Das Raspberry Pi AI HAT+ ist eine Erweiterungsplatine für den Raspberry Pi 5, die einen integrierten Hailo AI-Beschleuniger enthält. Dieses Add-on bietet einen kostengünstigen, effizienten und leicht zugänglichen Ansatz für die Integration von leistungsstarken KI-Funktionen, mit Anwendungen in den Bereichen Prozesssteuerung, Sicherheit, Heimautomatisierung und Robotik.
Das AI HAT+ ist in Modellen mit 13 oder 26 Tera-Operationen pro Sekunde (TOPS) erhältlich und basiert auf den neuronalen Netzwerkbeschleunigern Hailo-8L und Hailo-8. Dieses 13 TOPS-Modell unterstützt effizient neuronale Netze für Aufgaben wie Objekterkennung, Semantik- und Instanzsegmentierung, Posenschätzung und mehr. Die 26 TOPS-Variante ist für größere Netzwerke geeignet, ermöglicht eine schnellere Verarbeitung und ist für den gleichzeitigen Betrieb mehrerer Netzwerke optimiert.
Das AI HAT+ wird über die PCIe Gen3-Schnittstelle des Raspberry Pi 5 angeschlossen. Wenn auf dem Raspberry Pi 5 eine aktuelle Version des Raspberry Pi OS läuft, erkennt es automatisch den integrierten Hailo-Beschleuniger und macht die neuronale Verarbeitungseinheit (NPU) für KI-Aufgaben verfügbar. Darüber hinaus unterstützen die im Raspberry Pi OS enthaltenen rpicam-apps Kameraanwendungen das KI-Modul nahtlos und nutzen die NPU automatisch für kompatible Nachbearbeitungsfunktionen.
Lieferumfang
Raspberry Pi AI HAT+ (13 TOPS)
Montage-Hardware-Kit (Abstandshalter, Schrauben)
16 mm GPIO-Stacking-Header
Downloads
Datasheet
Diese Aufbewahrungsbox ist die perfekte Lösung für mehr Organisation auf Ihrer Werkbank, besonders bei der Arbeit mit kleinen elektronischen Bauteilen. Die Box mit 128 Fächern bietet genug Platz, um Bauteile wie Widerstände, Kondensatoren, Dioden und Transistoren übersichtlich und sicher zu verstauen. Jedes Teil hat sein eigenes Fach, was es ermöglicht, schnell darauf zuzugreifen, wenn man sie für ein Projekt benötigt. Mit dem Niimbot Etikettendrucker können Sie verschiedene Gegenstände professionell beschriften.
Dieses Angebot enthält:
Elektor Aufbewahrungsbox für elektronische Bauteile (Einzelpreis: 39,95 €)
Niimbot D110 Etikettendrucker (Einzelpreis: 29,95 €)
Elektor Aufbewahrungsbox für elektronische Bauteile
Diese Aufbewahrungsbox für elektronische Bauteile mit 128 Fächern ist ein unverzichtbares Werkzeug für alle, die mit kleinen elektronischen Bauteilen, insbesondere SMDs, arbeiten. Sie bietet eine praktische, gut organisierte Lösung für die Aufbewahrung einer breiten Palette von Miniaturbauteilen wie Widerständen, Kondensatoren, Dioden und Transistoren. Jedes Bauteil kann in einem eigenen Fach aufbewahrt werden, so dass das spezifische Teil, das Sie für ein Projekt benötigen, immer leicht auffindbar ist.
Egal, ob Sie ein professioneller Elektronikingenieur, ein Maker oder ein Heimwerker sind, diese Aufbewahrungsbox bietet die perfekte Mischung aus Funktionalität und Komfort. Ihr Design hilft, Unordnung zu beseitigen, die Verwaltung von Bauteilen zu optimieren und Ihre Arbeitsumgebung aufgeräumt zu halten, damit Sie sich auf das konzentrieren können, worauf es wirklich ankommt: den Aufbau und die Fehlersuche bei elektronischen Schaltungen.
Abmessungen jedes Fachs (L x B x H): 22 x 15 x 16 mm
Abmessungen der Box (L x B x H): 280 x 215 x 45 mm
Lieferumfang
1x Komponenten-Aufbewahrungsbox (inkl. 128 Fächer mit Deckel und Schaumstoff)
3x Ersatzdeckel
2x Bögen mit leeren Etiketten
2x Etiketten für die Box
Niimbot D110 Etikettendrucker
Der auf Thermodirekttechnologie basierende Niimbot D110 Etikettendrucker ermöglicht das Drucken ohne Tinte, Toner oder Farbbänder, was ihn im Vergleich zu herkömmlichen Druckern zu einer kostengünstigen Lösung macht. Durch seine kompakte Größe und sein geringes Gewicht lässt er sich leicht transportieren und passt problemlos in jede Tasche.
Dank der Bluetooth-Konnektivität und dem eingebautem 1500-mAh-Akku können Sie mit diesem kabellosen Mini-Drucker aus einer Entfernung von bis zu 10 Metern drucken und sind somit auch unterwegs flexibel, egal ob Sie von Ihrem Smartphone oder Tablet aus drucken.
Die "Niimbot"-App (verfügbar für iOS und Android) bietet eine Vielzahl von kostenlosen Vorlagen für die individuelle Gestaltung der Etiketten.
Technische Daten
Modell
D110_M (verbesserte Version 2024)
Material
ABS
Auflösung
203 DPI
Druckgeschwindigkeit
30-60 mm/s
Druckbreite
12-15 mm
Drucktechnologie
Thermisch
Betriebstemperatur
5°C ~ 45°C
Batteriekapazität
1500 mAh
Ladeschnittstelle
USB-C
Ladezeit
2 Stunden
Verbindung
Bluetooth 4.0
Drahtlose Entfernung
10 m
Abmessungen
98 x 76 x 30 mm
Gewicht
149 g
Lieferumfang
1x Niimbot D110 Etikettendrucker
1x Etikettenrolle (12 x 40 mm)
1x USB-Kabel
1x Manual
Downloads
iOS App
Android App
Der Unitree G1 ist ein moderner humanoider Roboter, der durch seine bemerkenswerte Flexibilität und fortschrittliche Technologie beeindruckt. Mit einer außergewöhnlich großen Bandbreite an Gelenkbewegungen und bis zu 43 Gelenkmotoren übertrifft er die Agilität eines typischen Menschen. Seine Robotersysteme werden mit Hilfe von künstlicher Intelligenz durch Imitations- und Verstärkungslernen ständig weiterentwickelt und optimiert.
