Diese Version des Micro-OLED-Breakout hat exakt die Größe seines nicht-Qwiic-kompatiblen Geschwisters, mit einem 64 Pixel breiten und 48 Pixel hohen Bildschirm und einer Größe von 0,66". Es wurde aber zusätzlich mit zwei Qwiic-Anschlüssen ausgestattet und ist damit ideal für den I2C-Betrieb. Außerdem haben wir zwei Montagelöcher und eine praktische Qwiic-Kabelhalterung in eine abnehmbare Lasche auf der Platine integriert, die sich dank einer v-förmigen Kante leicht entfernen lässt. Wir haben sogar darauf geachtet, einen I2C-Pull-Up-Jumper und einen ADDR-Jumper auf der Rückseite des Boards zu integrieren, falls Sie also Ihre eigenen I2C-Pull-Ups haben oder die I2C-Adresse des Boards ändern müssen!
Features
Qwiic-Connector Enabled
Betriebsspannung: 3,3V
Betriebsstrom: 10mA (20mA max)
Bildschirmgröße: 64x48 Pixel (0,66" Querschnitt)
Monochrom Blau-auf-Schwarz
I2C-Schnittstelle
Der Qwiic Mux verfügt außerdem über acht eigene konfigurierbare Adressen, wodurch bis zu 64 I2C-Busse an einem Anschluss möglich sind. Um den Einsatz dieses Multiplexers noch einfacher zu machen, erfolgt die gesamte Kommunikation ausschließlich über I2C, unter Verwendung unseres praktischen Qwiic-Systems.
Der Qwiic Mux erlaubt es auch, die letzten drei Bits des Adressbytes zu ändern, so dass acht per Jumper wählbare Adressen zur Verfügung stehen, falls Sie mehr als einen Qwiic Mux Breakout an denselben I2C-Port anschließen möchten.
Die Adresse kann durch Lötzinn an jedem der drei ADR-Jumper geändert werden. Jedes SparkFun Qwiic Mux Breakout arbeitet zwischen 1,65 V und 5,5 V und ist damit ideal für alle von uns produzierten Qwiic-Boards.
Das Sparkfun Qwiic GPIO ist ein I²C-Gerät, das auf dem TCA9534 I/O Expander IC von Texas Instruments basiert. Das Board fügt acht IO-Pins hinzu, die Sie wie jeden anderen digitalen Pin an Ihrem Controller lesen und schreiben können. Um die Details der I²C-Schnittstelle kümmert sich eine Arduino-Bibliothek, so dass Sie ähnliche Funktionen wie pinMode und digitalWrite von Arduino aufrufen können, so dass Sie sich auf Ihre Kreation konzentrieren können!
Die Pins des TCA9534 sind auf einfach zu bedienende Latch-Klemmen aufgeteilt; schrauben Sie nie wieder einen Draht an! Die Klemmen sind relativ geräumig, so dass Sie mehrere Drähte in eine Masse- oder Stromklemme einrasten lassen können. Mit drei anpassbaren Adress-Jumpern können Sie bis zu acht Qwiic-GPIO-Karten an einen einzigen Bus anschließen und so bis zu 64 zusätzliche GPIO-Pins nutzen! Die Voreinstellung für I²C ist 0x27 und kann über die Jumper auf der Rückseite der Karte geändert werden.
Features
Acht konfigurierbare GPIO-Pins verfügbar
I2C Adresse: 0x27 (Standard)
Hardware-Adresspins ermöglichen bis zu acht Karten an einem Bus
Register zur Invertierung der Eingangspolarität
Steuern Sie jeden I/O-Pin einzeln oder alle auf einmal
Open-Drain Active-Low Interrupt Ausgang
2 x Qwiic-Stecker
Abmessungen: 60,96 mm x 38,10 mm
Um die Verwendung dieses Breakouts noch einfacher zu machen, erfolgt die gesamte Kommunikation ausschließlich über I2C, unter Verwendung unseres praktischen Qwiic-Systems. Dennoch haben wir Pins im Abstand von 0,1" herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Der CCS811 ist ein äußerst beliebter Sensor, der Messwerte für äquivalentes CO2 (oder eCO2) in Teilen pro Million (PPM) und gesamte flüchtige organische Verbindungen in Teilen pro Milliarde (PPB) liefert. Der CCS811 verfügt außerdem über eine Funktion, mit der er seine Messwerte feinabstimmen kann, wenn er Zugriff auf die aktuelle Luftfeuchtigkeit und Temperatur hat.
