TX, 3V3, GND
LEDs: RX, TX, Power
Schnittstelle: USB-C
Abmessungen: 38 x 22 mm
Downloads
Datasheet
GitHub
Der Arduino Pro Mini ist ein Mikrocontroller-Board auf Basis des ATmega328P.
Es hat 14 digitale Eingangs-/Ausgangs-Pins (von denen 6 als PWM-Ausgänge verwendet werden können), 6 analoge Eingänge, einen On-Board-Resonator, eine Reset-Taste und Löcher für die Montage von Stiftleisten. Eine sechspolige Stiftleiste kann mit einem FTDI-Kabel oder einem Sparkfun-Breakout-Board verbunden werden, um die Platine über USB mit Strom zu versorgen und mit ihr zu kommunizieren.
Der Arduino Pro Mini ist für die semi-permanente Installation in Objekten oder Ausstellungen gedacht. Die Platine wird ohne vormontierte Stiftleisten geliefert, was die Verwendung verschiedener Arten von Steckern oder das direkte Anlöten von Drähten ermöglicht. Das Pin-Layout ist mit dem Arduino Mini kompatibel.
Der Arduino Pro Mini wurde von SparkFun Electronics entwickelt und wird von ihr hergestellt.
Spezifikationen
Microcontroller
ATmega328P
Board Stromversorgung
5-12 V
Schaltung Betriebsspannung
5 V
Digitale E/A-Pins
14
PWM Pins
6
UART
1
SPI
1
I²C
1
Analogeingangs-Pins
6
Externe Interrupts
2
DC-Strom pro I/O-Pin
40 mA
Flash Memory
32 KB, davon 2 KB vom Bootloader verwendet
SRAM
2 KB
EEPROM
1 KB
Taktgeschwindigkeit
16 MHz
Dimensionen
18 x 33.3 mm (0.7 x 1.3")
Downloads
Eagle files
Schematics
Die Flexibilität des Artemis-Moduls beginnt mit dem Arduino-Kern von SparkFun. Sie können das Artemis-Modul genauso programmieren und verwenden wie einen Uno oder jeden anderen Arduino. Der Zeitpunkt des ersten Blinkens ist nur 5 Minuten entfernt! Wir haben den Kern von Grund auf neu entwickelt, um ihn schnell und so leicht wie möglich zu machen.
Nächste Aufgabe ist das Modul selbst. Mit einer Größe von 10 mm x 15 mm verfügt das Artemis-Modul über alle unterstützenden Schaltungen, die Sie benötigen, um den fantastischen Ambiq Apollo3-Prozessor in Ihrem nächsten Projekt einzusetzen. Wir sind stolz darauf, sagen zu können, dass das SparkFun Artemis-Modul das erste Open-Source-Hardware-Modul ist, bei dem die Design-Dateien frei und einfach verfügbar sind. Wir haben das Modul sorgfältig entworfen, so dass die Implementierung von Artemis in Ihr Design mit kostengünstigen 2-Lagen-Leiterplatten und 8mil Leiterbahnabstand erfolgen kann.
Das Artemis-Modul wird in den USA in der SparkFun-Produktionsstätte in Boulder hergestellt und ist für Consumer-Produkte konzipiert. Damit unterscheidet sich das Artemis-Modul deutlich von seinen Arduino-Brüdern. Sind Sie bereit, Ihr Produkt zu skalieren? Das Artemis wächst mit Ihnen über den Uno-Footprint und die Arduino-IDE hinaus. Zusätzlich verfügt der Artemis über einen erweiterten HAL (Hardware Abstraction Layer), der es dem Anwender ermöglicht, die moderne Cortex-M4F-Architektur bis an ihre Grenzen zu treiben.
Das SparkFun Artemis Modul ist vollständig FCC/IC/CE-zertifiziert und ist in vollen Tape-and-Reel-Stückzahlen erhältlich. Mit 1M Flash und 384k RAM haben Sie viel Platz für Ihren Code. Das Artemis-Modul läuft mit 48MHz mit einem 96MHz Turbo-Modus verfügbar und mit Bluetooth zu booten!
Die Servosteuerung basiert auf dem SparkFun Servo pHAT, und dank seiner I²C-Fähigkeiten spart dieses PWM-Add-on die GPIO-Pins des Raspberry Pi, so dass Sie diese für andere Zwecke nutzen können. Wir haben auch einen Qwiic-Anschluss für die einfache Anbindung an den I²C-Bus unter Verwendung des Qwiic-Systems vorgesehen. Egal, ob Sie den Auto pHAT mit einem Raspberry Pi, NVIDIA, Jetson Nano, Google Coral oder einem anderen SBC verwenden, er ist eine einzigartige Robotik-Ergänzung und ein Board mit 2x20 GPIO.