Eine der beeindruckendsten Eigenschaften des G1 ist seine Fähigkeit, sich selbstständig in eine Gehposition zu begeben, sobald er den Boden berührt – ohne externe Hilfe! Er kann sich sofort in Bewegung setzen und beweist damit ein hohes Maß an Unabhängigkeit und Anpassungsfähigkeit. Der G1 ist außerdem mit einer kraftgesteuerten, sehr geschickten Hand ausgestattet, die dank der Kombination aus Kraft- und Positionssteuerung sowohl sensibel als auch präzise arbeitet. Diese Hand ahmt die menschlichen Bewegungen genau nach und ermöglicht eine präzise Handhabung von Objekten.
Features
Intel RealSense D435 Tiefenkamera
Livox MID-360 3D-LiDAR
Mikrofonarray (Rausch- und Echounterdrückung)
5 W Stereolautsprecher
Extra großer Schnellwechsel-Akku
Einzelarm-Freiheitsgrade (Schulter 2 + Ellenbogen 2)
Hohlachsverkabelung der gesamten Maschine (keine externen Kabel)
Maximales Drehmoment an den Gelenken 120 Nm
Einzelbein-Freiheitsgrade (Hüfte 3, Knie 1, Knöchel 2)
Bewegungsgeschwindigkeit von 2 m/s
Technische Daten
Höhe, Breite und Tiefe (stehend)
1320 x 450 x 200 mm
Höhe, Breite und Tiefe (gefaltet)
690 x 450 x 300 mm
Gewicht (mit Batterie)
ca. 35 kg
Gesamtfreiheitsgrade (Gemeinsame Freiheit)
23
Einzelbeinige Freiheitsgrade
6
Taillenfreiheitsgrade
1
Einarmige Freiheitsgrade
5
Gelenkabtriebslager
Kreuzrollenlager in Industriequalität (hohe Präzision, hohe Belastbarkeit)
Gelenkmotor
Hochgeschwindigkeits-Innenrotor PMSM (Permanentmagnet-Synchronmotor mit geringer Trägheit – bessere Reaktionsgeschwindigkeit und Wärmeableitung)
Maximales Drehmoment des Kniegelenks
90 Nm
Maximale Armlast
ca. 2 kg
Waden- und Oberschenkellänge
0,6 m
Armspanne
ca. 0,45 m
Extra großer Gelenkbewegungsraum
• Taillengelenk: Z ±155°• Kniegelenk: 0~165°• Hüftgelenk: P ±154°, R -30~+170°, Y ±158°
Vollständige hohle elektrische Leitungsführung
Ja
Gelenk-Encoder
Dual-Encoder
Kühlsystem
Lokale Luftkühlung
Stromversorgung
13-Strang-Lithiumbatterie
Grundlegende Rechenleistung
8-Kern-Hochleistungs-CPU
Erkennungssensor
Tiefenkamera + 3D-LiDAR
Mikrofone
4-Mikrofon-Array
Lautsprecher
5 W Stereolautsprecher
Drahtlos
WiFi 6, Bluetooth 5.2
Intelligente Batterie (Schnellverschluss)
9000 mAh
Ladegerät
54 V/5 A
Manueller Controller
Ja
Akkulaufzeit
ca. 2 Stunden
Verbessertes intelligentes OTA
Ja
Der Raspberry Pi Bumper ist eine aufsteckbare Silikonabdeckung, die die Unterseite und die Kanten des Raspberry Pi 5 schützt.
Features
Einteiliger flexibler Bumper aus Silikonkautschuk
Ermöglicht einfachen Zugriff auf den Power-Button
Montagelöcher bleiben unter dem Bumper zugänglich
Downloads
Datasheet
A Beginner's Guide to AI and Edge Computing
Artificial Intelligence (AI) is now part of our daily lives. With companies developing low-cost AI-powered hardware into their products, it is now becoming a reality to purchase AI accelerator hardware at comparatively very low costs. One such hardware accelerator is the Hailo module which is fully compatible with the Raspberry Pi 5. The Raspberry Pi AI Kit is a cleverly designed hardware as it bundles an M.2-based Hailo-8L accelerator with the Raspberry Pi M.2 HAT+ to offer high speed inferencing on the Raspberry Pi 5. Using the Raspberry Pi AI Kit, you can build complex AI-based vision applications, running in real-time, such as object detection, pose estimation, instance segmentation, home automation, security, robotics, and many more neural network-based applications.
This book is an introduction to the Raspberry Pi AI Kit, and it is aimed to provide some help to readers who are new to the kit and wanting to run some simple AI-based visual models on their Raspberry Pi 5 computers. The book is not meant to cover the detailed process of model creation and compilation, which is done on an Ubuntu computer with massive disk space and 32 GB memory. Examples of pre-trained and custom object detection are given in the book.
Two fully tested and working projects are given in the book. The first project explains how a person can be detected and how an LED can be activated after the detection, and how the detection can be acknowledged by pressing an external button. The second project illustrates how a person can be detected, and how this information can be passed to a smart phone over a Wi-Fi link, as well as how the detection can be acknowledged by sending a message from the smartphone to your Raspberry Pi 5.
32 neue Projekte, praktische Beispiele und Übungen mit dem Elektor Arduino Nano MCCAB Trainingsboard
Die Elektronik und die Mikrocontrollertechnik bieten die Möglichkeit, kreativ tätig zu sein. Mit diesem Mikrocontroller-Praxiskurs besteht die Möglichkeit, eigene Arduino-Projekte zu realisieren und solche Erfolgsmomente erleben zu können. Im Idealfall funktioniert beim ersten Einschalten alles so, wie man es sich vorgestellt hat. In der Praxis läuft es dagegen selten wie erwartet. Dann braucht man Kenntnisse, um den Grund für das Nichtfunktionieren effizient suchen und finden zu können.
In diesem Buch für Fortgeschrittene steigen wir tief in die Welt der Mikrocontroller und der Arduino IDE ein, um neue Verfahren und Details kennen zu lernen, und erfolgreich noch anspruchsvollere Situationen angehen und lösen zu können.
Mit diesem Buch gibt der Autor dem Leser das nötige Rüstzeug, um eigenständig Projekte zu kreieren und auch schnell Fehler finden zu können. Anstatt nur fertige Lösungen zu bieten, erklärt er die Hintergründe, die verwendete Hardware und die eventuell benötigten Tools. Er stellt Aufgaben, bei denen der Leser seine eigene Kreativität einbringt und den Arduino-Sketch selbst schreibt.
Falls man einmal keine vernünftige Idee hat und nicht weiterkommt, gibt es natürlich zu jedem Projekt und zu jeder Aufgabe einen Lösungsvorschlag mit zugehöriger Software, der im Buch ausführlich kommentiert und erklärt wird.