Glücklicherweise liefert der BME280 die Luftfeuchtigkeit, die Temperatur und den barometrischen Druck! So können die Sensoren zusammenarbeiten und uns genauere Messwerte liefern, als sie es alleine könnten. Wir haben es auch einfach gemacht, mit ihnen über I2C zu kommunizieren.
Funktionen
Qwiic-Connector Enabled
Betriebsspannung: 3,3 V
Messung der gesamten flüchtigen organischen Verbindungen (TVOC) von 0 bis 1.187 Teilen pro Milliarde
eCO2-Messung von 400 bis 8.192 Teilen pro Million
Temperaturbereich: -40C bis 85C
Feuchtigkeitsbereich: 0--100% RH, = -3 % von 20--80%
Druckbereich: 30.000Pa bis 110.000Pa, relative Genauigkeit von 12Pa, absolute Genauigkeit von 100Pa
Höhenbereich: 0 bis 30.000 Fuß (9,2 km), relative Genauigkeit von 3,3 Fuß (1 m) auf Meereshöhe, 6,6 (2 m) bei 30.000 Fuß
Der SparkFun DataLogger IoT (9DoF) ist ein Datenlogger, der vorprogrammiert ist, um automatisch IMU, GPS und verschiedene Druck-, Feuchtigkeits- und Entfernungssensoren aufzuzeichnen. Alles ohne eine einzige Zeile Code zu schreiben! Der DataLogger erkennt, konfiguriert und protokolliert Qwiic-Sensoren automatisch. Er wurde speziell für Benutzer entwickelt, die einfach nur viele Daten in einer CSV- oder JSON-Datei erfassen und sich dann wieder ihrem größeren Projekt widmen möchten. Speichern Sie die Daten auf einer microSD-Karte oder senden Sie sie drahtlos an Ihren bevorzugten Internet of Things (IoT)-Dienst!
Jeder DataLogger IoT verfügt über eine IMU für die integrierte Aufzeichnung eines dreiachsigen Beschleunigungsmessers, Kreisels und Magnetometers. Während der ursprüngliche 9DOF Razor die alte MPU-9250 verwendete, nutzt der DataLogger IoT die ISM330DHCX von STMicroelectronics und MMC5983MA von MEMSIC. Schalten Sie den DataLogger IoT einfach ein, konfigurieren Sie das Board für die Aufzeichnung von Messwerten aus unterstützten Geräten und beginnen Sie mit der Aufzeichnung! Die Daten können mit einem Zeitstempel versehen werden, wenn die Zeit mit NTP, GNSS oder RTC synchronisiert wird.
Der DataLogger IoT ist über eine einfach zu bedienende serielle Schnittstelle in hohem Maße konfigurierbar. Schließen Sie einfach ein USB-C-Kabel an und öffnen Sie ein serielles Terminal mit 115200 Baud. Die Logging-Ausgabe wird automatisch sowohl auf das Terminal als auch auf die microSD-Karte gestreamt. Durch Drücken einer beliebigen Taste im Terminalfenster wird das Konfigurationsmenü geöffnet.
Der DataLogger IoT (9DoF) scannt, erkennt, konfiguriert und protokolliert automatisch verschiedene Qwiic-Sensoren, die an das Board angeschlossen sind (kein Löten, keine Programmierung!).