Die Steuerung des Gleichstrommotors erfolgt über den gleichen 4245 PSOC und 2-Kanal-Motoranschlüsse wie beim SparkFun Qwiic Motor Driver. Dieses bietet 1,2A Dauerleistung pro Kanal (1,5A Spitze) und 127 Stufen der DC-Antriebsstärke. Der SparkFun Auto pHAT unterstützt dank des integrierten ATTINY84A auch bis zu zwei Motor-Encoder, um Ihrer Kreation noch präzisere Bewegungen zu ermöglichen!
Zusätzlich verfügt der Auto pHAT über eine on-board ICM-20948 9DOF IMU für all Ihre Bewegungserfassungsanforderungen. Dies ermöglicht Ihrem Roboter den Zugriff auf das 3-Achsen-Gyroskop mit vier wählbaren Bereichen, den 3-Achsen-Beschleunigungsmesser, ebenfalls mit vier wählbaren Bereichen, und den 3-Achsen-Magnetometer mit einem FSR von ±4900µT.
Die Stromversorgung des SparkFun Auto pHAT kann über einen USB-C-Anschluss oder eine externe Stromversorgung erfolgen. Damit werden entweder nur die Motoren oder die Motoren und der Raspberry Pi, der mit dem HAT verbunden ist, mit Strom versorgt. Wir haben sogar Stromschutzschaltungen in das Design eingebaut, um Schäden an den Stromquellen zu vermeiden.
Features
4245 PSOC und 2-Kanal-Motor-Ports programmierbar mit Qwiic-Bibliothek
Onboard ATTINY84A unterstützt bis zu zwei DC-Motor-Encoder
5V-Durchgang vom RPi
Onboard ICM-20948 9DOF IMU für Motion Sensing, zugänglich über Qwiic-Bibliothek
PWM-Steuerung für bis zu vier Servos
Qwiic-Anschluss für die Erweiterung auf das komplette SparkFun Qwiic-Ökosystem
Entworfen für Stacking, volle Header-Unterstützung & kann zusätzliche pHATs darauf verwenden
Ungehinderter Zugang zum RPi Kameraanschluss & Displayanschluss.
USB-C für die Stromversorgung der 5V-Schiene (Motoren/Servos/zurückliegende Stromversorgung des Pi)
Externe Stromeingänge auf PTH-Header herausgebrochen
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
NVIDIA unterstreicht sein Engagement, den Zugang zu und die Innovation im Bereich Deep Learning zu erweitern und hat einen kostenlosen Online-Kurs des Deep Learning Institute (DLI) mit dem Titel "Getting Started on AI with Jetson Nano" ins Leben gerufen, der zum Selbststudium einlädt. Das Ziel des Kurses ist es, grundlegende Fähigkeiten zu vermitteln, die es jedem ermöglichen, mit dem Jetson Developer Kit kreativ zu werden. Bitte beachten Sie, dass dieses Kit für diejenigen gedacht ist, die bereits ein Jetson Nano Developer Kit besitzen und an dem DLI-Kurs teilnehmen möchten. Ein Jetson Nano ist nicht in diesem Kit enthalten.
In diesem Kit ist alles enthalten, was Sie für den Kurs "Einstieg in die KI mit dem Jetson Nano" benötigen (außer einem Jetson Nano natürlich), und Sie werden lernen, wie
Ihren Jetson Nano und Ihre Kamera einrichten
Bilddaten für Klassifikationsmodelle sammeln
Bilddaten für Regressionsmodelle annotieren
Trainieren Sie ein neuronales Netzwerk auf Ihren Daten, um Ihre eigenen Modelle zu erstellen
Ausführen von Inferenz auf dem Jetson Nano mit den von Ihnen erstellten Modellen
Das NVIDIA Deep Learning Institute bietet praxisnahe Schulungen zu KI und beschleunigtem Computing, um Probleme aus der Praxis zu lösen. Entwickler, Datenwissenschaftler, Forscher und Studenten können praktische Erfahrungen mit GPUs in der Cloud sammeln und ein Kompetenzzertifikat erwerben, das die berufliche Weiterentwicklung unterstützt. Sie bieten Online-Schulungen zum Selbststudium für Einzelpersonen, Workshops unter Anleitung für Teams und herunterladbare Kursmaterialien für Hochschullehrer an.
Inklusive
32 GB MicroSD-Karte
Logitech C270 Webcam
Netzteil 5 V, 4 A
USB-Kabel - microB (umkehrbar)
2-Pin-Jumper
Bitte beachten Sie: Jetson Nano Developer Kit nicht enthalten.
Um die Verwendung dieses Breakouts noch einfacher zu machen, erfolgt die gesamte Kommunikation ausschließlich über I2C, unter Verwendung unseres praktischen Qwiic-Systems. Dennoch haben wir Pins im Abstand von 0,1" herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Der CCS811 ist ein äußerst beliebter Sensor, der Messwerte für äquivalentes CO2 (oder eCO2) in Teilen pro Million (PPM) und gesamte flüchtige organische Verbindungen in Teilen pro Milliarde (PPB) liefert. Der CCS811 verfügt außerdem über eine Funktion, mit der er seine Messwerte feinabstimmen kann, wenn er Zugriff auf die aktuelle Luftfeuchtigkeit und Temperatur hat.
