Übernehmen Sie die Kontrolle über Ihre intelligente Umgebung mit dem kompakten und leistungsstarken 4-Zoll-ESP32-S3-IPS-Touchscreen-Bedienfeld. Dieses elegante Panel im 86-Zoll-Format wurde für hohe Leistung und Vielseitigkeit entwickelt und bietet erweiterte Konnektivität, intuitive Touch-Steuerung und Echtzeit-Umgebungssensoren.
Features
Leistungsstarkes Kernmodul: WT32-S3-WROVER-N16R8
4-Zoll-IPS-Vollbilddisplay
Auflösung: 480 x 480 Pixel (RGB565-Format)
Bildschirmtreiber-IC: GC9503V
Touch-Controller-IC: FT6336U
Ausgestattet mit einem SHT20-Temperatur- und Feuchtigkeitssensor zur Echtzeitüberwachung der Umgebungsbedingungen.
RS485-Schnittstelle mit automatischer Transceiver-Schaltung
Integriertes WLAN und Bluetooth
Anwendungen
Smart-Home-Bedienfelder
Schnittstellen für die Industrieautomatisierung
Umgebungsüberwachungssysteme
IoT-Projekte und kundenspezifische Smart-Lösungen
Mit diesem FeatherWing können Sie ganz einfach Datenprotokollierung zu jedem Feather Board hinzufügen. Sie erhalten sowohl eine I²C-Echtzeituhr (PCF8523) mit 32-kHz-Quarz und Batterie-Backup als auch einen microSD-Sockel, der an die SPI-Port-Pins (+ zusätzlicher Pin für CS) angeschlossen wird.
Hinweis: FeatherWing wird ohne microSD-Karte geliefert.
Zur Nutzung der RTC-Batterie-Backup-Funktionen ist eine CR1220-Knopfzelle erforderlich. Wenn Sie den RTC-Teil des FeatherWing nicht verwenden, ist keine Batterie erforderlich.
Zur Kommunikation mit dem microSD-Kartensteckplatz wird die Standard-SD-Bibliothek von Arduino empfohlen. Zum Anbringen der Header am Wing sind leichte Lötarbeiten erforderlich.
Pinbelegung
Stromanschlüsse
In der unteren Reihe werden der 3,3-V-Pin (zweiter von links) und der GND- Pin (vierter von links) verwendet, um die SD-Karte und RTC mit Strom zu versorgen (um die Knopfzellenbatterie zu entlasten, wenn Netzstrom verfügbar ist).
RTC- und I²C-Pins
Oben rechts werden SDA (ganz rechts) und SCL (links von SDA) verwendet, um mit dem RTC-Chip zu kommunizieren.
SCL - I²C-Taktpin zum Anschluss an die I²C -Taktleitung Ihres Mikrocontrollers. Dieser Pin verfügt über einen 10 kΩ Pull-Up-Widerstand gegen 3,3 V
SDA - I²C-Datenpin zum Anschluss an die I²C -Datenleitung Ihres Mikrocontrollers. Dieser Pin verfügt über einen 10 kΩ Pull-Up-Widerstand gegen 3,3 V
Es gibt auch einen Breakout für INT , den Ausgangspin der RTC. Er kann als Interrupt-Ausgang oder auch zum Erzeugen einer Rechteckwelle verwendet werden. Beachten Sie, dass dieser Pin ein Open Drain ist. Sie müssen den internen Pull-Up an dem digitalen Pin aktivieren, mit dem er verbunden ist.
SD- und SPI-Pins
Von links beginnend haben Sie
SPI-Takt (SCK) - Ausgabe von der Feder zum Flügel
SPI Master Out Slave In (MOSI) - Ausgabe von der Feder zum Flügel
SPI Master In Slave Out (MISO) - Eingabe vom Flügel zur Feder
Diese Pins befinden sich bei jedem Feather an der gleichen Stelle. Sie werden für die Kommunikation mit der SD-Karte verwendet. Wenn die SD-Karte nicht eingelegt ist, sind diese Pins völlig frei. MISO wird immer dann in den Tri-State-Zustand versetzt, wenn der SD CS-Pin (Chip Select) hochgezogen wird.