Sie erfahren mit diesem Praxiskurs mehr über das Innenleben des Arduino Nano und des darauf befindlichen Mikrocontrollers. Sie lernen Hardware-Module kennen, mit denen Sie neue interessante Projekte realisieren werden. Sie beschäftigen sich mit Softwareverfahren wie z. B. "Zustandsmaschinen", durch deren Anwendung sich Aufgabenstellungen oft einfacher und übersichtlicher lösen lassen.
Die zahlreichen praktischen Projekt- und Übungs-Sketche realisieren wir wieder auf dem vom "Mikrocontroller-Praxiskurs für Arduino-Einsteiger" bekannten MCCAB Trainingsboard, das die gesamte Hardware-Peripherie und die Bedienungselemente enthält, die wir für die Ein-/Ausgabe-Operationen unserer Sketche benötigen.
Leser, die das MCCAB Trainingsboard noch nicht besitzen, können die benötigte Hardware separat erwerben, oder alternativ auch auf einem Breadboard aufbauen.
Das LILYGO T-Display-S3 Long ist ein vielseitiges Entwicklungsboard mit dem ESP32-S3R8 Dual-Core-LX7-Mikroprozessor. Es verfügt über ein kapazitives 3,4" Touch-TFT-LCD mit einer Auflösung von 180 x 640 Pixeln und bietet eine reaktionsschnelle Schnittstelle für verschiedene Anwendungen.
Dieses Board ist ideal für Entwickler, die eine kompakte und dennoch leistungsstarke Lösung für Projekte suchen, die Touch-Eingabe und drahtlose Kommunikation erfordern. Die Kompatibilität mit gängigen Programmierumgebungen sorgt für ein reibungsloses Entwicklungserlebnis.
Technische Daten
MCU
ESP32-S3R8 Dual-Core LX7 Mikroprozessor
Drahtlose Konnektivität
Wi-Fi 802.11, BLE 5 + BT Mesh
Programmierplattform
Arduino IDE, VS-Code
Flash
16 MB
PSRAM
8 MB
Bat-Spannungserkennung
IO02
Onboard-Funktionen
Boot + Reset-Taste, Batterieschalter
Anzeige
3,4" kapazitives Touch-TFT-LCD
Farbtiefe
565, 666
Auflösung
180 x 640 (RGB)
Funktionierendes Netzteil
3,3 V
Schnittstelle
QSPI
Lieferumfang
1x T-Display S3 Long
1x Stromkabel
2x STEMMA QT/Qwiic-Schnittstellenkabel (P352)
1x Female Pin (zweireihig)
Downloads
GitHub
Das LILYGO T-Panel S3 ist ein vielseitiges Entwicklungsboard, das für IoT-Anwendungen entwickelt wurde und über ein 4" IPS-LCD mit einer Auflösung von 480 x 480 verfügt.
Angetrieben durch den ESP32-S3-Mikrocontroller bietet es 2,4 GHz-WLAN und Bluetooth 5 (LE)-Konnektivität, mit 16 MB Flash-Speicher und 8 MB PSRAM. Das Board unterstützt Entwicklungsumgebungen wie Arduino, PlatformIO-IDE und MicroPython. Es verfügt insbesondere über eine kapazitive Touch-Schnittstelle, die die Interaktionsmöglichkeiten mit dem Benutzer verbessert. Zu den integrierten Funktionen gehören Boot (IO00), Reset und zwei zusätzliche Tasten, die Flexibilität für verschiedene Anwendungen bieten. Durch diese Kombination von Funktionen eignet sich das T-Panel S3 für eine Vielzahl von IoT-Projekten und Steuerungsschnittstellen für intelligente Geräte.
Technische Daten
MCU1
ESP32-S3
Flash
16 MB
PSRAM
8 MB
Drahtlose Konnektivität
2,4-GHz-WLAN + Bluetooth 5 (LE)
MCU2
ESP32-H2
Flash
4 MB
Drahtlose Konnektivität
IEEE 802.15.4 + Bluetooth 5 (LE)
Entwicklung
Arduino, PlatformIO-IDE, Micropython
Display
4,0" IPS ST7701S LCD (480 x 480)
Auflösung
480 x 480 (RGB)
Schnittstelle
SPI + RGB
Kompatibilitätsbibliothek
Arduino_ GFX, LVGL
Onboard-Funktionen
QWiiCx2 + TF-Karte + AntenneESP32 4x Taste = S3 (Boot + RST) + H2 (Boot + RST)
Transceiver-Modul
RS485
Verwendung des Buskommunikationsprotokolls
UART
Lieferumfang
1x T-Panel S3
1x Female pin (2x 8x1.27)
Downloads
GitHub
Der LuckFox Pico Ultra ist ein kompakter Single-Board-Computer (SBC) mit dem Rockchip RV1106G3-Chipsatz, der für KI-Verarbeitung, Multimedia und stromsparende Embedded-Anwendungen entwickelt wurde.
Er ist mit einer integrierten 1-TOPS-NPU ausgestattet und eignet sich daher ideal für Edge-KI-Workloads. Mit 256 MB RAM, 8 GB Onboard-eMMC-Speicher, integriertem WLAN und Unterstützung für das LuckFox PoE-Modul bietet das Board Leistung und Vielseitigkeit für eine Vielzahl von Anwendungsfällen.
Der LuckFox Pico Ultra läuft unter Linux und unterstützt eine Vielzahl von Schnittstellen – darunter MIPI CSI, RGB-LCD, GPIO, UART, SPI, I²C und USB – und bietet so eine einfache und effiziente Entwicklungsplattform für Anwendungen in den Bereichen Smart Home, Industriesteuerung und IoT.
Technische Daten
Chip
Rockchip RV1106G3
Prozessor
Cortex-A7 1,2 GHz
Neuronaler Netzwerkprozessor (NPU)
1 TOPS, unterstützt int4, int8, int16
Bildprozessor (ISP)
Max. Eingangsgeschwindigkeit 5 M @30fps
Speicher
256 MB DDR3L
WLAN + Bluetooth
2,4 GHz WiFi-6 Bluetooth 5.2/BLE
Kameraschnittstelle
MIPI CSI 2-Lane
DPI-Schnittstelle
RGB666
PoE-Schnittstelle
IEEE 802.3af PoE
Lautsprecherschnittstelle
MX1,25 mm
USB
USB 2.0 Host/Gerät
GPIO
30 GPIO Pins
Ethernet
10/100M Ethernet-Controller und eingebetteter PHY
Standardspeichermedium
eMMC (8 GB)
Lieferumfang
1x LuckFox Pico Ultra W
1x LuckFox PoE Modul
1x IPX 2,4G 2 dB Antenne
1x USB-A auf USB-C Kabel
1x Schraubensatz
Downloads
Wiki
Dieser Programmer wurde speziell zum Brennen von Bootloadern (ohne Computer) auf Arduino-kompatiblen ATmega328-Entwicklungsboards entwickelt.