Technische Daten
ESP32-WROOM-32E Modul
Integrierter 802.11b/g/n WLAN 2,4 GHz-Transceiver
Konfigurierbar über CH340C
Betriebsspannungsbereich
3,3 V bis 6,0 V (über VIN)
5 V mit USB (über 5 V oder USB-C)
3,6 V bis 4,2 V mit LiPo-Akku (über BATT oder 2-Pin JST)
Eingebautes Einzelzellen-LiPo-Ladegerät MCP73831
Mindestens 500 mA Ladestrom
3,3 V (über 3V3)
MAX17048 LiPo-Ladeanzeige
Anschlüsse
1x USB-C
1x JST-Stecker für LiPo-Akku
2x Qwiic-fähiges I²C
1x microSD-Sockel
Unterstützung für 4-Bit-SDIO- und microSD-Karten, die mit FAT32 formatiert sind
9-Achsen-IMU
Beschleunigungsmesser & Gyro (ISM330DHCX)
Magnetometer (MMC5983MA)
LEDs
Ladung (CHG)
Status (STAT)
WS2812-2020 adressierbare RGB
Jumper
IMU-Unterbrechung
Magnetometer-Unterbrechung
RGB-LED
Status-LED
Lade-LED
I²C-Pull-up-Widerstände
USB-Shield
Tasten
Reset
Boot
Abmessungen: 4,2 x 5,1 cm
Gewicht: 10,7 g
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
CH340 Drivers
Firmware
GitHub Hardware Repo
Das Power Delivery Board verwendet einen eigenständigen Controller, um mit den Stromadaptern zu verhandeln und auf eine höhere Spannung als nur 5V umzuschalten. Dies verwendet den gleichen Stromadapter für verschiedene Projekte, anstatt sich auf mehrere Stromadapter zu verlassen, die unterschiedliche Ausgangsspannungen bereitstellen. Das Board kann als Teil des Qwiic-Connect-Systems von SparkFun geliefert werden, so dass Sie keine Lötarbeiten durchführen müssen, um herauszufinden, wie die Dinge ausgerichtet sind.
Das SparkFun Power Delivery Board nutzt die Vorteile des Power-Delivery-Standards mit einem Standalone-Controller von STMicroelectronics, dem STUSB4500. Der STUSB4500 ist ein USB-Power-Delivery-Controller, der Senkengeräte anspricht. Er implementiert einen proprietären Algorithmus zur Aushandlung eines Stromversorgungsvertrags mit einer Quelle (d. h. einer Steckdose oder einem Netzteil), ohne dass ein externer Mikrocontroller erforderlich ist. Sie benötigen jedoch einen Mikrocontroller, um die Karte zu konfigurieren. PDO-Profile werden in einem integrierten nichtflüchtigen Speicher konfiguriert. Der Controller übernimmt die ganze Arbeit der Leistungsaushandlung und bietet eine einfache Möglichkeit zur Konfiguration über I2C.
Um die Karte zu konfigurieren, benötigen Sie einen I2C-Bus. Das Qwiic-System macht es einfach, das Power Delivery Board mit einem Mikrocontroller zu verbinden. Je nach Anwendung können Sie den I2C-Bus auch über die durchkontaktierten SDA- und SCL-Löcher anschließen.
Merkmale
Eingangs- und Ausgangsspannungsbereich von 5-20V
Ausgangsstrom bis zu 5A
Drei konfigurierbare Stromabgabeprofile
Automatischer Type-C™- und USB-PD-Sink-Controller
Zertifizierter USB Type-C™ rev 1.2 und USB PD rev 2.0 (TID #1000133)
Integrierte VBUS-Spannungsüberwachung
Integrierte VBUS-Switch-Gate-Treiber (PMOS)
Merkmale
Plug & Play (kein Treiber erforderlich), kompatibel mit Windows 10/8/7, Mac, Linux und Android, die OTG unterstützen.
Sprachaufnahmegerät, Fernfeld-Sprachaufnahme bis zu 5 m und unterstützt 360°-Aufnahmemuster
Akustische Algorithmen implementiert:
DOA (Ankunftsrichtung),
AEC (Automatische Echounterdrückung),
AGC (Automatische Verstärkungsregelung),
NS (Rauschunterdrückung)
Integrierte Audiobuchse, die das Anschließen von Kopfhörern oder Lautsprechern ermöglicht (Lautsprecher nicht im Lieferumfang enthalten)
Anwendungen
Sprachaufnahmegerät
Heim-/Büroautomatisierungsgerät
Sprachassistent im Auto
Gesundheitsgerät
Sprachinteraktionsroboter
Andere Anwendungen
Technische Spezifikationen
XVF-3000 von XMOS
4 Hochleistungs-Digitalmikrofone Unterstützt Fernfeld-Sprachaufzeichnung
Sprachalgorithmen auf dem Chip
12 programmierbare RGB-LED-Anzeigen
Mikrofone: MEMS MSM261D4030H1CPM
Empfindlichkeit: -26 dBFS (omnidirektional)
Akustischer Überlastungspunkt: 120 dB SPL
SNR: 63 dB
Stromversorgung: 5 V DC über Micro-USB oder Erweiterungs-Header
Abmessungen: 77 mm (Durchmesser)
3,5-mm-Audio-Klinkenausgangsbuchse
Das SparkFun Thing Plus Matter ist das erste leicht zugängliche Board seiner Art, das Matter und das Qwiic-Ökosystem von SparkFun für die schnelle Entwicklung und das Prototyping von Matter-basierten IoT-Geräten kombiniert. Das drahtlose MGM240P-Modul von Silicon Labs bietet sichere Konnektivität sowohl für 802.15.4 mit Mesh-Kommunikation (Thread) als auch für Bluetooth Low Energy 5.3-Protokolle. Das Modul ist bereit für die Integration in das IoT-Protokoll Matter von Silicon Labs für die Heimautomatisierung .
