Wenn Sie regelmäßig mit dem Raspberry Pi experimentieren und eine Vielzahl von externer Hardware über die Stiftleiste an den GPIO-Port anschließen, haben Sie in der Vergangenheit vielleicht schon einige Schäden verursacht. Das Elektor Raspberry Pi Buffer Board ist dazu da, dies zu verhindern! Das Board ist kompatibel mit Raspberry Pi Zero, Zero 2 (W), 3, 4, 5, 400 und 500.
Alle 26 GPIOs sind mit bidirektionalen Spannungswandlern gepuffert, um den Raspberry Pi beim Experimentieren mit neuen Schaltungen zu schützen. Die Platine ist dafür vorgesehen, auf der Rückseite des Raspberry Pi 400/500 eingesetzt zu werden. Der Stecker zum Anschluss an den Raspberry Pi ist eine rechtwinklige 40-polige Buchse (2x20). Die Platine ist nur ein wenig breiter. An die Pufferausgangsbuchse kann ein 40-poliges Flachbandkabel mit entsprechenden 2x20-Steckern angeschlossen werden, um z. B. mit einer Schaltung auf einem Breadboard oder einer Platine zu experimentieren.
Die Schaltung verwendet 4x TXS0108E ICs von Texas Instruments. Die Platine lässt sich auch auf einem Raspberry Pi aufstellen.
Downloads
Schematics
Layout
Mit diesem FeatherWing können Sie ganz einfach Datenprotokollierung zu jedem Feather Board hinzufügen. Sie erhalten sowohl eine I²C-Echtzeituhr (PCF8523) mit 32-kHz-Quarz und Batterie-Backup als auch einen microSD-Sockel, der an die SPI-Port-Pins (+ zusätzlicher Pin für CS) angeschlossen wird.
Hinweis: FeatherWing wird ohne microSD-Karte geliefert.
Zur Nutzung der RTC-Batterie-Backup-Funktionen ist eine CR1220-Knopfzelle erforderlich. Wenn Sie den RTC-Teil des FeatherWing nicht verwenden, ist keine Batterie erforderlich.
Zur Kommunikation mit dem microSD-Kartensteckplatz wird die Standard-SD-Bibliothek von Arduino empfohlen. Zum Anbringen der Header am Wing sind leichte Lötarbeiten erforderlich.
Pinbelegung
Stromanschlüsse
In der unteren Reihe werden der 3,3-V-Pin (zweiter von links) und der GND- Pin (vierter von links) verwendet, um die SD-Karte und RTC mit Strom zu versorgen (um die Knopfzellenbatterie zu entlasten, wenn Netzstrom verfügbar ist).
RTC- und I²C-Pins
Oben rechts werden SDA (ganz rechts) und SCL (links von SDA) verwendet, um mit dem RTC-Chip zu kommunizieren.
SCL - I²C-Taktpin zum Anschluss an die I²C -Taktleitung Ihres Mikrocontrollers. Dieser Pin verfügt über einen 10 kΩ Pull-Up-Widerstand gegen 3,3 V
SDA - I²C-Datenpin zum Anschluss an die I²C -Datenleitung Ihres Mikrocontrollers. Dieser Pin verfügt über einen 10 kΩ Pull-Up-Widerstand gegen 3,3 V
Es gibt auch einen Breakout für INT , den Ausgangspin der RTC. Er kann als Interrupt-Ausgang oder auch zum Erzeugen einer Rechteckwelle verwendet werden. Beachten Sie, dass dieser Pin ein Open Drain ist. Sie müssen den internen Pull-Up an dem digitalen Pin aktivieren, mit dem er verbunden ist.
SD- und SPI-Pins
Von links beginnend haben Sie
SPI-Takt (SCK) - Ausgabe von der Feder zum Flügel
SPI Master Out Slave In (MOSI) - Ausgabe von der Feder zum Flügel
SPI Master In Slave Out (MISO) - Eingabe vom Flügel zur Feder
Diese Pins befinden sich bei jedem Feather an der gleichen Stelle. Sie werden für die Kommunikation mit der SD-Karte verwendet. Wenn die SD-Karte nicht eingelegt ist, sind diese Pins völlig frei. MISO wird immer dann in den Tri-State-Zustand versetzt, wenn der SD CS-Pin (Chip Select) hochgezogen wird.