Glücklicherweise liefert der BME280 die Luftfeuchtigkeit, die Temperatur und den barometrischen Druck! So können die Sensoren zusammenarbeiten und uns genauere Messwerte liefern, als sie es alleine könnten. Wir haben es auch einfach gemacht, mit ihnen über I2C zu kommunizieren.
Funktionen
Qwiic-Connector Enabled
Betriebsspannung: 3,3 V
Messung der gesamten flüchtigen organischen Verbindungen (TVOC) von 0 bis 1.187 Teilen pro Milliarde
eCO2-Messung von 400 bis 8.192 Teilen pro Million
Temperaturbereich: -40C bis 85C
Feuchtigkeitsbereich: 0--100% RH, = -3 % von 20--80%
Druckbereich: 30.000Pa bis 110.000Pa, relative Genauigkeit von 12Pa, absolute Genauigkeit von 100Pa
Höhenbereich: 0 bis 30.000 Fuß (9,2 km), relative Genauigkeit von 3,3 Fuß (1 m) auf Meereshöhe, 6,6 (2 m) bei 30.000 Fuß
Das SparkFun GPS-RTK2 legt die Messlatte für hochpräzises GPS höher und ist das neueste in einer Reihe von leistungsstarken RTK-Karten mit dem ZED-F9P-Modul von u-blox. Das ZED-F9P ist ein Spitzenmodul für hochgenaue GNSS- und GPS-Ortungslösungen, einschließlich RTK mit einer dreidimensionalen Genauigkeit von 10 mm. Mit dieser Karte werden Sie in der Lage sein, die X-, Y- und Z-Position Ihres (oder eines beliebigen Objekts) innerhalb der Breite Ihres Fingernagels zu bestimmen! Das ZED-F9P ist einzigartig, da es sowohl als Rover als auch als Basisstation eingesetzt werden kann. Durch die Verwendung unseres praktischen Qwiic-Systems ist kein Löten erforderlich, um ihn mit dem Rest Ihres Systems zu verbinden. Dennoch haben wir die Pins im 0,1"-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Wir haben sogar eine wiederaufladbare Backup-Batterie eingebaut, um die neueste Modulkonfiguration und Satellitendaten bis zu zwei Wochen lang verfügbar zu halten. Diese Batterie hilft beim "Warm-Start" des Moduls und verkürzt die Zeit bis zur ersten Reparatur drastisch. Das Modul verfügt über einen "Survey-in"-Modus, der es ermöglicht, das Modul als Basisstation zu verwenden und RTCM 3.x-Korrekturdaten zu erzeugen. Die Konfigurationsmöglichkeiten des Moduls
Die Anzahl der Konfigurationsmöglichkeiten des ZED-F9P ist unglaublich! Geofencing, variable I2C-Adresse, variable Update-Raten, sogar die hochgenaue RTK-Lösung kann auf 20Hz erhöht werden. Der GPS-RTK2 hat sogar fünf Kommunikationsanschlüsse, die alle gleichzeitig aktiv sind: USB-C (der sich als COM-Port enumeriert), UART1 (mit 3,3V TTL), UART2 für den RTCM-Empfang (mit 3,3V TTL), I2C (über die beiden Qwiic-Anschlüsse oder ausgebrochene Pins) und SPI.
Sparkfun hat außerdem eine umfangreiche Arduino-Bibliothek für u-blox-Module geschrieben, um das GPS-RTK2 einfach über das Qwiic Connect System auszulesen und zu steuern. Lassen Sie NMEA hinter sich! Verwenden Sie eine viel leichtere binäre Schnittstelle und gönnen Sie Ihrem Mikrocontroller (und seinem einen seriellen Port) eine Pause. Die SparkFun Arduino-Bibliothek zeigt, wie man Breitengrad, Längengrad, sogar Kurs und Geschwindigkeit über I2C auslesen kann, ohne dass ständige serielle Abfragen nötig sind.
Features
Gleichzeitiger Empfang von GPS, GLONASS, Galileo und BeiDou
Empfang der Bänder L1C/A und L2C
Spannung: 5 V oder 3,3 V, aber alle Logik ist 3,3 V
Strom: 68 mA - 130 mA (variiert mit Konstellationen und Tracking-Status)
Zeit bis zum ersten Fix: 25 s (kalt), 2 s (heiß)
Max Navigation Rate:
PVT (Basisortung über UBX-Binärprotokoll) - 25 Hz
RTK - 20 Hz
Raw - 25 Hz
Horizontale Positionsgenauigkeit:
2,5 m ohne RTK
0,010 m mit RTK
Max. Höhe: 50k m
Max. Geschwindigkeit: 500 m/s
Gewicht: 6,8 g
Abmessungen: 43,5 mm x 43,2 mm
2 x Qwiic-Stecker