Was ist Matter? Einfach ausgedrückt ermöglicht Matter einen zuverlässigen Betrieb zwischen Smart-Home-Geräten und IoT-Plattformen ohne Internetverbindung, sogar von verschiedenen Anbietern. Auf diese Weise ist Matter in der Lage, zwischen großen IoT-Ökosystemen zu kommunizieren, um ein einziges drahtloses Protokoll zu erstellen, das einfach, zuverlässig und sicher zu verwenden ist.
Das Thing Plus Matter (MGM240P) enthält Qwiic- und LiPo-Batterieanschlüsse und mehrere GPIO-Pins, die sich per Software vollständig multiplexen lassen. Das Board verfügt über das Einzelzellen-LiPo-Ladegerät MCP73831 sowie die Ladezustandsanzeige MAX17048 zum Laden und Überwachen einer angeschlossenen Batterie. Außerdem ist ein µSD-Kartensteckplatz für externe Speicheranforderungen integriert
Das drahtlose MGM240P-Modul basiert auf dem drahtlosen EFR32MG24-SoC mit einem 32-Bit-ARM-Cortext-M33-Core-Prozessor mit 39 MHz, 1536 KB Flash-Speicher und 256 KB RAM. Das MGM240P arbeitet mit gängigen 802.15.4-Wireless-Protokollen (Matter, ZigBee und OpenThread) sowie Bluetooth Low Energy 5.3. Das MGM240P unterstützt Secure Vault von Silicon Labs für Thread-Anwendungen.
Technische Daten
MGM240P Wireless-Modul
Basierend auf dem EFR32MG24 Wireless SoC
32-Bit-ARM-M33-Core-Prozessor (@ 39 MHz)
1536 KB Flash-Speicher
256 KB Arbeitsspeicher
Unterstützt mehrere 802.15.4-Wireless-Protokolle (ZigBee und OpenThread)
Bluetooth Low Energy 5.3
Matter-ready
Secure Vault-Unterstützung
Eingebaute Antenne
Thing Plus Formfaktor (federkompatibel):
Abmessungen: 5,8 x 2,3 cm (2,30 x 0,9")
2 Befestigungslöcher:
4-40 Schrauben kompatibel
21 GPIO-PTH-Ausbrüche
Alle Stifte haben vollständige Multiplexing-Fähigkeit durch Software
SPI-, I²C- und UART-Schnittstellen werden standardmäßig auf beschriftete Pins abgebildet
13 GPIO (6 als analog gekennzeichnet, 7 als GPIO gekennzeichnet)
Alle funktionieren entweder als GPIO oder analog
Eingebauter Digital-Analog-Wandler (DAC)
USB-C-Anschluss
2-poliger JST-LiPo-Akkuanschluss für einen LiPo-Akku (nicht im Lieferumfang enthalten)
4-poliger JST-Qwiic-Anschluss
MC73831 Einzelzellen-LiPo-Ladegerät
Konfigurierbare Laderate (500 mA Standard, 100 mA alternativ)
MAX17048 Einzelzellen-LiPo-Tankanzeige
µSD-Kartensteckplatz
Geringer Stromverbrauch (15 µA, wenn sich MGM240P im Energiesparmodus befindet)
LEDs:
PWR – Rote Power-LED
CHG – Gelbe Batterieladestatus-LED
STAT – Blaue Status-LED
Reset-Taste:
Physischer Taster
Das Reset-Signal kann an A0 gebunden werden, um die Verwendung als Peripheriegerät zu ermöglichen.
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo
Merkmale
Betriebsspannung: 3,3 V - 5 V
Eingangsstrom: 100 mA
Nennlast: 5 A bei 250 V Wechselstrom, 5 A bei 30 V Gleichstrom
Kontaktwiderstand: 50 mΩ @ 6 VDC 1 A
Isolationswiderstand: 100 MΩ 10 ms max.