Dieses Trägerboard kombiniert ein 2,4"-TFT-Display, sechs adressierbare LEDs, einen Onboard-Spannungsregler, einen 6-poligen IO-Anschluss und einen microSD-Steckplatz mit dem M.2-Steckplatz, sodass es mit kompatiblen Prozessorboards in unserem MicroMod-Ökosystem verwendet werden kann. Außerdem haben wir dieses Trägerboard mit dem ATtiny84 von Atmel mit 8kb programmierbarem Flash bestückt. Dieser kleine Kerl ist vorprogrammiert, um mit dem Prozessor über I2C zu kommunizieren und Tastendrücke zu lesen.
Features
M.2 MicroMod-Anschluss
240 x 320 Pixel, 2,4" TFT-Display
6 adressierbare APA102 LEDs
Magnetischer Buzzer
USB-C-Anschluss
3,3 V 1 A Spannungsregler
Qwiic-Anschluss
Boot/Reset-Tasten
RTC-Backup-Batterie & Ladeschaltung
microSD
Phillips #0 M2,5 x 3 mm Schraube enthalten
Das SparkFun MicroMod mikroBUS Carrier Board nutzt die Vorteile der MicroMod-, Qwiic- und mikroBUS-Ökosysteme und ermöglicht es Ihnen, schnell Prototypen zu erstellen, indem Sie sie kombinieren. Der MicroMod M.2-Anschluss und der mikroBUS 8-Pin-Header bieten Benutzern die Freiheit, mit jedem Prozessorboard im MicroMod-Ökosystem und jedem Click-Board im mikroBUS-Ökosystem zu experimentieren. Dieses Board verfügt außerdem über zwei Qwiic-Anschlüsse, um Hunderte von Qwiic-Sensoren und Zubehör nahtlos in Ihr Projekt zu integrieren.
Der mikroBUS-Anschluss besteht aus einem Paar weiblicher 8-Pin-Header mit einer standardisierten Pin-Konfiguration. Die Pins bestehen aus drei Gruppen von Kommunikationspins (SPI, UART und I²C), sechs zusätzlichen Pins (PWM, Interrupt, Analogeingang, Reset und Chip-Select) und zwei Stromgruppen (3,3 V und 5 V).
Während ein moderner USB-C-Anschluss das Programmieren erleichtert, ist das Carrier Board auch mit einem MCP73831 Single-Cell Lithium-Ionen-/Lithium-Polymer-Lade-IC ausgestattet, mit dem Sie einen angeschlossenen LiPo-Akku mit einer Zelle aufladen können. Das Lade-IC erhält Strom über die USB-Verbindung und kann bis zu 450 mA bereitstellen, um einen angeschlossenen Akku aufzuladen.
Features
M.2 MicroMod (Prozessorboard) Anschluss
USB-C-Anschluss
3,3 V 1 A Spannungsregler
2x Qwiic-Anschlüsse
mikroBUS-Anschluss
Boot/Reset-Tasten
Ladekreis
JTAG/SWD PTH-Pins
Downloads
Schaltplan
Eagle-Dateien
Platinenabmessungen
Anschlussanleitung
Erste Schritte mit Necto Studio
mikroBUS-Standard
Qwiic Info-Seite
GitHub-Hardware-Repo
Waveshare DVK600 ist eine FPGA CPLD-Hauptplatine mit Erweiterungsanschlüssen zum Anschluss der FPGA CPLD-Hauptplatine und Zubehörplatinen. DVK600 bietet eine einfache Möglichkeit, ein FPGA CPLD-Entwicklungssystem einzurichten.
Merkmale
FPGA CPLD-Core-Board-Anschluss: zum einfachen Verbinden von Core-Boards, die einen FPGA CPLD-Chip integriert haben
8I/Os_1 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
8I/Os_2-Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
16I/Os_1 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
16I/Os_2 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
32I/Os_1 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
32I/Os_2-Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
32I/Os_3 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
SDRAM-Schnittstelle
zum Anschluss der SDRAM-Zubehörkarte
funktioniert auch als FPGA CPLD Pins Erweiterungsstecker
LCD-Interface , zum Anschluss von LCD22, LCD12864, LCD1602
ONE-WIRE-Schnittstelle: Einfache Verbindung mit ONE-WIRE-Geräten (TO-92-Gehäuse) wie Temperatursensor (DS18B20), elektronischer Registrierungsnummer (DS2401) usw.
5 V DC-Buchse
Joystick: fünf Positionen
Summer
Potentiometer: zur Einstellung der Hintergrundbeleuchtung von LCD22 oder zur Kontrasteinstellung von LCD12864 und LCD1602
Stromschalter
Summer-Jumper
ONE-WIRE-Jumper
Joystick-Jumper
Downloads
Schema