Schließen Sie den Programmierer einfach an die ICSP-Schnittstelle an, um den Bootloader neu zu brennen. Es ist auch mit neuen Chips kompatibel, sofern der IC funktionsfähig ist.
Hinweis: Durch das Brennen eines Bootloaders werden alle vorherigen Chipdaten gelöscht.
Features
Arbeitsspannung: 3,1–5,3 V
Arbeitsstrom: 10 mA
Kompatibel mit Arduino Nano-basierten Boards (ATmega328)
Abmessungen: 39,6 x 15,5 x 7,8 mm
Dieser Programmer wurde speziell zum Brennen von Bootloadern (ohne Computer) auf Arduino-kompatiblen ATmega328P/ATmega328PB-Entwicklungsboards entwickelt.
Schließen Sie den Programmierer einfach an die ICSP-Schnittstelle an, um den Bootloader neu zu brennen. Es ist auch mit neuen Chips kompatibel, sofern der IC funktionsfähig ist.
Hinweis: Durch das Brennen eines Bootloaders werden alle vorherigen Chipdaten gelöscht.
Features
Arbeitsspannung: 3,1–5,3 V
Arbeitsstrom: 10 mA
Kompatibel mit Arduino Uno R3-basierten Boards (ATmega328P oder ATmega328PB)
Abmessungen: 39,6 x 15,5 x 7,8 mm
Der ThingPulse Pendrive S3 ist ein ESP32-S3-Gerät mit USB-C-Stecker, WS2812B RGB-LED und 128 MB Flash. Mit Hilfe von TinyUSB kann der ESP32-S3 vorgeben, viele USB-Geräte zu sein, wie zum Beispiel:
USB-Speicherstick
USB-Tastatur
USB-Maus
Audiogerät
Videogerät
Netzwerkgerät
Anwendungen
Als BadUSB-Gerät mit SuperWiFiDuck kann es KeyStroke-Injections durchführen
Als WiFiDisk kann es von jedem normalen Computer wie ein Speicher-Stick gemountet werden und die Dateien auf der Festplatte mit der Cloud synchronisieren
Als WiFiDongle kann er jedem Computer/Telefon ein zusätzliches WiFi-Netzwerkgerät hinzufügen
Lieferumfang
ESP32-S3 Platine mit
WS2812B RGB-LED
Kapazitive Touch-Taste (Feder)
USB-Laufwerk-Kunststoffgehäuse
Downloads
CircuitPython
LuckFox Pico Mini ist ein kompaktes Linux-Mikro-Entwicklungsboard, das auf dem Rockchip RV1103-Chip basiert und eine einfache und effiziente Entwicklungsplattform für Entwickler bietet. Es unterstützt eine Vielzahl von Schnittstellen, einschließlich MIPI CSI, GPIO, UART, SPI, I²C, USB usw., was für eine schnelle Entwicklung und Fehlerbehebung praktisch ist.
Features
Single-Core ARM Cortex-A7 32-Bit-Kern mit integriertem NEON und FPU
Eingebaute, von Rockchip selbst entwickelte NPU der 4. Generation, zeichnet sich durch hohe Rechenpräzision aus und unterstützt die Hybridquantisierung int, int8 und int16. Die Rechenleistung von int8 beträgt 0,5 TOPS und bis zu 1,0 TOPS mit int4
Integrierter, selbst entwickelter ISP3.2 der dritten Generation, unterstützt 4 Megapixel, mit mehreren Bildverbesserungs- und Korrekturalgorithmen wie HDR, WDR, mehrstufiger Rauschunterdrückung usw.
Verfügt über eine leistungsstarke Kodierungsleistung, unterstützt den intelligenten Kodierungsmodus und das adaptive Stream-Speichern je nach Szene, spart mehr als 50% Bitrate im Vergleich zum herkömmlichen CBR-Modus, sodass die Bilder von der Kamera hochauflösende Bilder mit geringerer Größe und doppelt so viel Speicherplatz bieten Leerzeichen
Die integrierte RISC-V-MCU unterstützt einen geringen Stromverbrauch und einen schnellen Start, unterstützt eine schnelle Bildaufnahme von 250 ms und lädt gleichzeitig die Al-Modellbibliothek, um die Gesichtserkennung "in einer Sekunde" zu realisieren.
Eingebauter 16-Bit-DRAM DDR2, der anspruchsvolle Speicherbandbreiten bewältigen kann
Integriert mit integriertem POR, Audio-Codec und MAC PHY
Technische Daten
Prozessor
ARM Cortex-A7, Single-Core-32-Bit-CPU, 1,2 GHz, mit NEON und FPU
NPU
Rockchip NPU der 4. Generation, unterstützt int4, int8, int16; bis zu 1,0 TOPS (int4)
ISP
ISP3.2 der dritten Generation, bis zu 4 MP-Eingang bei 30fps, HDR, WDR, Rauschunterdrückung
RAM
64 MB DDR2
Speicher
128 MB SPI NAND Flash
USB
USB 2.0-Host/Gerät über Typ-C
Kameraschnittstelle
MIPI CSI 2-spurig
GPIO-Pins
17 GPIO-Pins
Stromverbrauch
RISC-V-MCU mit geringem Stromverbrauch für schnellen Start
Abmessungen
28 x 21 mm
Downloads
Wiki
Die TOPDON TC004 Lite Wärmebildkamera verbindet Einfachheit mit fortschrittlichen Funktionen und ist damit ideal für Hobbyisten und Profis.
Mit einer Auflösung von 160 x 120 Pixeln, 1x/2x/4x Zoom und einem weiten Sichtfeld von 40° x 30° liefert sie scharfe und genaue Wärmebilder. Sie arbeitet in einem breiten Temperaturbereich (−20°C bis +550°C) und eignet sich daher für verschiedene Branchen wie HLK, Elektrotechnik und Kfz-Diagnose.
Das leichte Design, das 2,8-Zoll-Display und die 15-stündige Akkulaufzeit sorgen für Mobilität und ununterbrochenen Betrieb und machen die Kamera zu einem leistungsstarken Werkzeug für gründliche thermische Analysen.