Dieses Trägerboard kombiniert ein 2,4"-TFT-Display, sechs adressierbare LEDs, einen Onboard-Spannungsregler, einen 6-poligen IO-Anschluss und einen microSD-Steckplatz mit dem M.2-Steckplatz, sodass es mit kompatiblen Prozessorboards in unserem MicroMod-Ökosystem verwendet werden kann. Außerdem haben wir dieses Trägerboard mit dem ATtiny84 von Atmel mit 8kb programmierbarem Flash bestückt. Dieser kleine Kerl ist vorprogrammiert, um mit dem Prozessor über I2C zu kommunizieren und Tastendrücke zu lesen.
Features
M.2 MicroMod-Anschluss
240 x 320 Pixel, 2,4" TFT-Display
6 adressierbare APA102 LEDs
Magnetischer Buzzer
USB-C-Anschluss
3,3 V 1 A Spannungsregler
Qwiic-Anschluss
Boot/Reset-Tasten
RTC-Backup-Batterie & Ladeschaltung
microSD
Phillips #0 M2,5 x 3 mm Schraube enthalten
Der SparkFun DataLogger IoT (9DoF) ist ein Datenlogger, der vorprogrammiert ist, um automatisch IMU, GPS und verschiedene Druck-, Feuchtigkeits- und Entfernungssensoren aufzuzeichnen. Alles ohne eine einzige Zeile Code zu schreiben! Der DataLogger erkennt, konfiguriert und protokolliert Qwiic-Sensoren automatisch. Er wurde speziell für Benutzer entwickelt, die einfach nur viele Daten in einer CSV- oder JSON-Datei erfassen und sich dann wieder ihrem größeren Projekt widmen möchten. Speichern Sie die Daten auf einer microSD-Karte oder senden Sie sie drahtlos an Ihren bevorzugten Internet of Things (IoT)-Dienst!
Jeder DataLogger IoT verfügt über eine IMU für die integrierte Aufzeichnung eines dreiachsigen Beschleunigungsmessers, Kreisels und Magnetometers. Während der ursprüngliche 9DOF Razor die alte MPU-9250 verwendete, nutzt der DataLogger IoT die ISM330DHCX von STMicroelectronics und MMC5983MA von MEMSIC. Schalten Sie den DataLogger IoT einfach ein, konfigurieren Sie das Board für die Aufzeichnung von Messwerten aus unterstützten Geräten und beginnen Sie mit der Aufzeichnung! Die Daten können mit einem Zeitstempel versehen werden, wenn die Zeit mit NTP, GNSS oder RTC synchronisiert wird.
Der DataLogger IoT ist über eine einfach zu bedienende serielle Schnittstelle in hohem Maße konfigurierbar. Schließen Sie einfach ein USB-C-Kabel an und öffnen Sie ein serielles Terminal mit 115200 Baud. Die Logging-Ausgabe wird automatisch sowohl auf das Terminal als auch auf die microSD-Karte gestreamt. Durch Drücken einer beliebigen Taste im Terminalfenster wird das Konfigurationsmenü geöffnet.
Der DataLogger IoT (9DoF) scannt, erkennt, konfiguriert und protokolliert automatisch verschiedene Qwiic-Sensoren, die an das Board angeschlossen sind (kein Löten, keine Programmierung!).