Betriebszeit: 10 ms, max.
Freigabezeit: 5 ms max.
Eingangsschnittstelle: Digital
Abmessungen: 42 mm x 24 mm x 18,5 mm
Inbegriffen
1 x Grove-Relais
1 x Benutzerhandbuch
Downloads
Grove-Relais-Schaltpläne
Der SOLDERED CONNECT Programmer vereinfacht die Programmierung von Boards basierend auf ESP8266- und ESP32-Mikrocontrollern enorm. Er enthält die gesamte notwendige Elektronik und Logik. Die Programmierung erfolgt durch einfaches Anschließen eines USB-Kabels an den CONNECT Programmer und dessen Verbindung mit dem Programmier-Header. Die integrierte Schaltung übernimmt Timing und Signalsequenzierung automatisch und versetzt den ESP-Mikrocontroller ohne manuelles Eingreifen in den Bootloader-Modus.
Features
IC: CH340
Pin-Layout: GPIO0, RESET, RX, TX, 3V3, GND
LEDs: RX, TX, Power
Schnittstelle: USB-C
Abmessungen: 38 x 22 mm
Downloads
Datasheet
GitHub
Das SparkFun MicroMod mikroBUS Carrier Board nutzt die Vorteile der MicroMod-, Qwiic- und mikroBUS-Ökosysteme und ermöglicht es Ihnen, schnell Prototypen zu erstellen, indem Sie sie kombinieren. Der MicroMod M.2-Anschluss und der mikroBUS 8-Pin-Header bieten Benutzern die Freiheit, mit jedem Prozessorboard im MicroMod-Ökosystem und jedem Click-Board im mikroBUS-Ökosystem zu experimentieren. Dieses Board verfügt außerdem über zwei Qwiic-Anschlüsse, um Hunderte von Qwiic-Sensoren und Zubehör nahtlos in Ihr Projekt zu integrieren.
Der mikroBUS-Anschluss besteht aus einem Paar weiblicher 8-Pin-Header mit einer standardisierten Pin-Konfiguration. Die Pins bestehen aus drei Gruppen von Kommunikationspins (SPI, UART und I²C), sechs zusätzlichen Pins (PWM, Interrupt, Analogeingang, Reset und Chip-Select) und zwei Stromgruppen (3,3 V und 5 V).
Während ein moderner USB-C-Anschluss das Programmieren erleichtert, ist das Carrier Board auch mit einem MCP73831 Single-Cell Lithium-Ionen-/Lithium-Polymer-Lade-IC ausgestattet, mit dem Sie einen angeschlossenen LiPo-Akku mit einer Zelle aufladen können. Das Lade-IC erhält Strom über die USB-Verbindung und kann bis zu 450 mA bereitstellen, um einen angeschlossenen Akku aufzuladen.
Features
M.2 MicroMod (Prozessorboard) Anschluss
USB-C-Anschluss
3,3 V 1 A Spannungsregler
2x Qwiic-Anschlüsse
mikroBUS-Anschluss
Boot/Reset-Tasten
Ladekreis
JTAG/SWD PTH-Pins
Downloads
Schaltplan
Eagle-Dateien
Platinenabmessungen
Anschlussanleitung
Erste Schritte mit Necto Studio
mikroBUS-Standard
Qwiic Info-Seite
GitHub-Hardware-Repo
Merkmale
Integrierte Vergleichsstellenkompensation
Unterstützte Typen (bezeichnet durch NIST ITS-90): Typ K, J, T, N, S, E, B und R Vier programmierbare Temperaturalarmausgänge:
Überwachen Sie Hot- oder Cold-Junction
Temperaturen
Erkennen Sie steigende oder fallende Temperaturen
Bis zu 255 °C oder programmierbare Hysterese
Programmierbarer digitaler Filter für Temperatur
Geringer Strom
Abmessungen: 20 mm x 40 mm x 18 mm
Gewicht: 18g
Anwendung
Petrochemisches Wärmemanagement
Handmessgeräte
Wärmemanagement für Industrieanlagen
Öfen
Wärmeüberwachung für Industriemotoren
Temperaturerkennungsregale
Downloads
Eagle-Dateien
Github-Bibliothek
Datenblatt
Dieses Kameramodul verwendet einen SmartSens SC3336-Sensorchip mit 3 MP-Auflösung. Es zeichnet sich durch hohe Empfindlichkeit, hohes SNR und Leistung bei schwachem Licht aus und ermöglicht einen feineren und lebendigeren Nachtsicht-Bildeffekt und kann sich besser an Änderungen des Umgebungslichts anpassen. Außerdem ist es mit Platinen der Luckfox Pico-Serie kompatibel.