Features
Großer Temperaturbereich von –20°C bis +550°C
IR-Fotografie
5 Farbpaletten für mehr Möglichkeiten
Stativ montierbar für eine stabile Sicht
Alarm bei hoher und niedriger Temperatur
Überwachen Sie Temperaturänderungen mit Wellenformdiagrammen
Lange Akkulaufzeit von 15 Stunden
Technische Daten
TC004
TC004 SE
TC004 Lite
Display
2,8" Farb-TFT (320 x 240 Pixel)
2,8" Farb-TFT (320 x 240 Pixel)
2,8" Farb-TFT (320 x 240 Pixel)
IR-Lichtauflösung
256 x 192 Pixel
256 x 192 Pixel
160 x 120 Pixel
Spektralbereich
8~14 μm
8~14 μm
8~14 μm
FOV
52,5° x 39,5°
56° x 42°
40° x 30°
Speicher
2 GB RAM + 16 GB TF-Karte
32 GB (eingebaut)
512 MB (eingebaut)
Messbereich
−20~350°C
−20~550°C
−20~550°C
Temperaturauflösung
0,1°C
0,1°C
0,1°C
Messmodi
Mittelpunkt, Hotspot, Kaltpunkt
Mittelpunkt, Hotspot, Kaltpunkt
Mittelpunkt, Hotspot, Kaltpunkt
Messgenauigkeit
±2°C oder ±2%
±2°C oder ±2%
±2°C oder ±2%
Bildrate
25 Hz
25 Hz
25 Hz
Brennweite
3,2 mm
3,2 mm
2,6 mm
NETD
<40 mK
<40 mK
<40 mK
Vergrößerung
1x/2x/4x (Digitalzoom)
1x/2x/4x (Digitalzoom)
1x/2x/4x (Digitalzoom)
Stativschraubenloch
Ja
Ja
Ja
Alarm bei hoher/niedriger Temperatur
Ja
Ja
Ja
LED-Licht
Ja
Ja
Nein
Videoaufnahme
Ja
Ja
Nein
Automatische Abschaltung
5 Min., 10 Min., 20 Min., AUS
5 Min., 10 Min., 20 Min., AUS
5 Min., 10 Min., 20 Min., AUS
Akku
Eingebauter 5000-mAh-Akku
Eingebauter 5300-mAh-Akku
Eingebauter 2900-mAh-Akku
Ladezeit
4 Stunden
4 Stunden
4 Stunden
Standby-Zeit
12 Stunden
16 Stunden (hohe Helligkeit)21 Stunden (geringe Helligkeit)
15 Stunden
Betriebssystem
Standalone-Nutzung/Windows-Geräte
Standalone-Nutzung/Windows-Geräte
Standalone-Nutzung
PC-basierte Analyse
Unterstützt die Bildanalyse mit dem PC
Ja
Nein
Abmessungen
240 x 70 x 90 mm
240 x 70 x 90 mm
240 x 70 x 90 mm
Gewicht
520 g
520 g
520 g
Lieferumfang
1x TOPDON TC004 Lite Wärmebildkamera
1x USB-Netzteil
4x Stecker (EU, UK, US und AU)
1x USB-Kabel
1x Aufbewahrungstasche
1x Manual
Downloads
Datasheet
Manual
M5Stamp Fly ist ein programmierbarer Open-Source-Quadcopter mit dem StampS3 als Hauptcontroller. Es integriert ein 6-Achsen-Gyroskop BMI270 und ein 3-Achsen-Magnetometer BMM150 zur Lage- und Richtungserkennung. Der Luftdrucksensor BMP280 und zwei Abstandssensoren VL53L3 ermöglichen eine präzise Höhenhaltung und Hindernisvermeidung. Der optische Durchflusssensor PMW3901MB-TXQT bietet eine Verschiebungserkennung.
Das Kit enthält einen Summer, eine Reset-Taste und WS2812 RGB LEDs für Interaktion und Statusanzeige. Es ist mit einer 300 mAh-Hochvoltbatterie und vier kernlosen Hochgeschwindigkeitsmotoren ausgestattet. Die Platine verfügt über einen INA3221AIRGVR zur Strom-/Spannungsüberwachung in Echtzeit und verfügt über zwei Grove-Anschlüsse für zusätzliche Sensoren und Peripheriegeräte.
Der Stamp Fly ist mit Debugging-Firmware vorinstalliert und kann mit einem Atom-Joystick über das ESP-NOW-Protokoll gesteuert werden. Benutzer können zwischen automatischem und manuellem Modus wählen und so Funktionen wie präzises Schweben und Flips einfach implementieren. Der Firmware-Quellcode ist Open Source, wodurch sich das Produkt für Bildung, Forschung und verschiedene Drohnenentwicklungsprojekte eignet.
Anwendungen
Bildung
Forschung
Drohnenentwicklung
DIY-Projekte
Features
M5StampS3 als Hauptcontroller
BMP280 zur Luftdruckerkennung
VL53L3-Abstandssensoren zur Höhenhaltung und Hindernisvermeidung
6-Achsen-Lagesensor
3-Achsen-Magnetometer zur Richtungserkennung
Optische Strömungserkennung zur Schwebe- und Verschiebungserkennung
Summer
300 mAh Hochvoltbatterie
Strom- und Spannungserkennung
Grove-Anschlusserweiterung
Technische Daten
M5StampS3
ESP32-S3@Xtensa LX7, 8 MB Flash, WLAN, OTG\CDC-Unterstützung
Motor
716-17600kv
Abstandssensor
VL53L3CXV0DH/1 (0x52) bei max. 3 m
Optischer Durchflusssensor
PMW3901MB-TXQT
Barometrischer Sensor
BMP280 (0x76) bei 300–1100 hPa
3-Achsen-Magnetometer
BMM150 (0x10)
6-Achsen-IMU-Sensor
BMI270
Grove
I²C+UART
Akku
300 mAh 1S Hochvolt-Lithium-Battterie
Strom-/Spannungserkennung
INA3221AIRGVR (0x40)
Summer
Eingebauter passiver Summer @ 5020
Betriebstemperatur
0-40°C
Abmessungen
81,5 x 81,5 x 31 mm
Gewicht
36,8 g
Lieferumfang
1x Stamp Fly
1x 300 mAh Hochvolt-Lithium-Batterie
Downloads
Documentation
M5Atom Joystick ist eine vielseitige programmierbare Dual-Joystick-Fernbedienung mit dem AtomS3 als Hauptsteuerung und einem STM32 für Co-Processing-Funktionen.
Es ist mit zwei 5-Wege-Joysticks mit Hallsensoren, zwei Funktionstasten und integrierten RGB-LEDs für die Mensch-Maschine-Interaktion und Statusanzeige ausgestattet.