Technische Daten
ESP32-WROOM-32E Modul
Integrierter 802.11b/g/n WLAN 2,4 GHz-Transceiver
Konfigurierbar über CH340C
Betriebsspannungsbereich
3,3 V bis 6,0 V (über VIN)
5 V mit USB (über 5 V oder USB-C)
3,6 V bis 4,2 V mit LiPo-Akku (über BATT oder 2-Pin JST)
Eingebautes Einzelzellen-LiPo-Ladegerät MCP73831
Mindestens 500 mA Ladestrom
3,3 V (über 3V3)
MAX17048 LiPo-Ladeanzeige
Anschlüsse
1x USB-C
1x JST-Stecker für LiPo-Akku
2x Qwiic-fähiges I²C
1x microSD-Sockel
Unterstützung für 4-Bit-SDIO- und microSD-Karten, die mit FAT32 formatiert sind
9-Achsen-IMU
Beschleunigungsmesser & Gyro (ISM330DHCX)
Magnetometer (MMC5983MA)
LEDs
Ladung (CHG)
Status (STAT)
WS2812-2020 adressierbare RGB
Jumper
IMU-Unterbrechung
Magnetometer-Unterbrechung
RGB-LED
Status-LED
Lade-LED
I²C-Pull-up-Widerstände
USB-Shield
Tasten
Reset
Boot
Abmessungen: 4,2 x 5,1 cm
Gewicht: 10,7 g
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
CH340 Drivers
Firmware
GitHub Hardware Repo
Dieser Luftmonitor wird speziell zur Überwachung von Gewächshäusern verwendet. Es erkennt:
Lufttemperatur & Luftfeuchtigkeit
CO2-Konzentration
Lichtintensität
Übertragen Sie anschließend die Daten per LoRa P2P an den LoRa-Empfänger (auf Ihrem Schreibtisch im Raum), damit der Benutzer den Feldstatus überwachen oder für eine Langzeitanalyse aufzeichnen lassen kann.
Dieses Modul überwacht den Gewächshausfeldstatus und sendet alle Sensordaten regelmäßig über LoRa P2P im Jason-Format. Dieses LoRa-Signal kann vom Makerfabs LoRa-Empfänger empfangen und somit auf dem PC angezeigt/aufgezeichnet/analysiert werden. Der Überwachungsname/Datenzyklus kann mit einem Telefon eingestellt werden, sodass er einfach in die Datei implementiert werden kann.
Dieser Luftwächter wird von einem internen LiPo-Akku gespeist, der über ein Solarpanel aufgeladen wird, und kann mit der Standardeinstellung (Zyklus 1 Stunde) mindestens 1 Jahr lang verwendet werden.
Features
ESP32S3-Modul an Bord mit WLAN und Bluetooth
Bereit zum Gebrauch: Schalten Sie es direkt ein, um es zu verwenden
Modulname/Signalintervall einfach per Telefon einstellbar
IP68 wasserdicht
Temperatur: -40°C~80°C, ±0,3
Luftfeuchtigkeit: 0–100% Feuchtigkeit
CO2: 0~1000 ppm
Lichtintensität: 1-65535 lx
Kommunikationsentfernung: Lora: >3 km
1000-mAh-Akku, integriertes Ladegerät-IC
Solarpanel 6 W: Stellen Sie sicher, dass das System funktioniert.
Downloads
Manual
BH1750 Datasheet
SGP30 Datasheet
Diese Version des Micro-OLED-Breakout hat exakt die Größe seines nicht-Qwiic-kompatiblen Geschwisters, mit einem 64 Pixel breiten und 48 Pixel hohen Bildschirm und einer Größe von 0,66". Es wurde aber zusätzlich mit zwei Qwiic-Anschlüssen ausgestattet und ist damit ideal für den I2C-Betrieb. Außerdem haben wir zwei Montagelöcher und eine praktische Qwiic-Kabelhalterung in eine abnehmbare Lasche auf der Platine integriert, die sich dank einer v-förmigen Kante leicht entfernen lässt. Wir haben sogar darauf geachtet, einen I2C-Pull-Up-Jumper und einen ADDR-Jumper auf der Rückseite des Boards zu integrieren, falls Sie also Ihre eigenen I2C-Pull-Ups haben oder die I2C-Adresse des Boards ändern müssen!