Spezifikationen
Sensor
Sensor: SC3336
CMOS-Größe: 1/2,8"
Pixel: 3 MP
Statische Auflösung: 2304x1296
Maximale Videobildrate: 30fps
Verschluss: Rollladen
Linse
Brennweite: 3,95 mm
Blende: F2.0
Sichtfeld: 98,3° (diagonal)
Verzerrung: <33 %
Fokussierung: Manueller Fokus
Downloads
Wiki
Das MLX90640 SparkFun IR Array Breakout verfügt über ein 32×24-Array von Thermosäulensensoren, die im Wesentlichen eine Wärmebildkamera mit niedriger Auflösung erzeugen. Mit diesem Breakout können Sie Oberflächentemperaturen aus einiger Entfernung mit einer Genauigkeit von ±1,5 °C (bester Fall) beobachten. Diese Platine kommuniziert über I²C mithilfe des von Sparkfun entwickelten Qwiic-Systems, was die Bedienung des Breakouts erleichtert. Es gibt jedoch immer noch Pins im Abstand von 0,1 Zoll, falls Sie lieber ein Steckbrett verwenden möchten.
Das SparkFun Qwiic-Verbindungssystem ist ein Ökosystem aus I²C-Sensoren, Aktoren, Abschirmungen und Kabeln, das das Prototyping beschleunigt und Ihnen hilft, Fehler zu vermeiden. Alle Qwiic-fähigen Boards verwenden einen gemeinsamen 4-poligen JST-Anschluss mit 1 mm Abstand. Dies reduziert den erforderlichen Platzbedarf auf der Leiterplatte und polarisierte Anschlüsse helfen Ihnen, alles richtig anzuschließen. Dieses spezielle IR-Array-Breakout bietet ein Sichtfeld von 110°×75° mit einem Temperaturmessbereich von -40 °C ~ 300 °C. Das MLX90640 IR-Array hat Pull-Up-Widerstände, die an den I²C-Bus angeschlossen sind; beide können entfernt werden, indem die Leiterbahnen an den entsprechenden Jumpern auf der Rückseite der Platine durchtrennt werden. Bitte beachten Sie, dass das MLX90640 komplexe Berechnungen durch die Host-Plattform erfordert, sodass ein normaler Arduino Uno (oder ein gleichwertiges Gerät) nicht über genügend RAM oder Flash verfügt, um die komplexen Berechnungen durchzuführen, die erforderlich sind, um die Rohpixeldaten in Temperaturdaten umzuwandeln. Sie benötigen einen Mikrocontroller mit 20.000 Byte oder mehr RAM.
Waveshare DVK600 ist eine FPGA CPLD-Hauptplatine mit Erweiterungsanschlüssen zum Anschluss der FPGA CPLD-Hauptplatine und Zubehörplatinen. DVK600 bietet eine einfache Möglichkeit, ein FPGA CPLD-Entwicklungssystem einzurichten.
Merkmale
FPGA CPLD-Core-Board-Anschluss: zum einfachen Verbinden von Core-Boards, die einen FPGA CPLD-Chip integriert haben
8I/Os_1 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
8I/Os_2-Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
16I/Os_1 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
16I/Os_2 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
32I/Os_1 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
32I/Os_2-Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
32I/Os_3 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
SDRAM-Schnittstelle
zum Anschluss der SDRAM-Zubehörkarte
funktioniert auch als FPGA CPLD Pins Erweiterungsstecker
LCD-Interface , zum Anschluss von LCD22, LCD12864, LCD1602
ONE-WIRE-Schnittstelle: Einfache Verbindung mit ONE-WIRE-Geräten (TO-92-Gehäuse) wie Temperatursensor (DS18B20), elektronischer Registrierungsnummer (DS2401) usw.
5 V DC-Buchse
Joystick: fünf Positionen
Summer
Potentiometer: zur Einstellung der Hintergrundbeleuchtung von LCD22 oder zur Kontrasteinstellung von LCD12864 und LCD1602
Stromschalter
Summer-Jumper
ONE-WIRE-Jumper
Joystick-Jumper
Downloads
Schema