Das Gerät verfügt über zwei Hochspannungs-Batterieladekreise. Es ist mit der Stamp Fly-Steuerungsfirmware vorinstalliert und kommuniziert mit Stamp Fly über das ESP-NOW-Protokoll. Der Firmware-Quellcode ist Open Source. Dieses Produkt eignet sich für die Drohnensteuerung, Robotersteuerung, intelligente Autos und verschiedene DIY-Projekte.
Anwendungen
Drohnensteuerung
Robotersteuerung
Intelligente Autos
DIY-Projekte
Features
STM32F030F4P6
Ausgestattet mit M5AtomS3
Kompatibel mit Atom Lite, Atom Matrix, AtomS3 Lite, AtomS3
Zwei Joysticks, zwei Tasten, Kippschalter
WS2812 RGB-LEDs
Doppelte Hochspannungs-Lithiumbatterie-Ladeschaltungen
Batterieerkennung
Technische Daten
MCU
STM32F030F4P6
RGB
WS2812C
Lade-IC
TP4067 bei 4,35 V
Batterie
300 mAh
Ladestrom
500 mA
Schaltfläche
Links-/Rechts-Taste
Summer
Eingebauter passiver Summer @ 5020
Betriebstemperatur
0-40°C
Abmessungen
84 x 60 x 31,5 mm
Gewicht
63,5 g
Lieferumfang
1x Atom JoyStick
1x 300 mAh Hochvolt-Lithium-Batterie
Downloads
Documentation
Mit dieser Erweiterungsplatine können Sie einem Raspberry Pi Pico eine RS485- und eine CAN-Schnittstelle hinzufügen.
Das Board bietet außerdem die Möglichkeit, es entweder über einen Standard-USB-C-Anschluss mit 5 V oder über eine Schraubklemme, die eine Spannung von 6 bis 12 V akzeptiert, zu betreiben. Die an der Schraubklemme anliegende Spannung wird durch einen auf der Platine integrierten Spannungswandler auf 5 V reduziert.
Features
Die Stromversorgung kann über einen USB-C-Anschluss mit 5 V oder über eine Schraubklemme erfolgen, die zwischen 6 und 12 V zieht. Im letzteren Fall reduziert ein eingebauter Spannungswandler die Spannung auf 5 V.
Um die Vielseitigkeit und den Funktionsumfang zu erhöhen, wurden die Anschlusspins des Raspberry Pi Pico nach außen geführt.
Das Erweiterungsboard bietet zusätzlich die Möglichkeit der Kommunikation über die RS485- und CAN-Schnittstellen.
Technische Daten
CAN-Schnittstelle
SPI, CAN
RS485-Schnittstelle
Seriell, RS485
Stromversorgung
5 V DC (USB-C)
Schraubklemme
6-12 V DC
Logiklevel
3,3 V
Abschlusswiderstand CAN
120 Ω (kann nach Bedarf aktiviert und deaktiviert werden)
Abschlusswiderstand RS485
120 Ω (kann nach Bedarf aktiviert und deaktiviert werden)
Das JOY-iT Armor Case BLOCK ist ein robustes Aluminiumgehäuse, das speziell für den Raspberry Pi 5 entwickelt wurde. Es bietet hervorragenden Schutz vor Hitze und Stößen und eignet sich daher für anspruchsvolle Umgebungen. Durch sein kompaktes Design benötigt es keinen zusätzlichen Platz und ermöglicht eine nahtlose Integration in bestehende Projekte.
Das Gehäuse verfügt über einen großen Kühlkörper, um die Kühleffizienz zu verbessern. Die Installation ist unkompliziert, da das Gehäuse mit vier Schrauben (im Lieferumfang enthalten) am Raspberry Pi befestigt wird.
Technische Daten
Material
CNC-gefräste Aluminiumlegierung
Kühlleistung
Leerlauf: ~39°CVolllast: ~75°C
Besonderheiten
Großer Kühlkörper, Schutz vor Stößen und Hitze bei gleichem Volumen wie ohne Gehäuse
Abmessungen (Oberseite)
69 x 56 x 15,5 mm
Abmessungen (Unterseite)
87 x 56 x 7,5 mm
Der SparkFun RP2350 Pro Micro bietet eine leistungsstarke Entwicklungsplattform, die auf dem RP2350-Mikrocontroller basiert. Dieses Board verwendet den aktualisierten Pro Micro-Formfaktor. Es umfasst einen USB-C-Anschluss, einen Qwiic-Anschluss, eine adressierbare WS2812B-RGB-LED, Boot- und Reset-Tasten, eine rücksetzbare PTC-Sicherung sowie PTH- und zinnenförmige Lötpads.
Der RP2350 ist ein einzigartiger Dual-Core-Mikrocontroller mit zwei ARM Cortex-M33-Prozessoren und zwei Hazard3 RISC-V-Prozessoren, die alle mit bis zu 150 MHz laufen! Das bedeutet jedoch nicht, dass der RP2350 ein Quad-Core-Mikrocontroller ist. Stattdessen können Benutzer auswählen, welche zwei Prozessoren stattdessen beim Booten ausgeführt werden sollen. Sie können zwei Prozessoren desselben Typs oder jeweils einen davon betreiben. Der RP2350 verfügt außerdem über 520 kB SRAM in zehn Bänken, eine Vielzahl von Peripheriegeräten, darunter zwei UARTs, zwei SPI- und zwei I²C-Controller sowie einen USB 1.1-Controller für Host- und Geräteunterstützung.
Der Pro Micro verfügt außerdem über zwei erweiterte Speicheroptionen: 16 MB externer Flash und 8 MB PSRAM, verbunden mit dem QSPI-Controller des RP2350. Der RP2350 Pro Micro arbeitet mit C/C++ unter Verwendung der Entwicklungsumgebungen Pico SDK, MicroPython und Arduino.
Features
RP2350-Mikrocontroller
8 MB PSRAM
16 MB Flash
Versorgungsspannung
USB: 5 V
RAW: 5,3 V (max.)
Pro Micro Pinbelegung
2x UART
1x SPI
10x GPIO (4 werden für UART1 und UART0 verwendet)
4x Analog
USB-C-Anschluss
USB 1.1-Host-/Geräteunterstützung
Qwiic-Connector
Buttons
Reset
Boot
LEDs
WS2812 Adressierbare RGB-LED
Rote Power-LED
Abmessungen: 33 x 17,8 mm
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
RP2350 MicroPython Firmware (Beta 04)
SparkFun Pico SDK Library
Arduino Pico Arduino Core
Datasheet (RP2350)
Datasheet (APS6404L PSRAM)
RP2350 Product Brief
Raspberry Pi RP2350 Microcontroller Documentation
Qwiic Info Page
GitHub Repository
Der PoE HAT (G) ist ein IEEE 802.3af/at-konformer PoE (Power Over Ethernet) HAT für Raspberry Pi 5. Durch die Verwendung mit einem PoE-Router oder -Switch, der den Netzwerkstandard IEEE 802.3af/at unterstützt, ist es möglich, sowohl Netzwerkverbindung als auch Stromversorgung für Ihren Raspberry Pi in nur einem Ethernet-Kabel bereitzustellen.