Features
Qwiic-Connector Enabled
Betriebsspannung: 3,3V
Betriebsstrom: 10mA (20mA max)
Bildschirmgröße: 64x48 Pixel (0,66" Querschnitt)
Monochrom Blau-auf-Schwarz
I2C-Schnittstelle
Das Sparkfun Qwiic GPIO ist ein I²C-Gerät, das auf dem TCA9534 I/O Expander IC von Texas Instruments basiert. Das Board fügt acht IO-Pins hinzu, die Sie wie jeden anderen digitalen Pin an Ihrem Controller lesen und schreiben können. Um die Details der I²C-Schnittstelle kümmert sich eine Arduino-Bibliothek, so dass Sie ähnliche Funktionen wie pinMode und digitalWrite von Arduino aufrufen können, so dass Sie sich auf Ihre Kreation konzentrieren können!
Die Pins des TCA9534 sind auf einfach zu bedienende Latch-Klemmen aufgeteilt; schrauben Sie nie wieder einen Draht an! Die Klemmen sind relativ geräumig, so dass Sie mehrere Drähte in eine Masse- oder Stromklemme einrasten lassen können. Mit drei anpassbaren Adress-Jumpern können Sie bis zu acht Qwiic-GPIO-Karten an einen einzigen Bus anschließen und so bis zu 64 zusätzliche GPIO-Pins nutzen! Die Voreinstellung für I²C ist 0x27 und kann über die Jumper auf der Rückseite der Karte geändert werden.
Features
Acht konfigurierbare GPIO-Pins verfügbar
I2C Adresse: 0x27 (Standard)
Hardware-Adresspins ermöglichen bis zu acht Karten an einem Bus
Register zur Invertierung der Eingangspolarität
Steuern Sie jeden I/O-Pin einzeln oder alle auf einmal
Open-Drain Active-Low Interrupt Ausgang
2 x Qwiic-Stecker
Abmessungen: 60,96 mm x 38,10 mm
Grove ist ein quelloffenes, moduliertes und gebrauchsfertiges Toolset und verwendet einen Bausteinansatz zum Zusammenbauen von Elektronik. Dieses Kit enthält ein Base Shield, an das die verschiedenen Grove-Module einzeln oder in verschiedenen Kombinationen angeschlossen werden können, um unterhaltsame und spannende Projekte zu erstellen. Alle Module verwenden einen Grove-Anschluss, der jede der Komponenten in nur wenigen Sekunden mit einem Base Shield verbindet. Das Base Shield kann dann auf einer Arduino UNO-Platine montiert und mit der Arduino IDE programmiert werden. Anweisungen zum Anschließen und Programmieren der verschiedenen Module sind ebenfalls in diesem Kit enthalten.
Dieses Kit wurde in Zusammenarbeit mit Seeed Studio entwickelt und bietet der Arduino-Community die Möglichkeit, Projekte mit minimalem Verkabelungs- und Codierungsaufwand zu erstellen. Dieses Kit fungiert als Brücke zur Welt von Grove und bietet Makern eine flexible Möglichkeit, ihre Projekte um andere komplexe Grove-Module zu erweitern. Im Lieferumfang des Kits ist der Zugang zu einer Online-Plattform mit allen erforderlichen Anweisungen zum Anschließen, Skizzieren und Spielen mit den verschiedenen Grove-Modulen enthalten.
Bitte beachten : Dieses Kit enthält nicht die Arduino Uno-Platine.
Inbegriffen
1 Basisschild, das auf eine Arduino UNO-Platine passt. Es ist mit 16 Grove-Anschlüssen ausgestattet, die, wenn sie auf die UNO gelegt werden, die Funktionalität verschiedener Pins bereitstellen. Es umfasst:
7x digitale Anschlüsse
4x analoge Anschlüsse
4x I²C-Anschlüsse
1x UART-Anschluss
Die 10 mitgelieferten Grove-Module können entweder über die digitalen, analogen oder I2C-Anschlüsse am Shield an das Basis-Shield angeschlossen werden. Werfen wir einen kurzen Blick auf sie:
Die LED – eine einfache LED, die ein- oder ausgeschaltet oder gedimmt werden kann.
Der Taster bzw. Drucktaster kann sich entweder im Zustand HIGH oder LOW befinden.
Das Potentiometer – ein variabler Widerstand, dessen Widerstand durch Drehen des Knopfs erhöht oder verringert wird. Der Summer – ein Piezo-Lautsprecher, der zur Erzeugung binärer Töne dient.