Features
Standard Raspberry Pi 40-Pin GPIO-Header
PoE-Fähigkeit, IEEE 802.3af/at-konform
Onboard-Original-IC-Lösung für stabilere PoE-Stromleistung
Verwendet ein nicht isoliertes Schaltnetzteil (SMPS)
Kompakt und einfach zu montieren
Technische Daten
PoE-Stromeingang
38~57 V DC in
Leistungsabgabe
GPIO-Header: 5 V/5 A (max.)
Netzwerkstandard
IEEE 802.3af/at PoE
Abmessungen
56,5 x 64,98 mm
Lieferumfang
1x PoE HAT (G)
1x 2x2 Header
1x 2x20 Header
1x Abstandshalter-Set
Downloads
Wiki
3K5 bemerkenswerte Schaltungen (1975-2024)
Dieser USB-Stick enthält über 3.500 bemerkenswerte Schaltungen aus allen Bereichen der Elektronik (Audio & Video, Spiel & Hobby, Haus & Hof, Prozessor & Controller, Messen & Testen, PC & Peripherie, Stromversorgung & Ladetechnik), die seit 1975 in der Zeitschrift Elektor veröffentlicht wurden.
Mit der Artikelsuchfunktion können Sie im Volltext nach bestimmten Inhalten suchen. Die Ergebnisse werden immer als vorformatierte PDF-Dokumente angezeigt. Mit dem Adobe Reader können Sie sowohl in den Artikeln blättern als auch einzelne Wörter und Begriffe über die integrierte Suchfunktion des Programms finden.
Bitte beachten Sie, dass zwischen 2014 und 2022 keine Summer Circuits-Ausgaben veröffentlicht wurden und diese Jahre daher nicht im Verzeichnis enthalten sind.
Technische Daten
USB
USB 3.0
Speicher
32 GB
Anschlüsse
1x USB-A1x USB-C
Dieses Bundle enthält:
Buch: Get Started with the NXP FRDM-MCXN947 Development Board (Einzelpreis: 40 €)
NXP FRDM-MCXN947 Development Board (Einzelpreis: 30 €)
Buch: Get Started with the NXP FRDM-MCXN947 Development Board
Projekte zu Konnektivität, Grafik, maschinellem Lernen, Motorsteuerung und Sensoren entwickeln
Dieses (englischsprachige) Buch behandelt die Verwendung des FRDM-MCXN947 Development Boards, entwickelt von NXP Semiconductors. Es integriert den Dual Arm Cortex-M33, der mit bis zu 150 MHz arbeitet. Ideal für industrielle, IoT- und maschinelles Lernen-Anwendungen. Es verfügt über Hi-Speed USB, CAN 2.0, I³C und 10/100 Ethernet. Das Board beinhaltet einen integrierten MCU-Link-Debugger, FlexI/O zur Steuerung von LCDs und Dual-Bank-Flash für Lese-und-Schreib-Operationen, mit Unterstützung für große externe serielle Speicherkonfigurationen.
Eine der wichtigen Funktionen des Entwicklungsboards ist die integrierte eIQ Neutron Neural Processing Unit (NPU), die es den Nutzern ermöglicht, AI-basierte Projekte zu entwickeln. Das Entwicklungsboard unterstützt auch Arduino Uno-Header-Pins, was es mit vielen Arduino-Shields kompatibel macht, sowie einen mikroBUS-Anschluss für MikroElektronika Click Boards und einen Pmod-Anschluss.
Ein weiterer Vorteil des FRDM-MCXN947 Development Boards ist, dass es mehrere integrierte Debug-Probes enthält, die es Programmierern ermöglichen, ihre Programme direkt mit dem MCU zu debuggen. Mit Hilfe des Debuggers können Programmierer Schritt für Schritt durch ein Programm gehen, Breakpoints setzen, Variablen ansehen und ändern, und vieles mehr.
Im Buch wurden viele funktionierende und getestete Projekte mit der beliebten MCUXpresso IDE und dem SDK unter Verwendung verschiedener Sensoren und Aktoren entwickelt. Auch die Verwendung der populären CMSIS-DSP-Bibliothek wird anhand mehrerer häufig genutzter Matrixoperationen erklärt.
Die im Buch bereitgestellten Projekte können ohne Änderungen in vielen Anwendungen eingesetzt werden. Alternativ können die Leser ihre eigenen Projekte auf den im Buch vorgestellten Projekten aufbauen, während sie ihre eigenen Projekte entwickeln.
NXP FRDM-MCXN947 Development Board
TDas FRDM-MCXN947 ist ein kompaktes und vielseitiges Entwicklungsboard, das für das Rapid Prototyping mit MCX N94- und N54-Mikrocontrollern konzipiert wurde. Es verfügt über Industriestandard-Header für den einfachen Zugang zu den I/Os der MCU, integrierte serielle Schnittstellen nach offenem Standard, externen Flash-Speicher und einen Onboard-MCU-Link-Debugger.
Technische Daten
Mikrocontroller
MCX-N947 Dual Arm Cortex-M33-Kerne mit jeweils 150 MHz und optimierter Leistungseffizienz, bis zu 2 MB Dual-Bank-Flash mit optionalem Full-ECC-RAM, externer Flash
Beschleuniger: Neural Processing Unit, PowerQuad, Smart DMA usw.
Speichererweiterung
*DNP MicroSD-Kartensteckplatz
Konnektivität
Ethernet Phy und Connector
HS USB-C-Anschlüsse
SPI/I²C/UART-Anschluss (PMOD/mikroBUS, DNP)
WiFi-Anschluss (PMOD/mikroBUS, DNP)
CAN-FD-Transceiver
Debuggen
Integrierter MCU-Link-Debugger mit CMSIS-DAP
JTAG/SWD-Anschluss
Sensor
P3T1755 I³C/I²C-Temperatursensor, Touchpad
Erweiterungsoptionen
Arduino-Header (mit FRDM-Erweiterungszeilen)
FRDM-Header
FlexIO/LCD-Header
SmartDMA/Kamera-Header
Pmod *DNP
mikroBUS
Benutzeroberfläche
RGB-Benutzer-LED sowie Reset-, ISP- und Wakeup-Tasten
Lieferumfang
1x FRDM-MCXN947 Development Board
1x USB-C Kabel
1x Quick Start Guide
Downloads
Datasheet
Block diagram
Bauen Sie Ihre perfekte Wetterstation oder forschen Sie zusammen mit der ganzen Welt an Umweltdaten. Mit vielen praktischen Projekten für Arduino, Raspberry Pi, NodeMCU, ESP32 und weiteren Developmentboards.
Wetterstationen erfreuen sich seit Jahrzehnten großer Beliebtheit. Ob in aktuellen oder längst eingestellten Elektronik-Magazinen – regelmäßig finden sich Beiträge zum Eigenbau einer Wetterstation. Im Laufe der Jahre wurden diese Systeme immer ausgefeilter und können heute nahtlos in das Smart Home integriert werden. Allerdings erfordert dies oft die Bindung an einen (teuren) Markenhersteller, der sämtliche Komponenten abdeckt.
Mit Ihrer eigenen Wetterstation können Sie jedoch mühelos mithalten – und sogar Messwerte erfassen, die kommerzielle Geräte nicht bieten. Dabei kommt der Spaß nicht zu kurz: Sie erweitern spielerisch Ihr Wissen über Elektronik, moderne Mikrocontroller-Developmentboards und Programmiersprachen. Schon für weniger als zehn Euro können Sie erste Umweltdaten erfassen und Ihr System Schritt für Schritt mit wachsendem Interesse weiter ausbauen.
Aus dem Inhalt:
Wind und Wetter auf der Spur
Wetterdisplay mit OpenWeatherMap und Vakuum-Fluoreszenzanzeige
Flüchtige organische Verbindungen in der Atemluft
Mit MQ-Sensoren arbeiten: Kohlenmonoxid messen – geruchlos aber extrem giftig
CO2-Ampel mit ThingSpeak-IoT-Anbindung
Ein Gießautomat für Ihre Pflanzen
Gutes Raumklima: Temperatur und Luftfeuchtigkeit sind wichtige Kriterien
Schickes Thermometer mit alter Röhrentechnik
Nostalgisches Wetterhäuschen für die ganze Familie
Luftdruck und Temperatur genau messen
Sonnenbrand-Warngerät
DIY-Sensor für die Sonnenscheindauer
Das Smartphone zeigt’s an: Nebel oder klare Sicht?
Erdbeben erkennen
Pegelstände von Gewässern und Behältern
pH-Wert von Gewässern bestimmen
Radioaktive Strahlung erkennen
Mit GPS wissen Sie weltweit, wo ihr Sensor ist
Logdateien mit Zeitstempel auf SD-Karten speichern
LoRaWAN, The Things Network und ThingSpeak
LoRaWAN-Gateway für TTN betreiben
Mega-Display mit Wettervorhersage
Der Milk-V Duo 256M ist eine ultrakompakte Embedded-Entwicklungsplattform basierend auf dem SG2002-Chip. Es kann Linux und RTOS ausführen und bietet eine zuverlässige, kostengünstige und leistungsstarke Plattform für Profis, industrielle ODMs, AIoT-Enthusiasten, Heimwerker und Entwickler.
Dieses Board ist eine aktualisierte Version von Duo mit einer Speichererweiterung auf 256 TMB und eignet sich für Anwendungen, die größere Speicherkapazitäten erfordern. Der SG2002 erhöht die Rechenleistung auf 1,0 TOPS @ INT8. Es ermöglicht den nahtlosen Wechsel zwischen RISC-V/ARM-Architekturen und unterstützt den gleichzeitigen Betrieb dualer Systeme. Darüber hinaus umfasst es eine Reihe umfangreicher GPIO-Schnittstellen wie SPI und UART, die für eine breite Palette von Hardwareentwicklungen im Bereich intelligenter Edge-Überwachung geeignet sind, darunter IP-Kameras, intelligente Türspionschlösser, visuelle Türklingeln und mehr.
SG2002 ist ein leistungsstarker Chip mit geringem Stromverbrauch, der für verschiedene Produktbereiche wie intelligente IP-Überwachungskameras, intelligente Türschlösser, visuelle Türklingeln und Heimintelligenz entwickelt wurde. Es integriert H.264-Videokomprimierung und -Dekodierung, H.265-Videokomprimierungskodierung und ISP-Funktionen. Es unterstützt mehrere Bildverbesserungs- und Korrekturalgorithmen wie HDR Wide Dynamic Range, 3D-Rauschunterdrückung, Antibeschlag und Objektivverzerrungskorrektur und bietet Kunden eine professionelle Videobildqualität.
Der Chip enthält außerdem eine selbst entwickelte TPU, die 1,0 TOPS Rechenleistung bei 8-Bit-Integer-Operationen liefert. Die speziell entwickelte TPU-Planungs-Engine sorgt effizient für einen Datenfluss mit hoher Bandbreite für alle Kerne der Tensor-Verarbeitungseinheit. Darüber hinaus bietet es Benutzern einen leistungsstarken Deep-Learning-Modell-Compiler und ein Software-SDK-Entwicklungskit. Führende Deep-Learning-Frameworks wie Caffe und Tensorflow können problemlos auf die Plattform portiert werden. Darüber hinaus umfasst es Sicherheitsstart, sichere Updates und Verschlüsselung und bietet eine Reihe von Sicherheitslösungen von der Entwicklung über die Massenproduktion bis hin zu Produktanwendungen.
Der Chip integriert ein 8-Bit-MCU-Subsystem und ersetzt die typische externe MCU, um Kosteneinsparungs- und Energieeffizienzziele zu erreichen.
Technische Daten
SoC
SG2002
RISC-V CPU
C906 @ 1 Ghz + C906 @ 700 MHz
Arm CPU
1x Cortex-A53 @ 1 GHz
MCU
8051 @ 6 KB SRAM
Speicher
256 MB SIP-DRAM
TPU
1,0 TOPS @ INT8
Speicher
1x microSD-Anschluss oder 1x SD NAND an Bord
USB
1x USB-C für Strom und Daten, USB-Pads verfügbar
CSI
1x 16P FPC-Anschluss (MIPI CSI 2-spurig)
Sensorunterstützung
5 M bei 30 fps
Ethernet
100 Mbit/s Ethernet mit PHY
Audio
Über GPIO-Pads
GPIO
Bis zu 26x GPIO-Pads
Stromversorgung
5 V/1 A
OS-Unterstützung
Linux, RTOS
Abmessungen
21 x 51 mm
Downloads
Documentation
GitHub