Der Lichtsensor – ein Fotowiderstand, der die Lichtintensität misst.
Der Schallsensor – ein winziges Mikrofon, das Schallschwingungen misst.
Der Luftdrucksensor - liest den Luftdruck mithilfe des I²C-Protokolls.
Der Temperatursensor - misst gleichzeitig Temperatur und Luftfeuchtigkeit.
Der Beschleunigungssensor - ein Sensor der zur Orientierung dient und der Bewegungserkennung dient.
Der OLED-Bildschirm – ein Bildschirm, auf dem Werte oder Nachrichten ausgedruckt werden können.
Mithilfe von 6 Grove-Kabeln können Sie die Module ganz einfach und ohne Lötarbeiten mit dem Base Shield verbinden. Die Arduino Sensor Kit Library ist ein Wrapper, der Links zu anderen Bibliotheken enthält, die sich auf bestimmte Module beziehen, wie z. B. Beschleunigungsmesser, Luftdrucksensor, Temperatursensor und OLED-Display. Diese Bibliothek bietet einfach zu verwendende APIs, die Ihnen dabei helfen, ein klares mentales Modell der Konzepte zu erstellen, die Sie verwenden werden.
Um die Verwendung dieses Breakouts noch einfacher zu machen, erfolgt die gesamte Kommunikation ausschließlich über I2C, unter Verwendung unseres praktischen Qwiic-Systems. Dennoch haben wir Pins im Abstand von 0,1" herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Der CCS811 ist ein äußerst beliebter Sensor, der Messwerte für äquivalentes CO2 (oder eCO2) in Teilen pro Million (PPM) und gesamte flüchtige organische Verbindungen in Teilen pro Milliarde (PPB) liefert. Der CCS811 verfügt außerdem über eine Funktion, mit der er seine Messwerte feinabstimmen kann, wenn er Zugriff auf die aktuelle Luftfeuchtigkeit und Temperatur hat.
Glücklicherweise liefert der BME280 die Luftfeuchtigkeit, die Temperatur und den barometrischen Druck! So können die Sensoren zusammenarbeiten und uns genauere Messwerte liefern, als sie es alleine könnten. Wir haben es auch einfach gemacht, mit ihnen über I2C zu kommunizieren.
Funktionen
Qwiic-Connector Enabled
Betriebsspannung: 3,3 V
Messung der gesamten flüchtigen organischen Verbindungen (TVOC) von 0 bis 1.187 Teilen pro Milliarde
eCO2-Messung von 400 bis 8.192 Teilen pro Million
Temperaturbereich: -40C bis 85C
Feuchtigkeitsbereich: 0--100% RH, = -3 % von 20--80%
Druckbereich: 30.000Pa bis 110.000Pa, relative Genauigkeit von 12Pa, absolute Genauigkeit von 100Pa
Höhenbereich: 0 bis 30.000 Fuß (9,2 km), relative Genauigkeit von 3,3 Fuß (1 m) auf Meereshöhe, 6,6 (2 m) bei 30.000 Fuß
Der SDS011-Sensor ermittelt die Feinstaub-Partikelkonzentration in der Luft mit Hilfe des Streulichtverfahrens.
Durch den USB-UART-Adapter lässt sich der Sensor zusätzlich direkt an einem Computer auslesen.
Technische Daten
Schnittstelle
UART (3,3 V Pegel)
Auflösung
0,3 µg/m3
Reaktionszeit
Weitere Besonderheit
Integrierter Lüfter
Strom in Ruhezustand
Versorgungsstrom
70 mA
Betriebsspannung
5 V
Abmessungen
70 x 70 x 24 mm
Gewicht
70 g
Lieferumfang
1x SDS011 Feinstaubsensor
1x Anschlusskabel
1x USB-UART-Adapter
Downloads
Datenblatt
Handbuch
Die Motorino-Platine ist eine Erweiterungsplatine zur Ansteuerung und Verwendung von bis zu 16 PWM-gesteuerten 5-V-Servomotoren.
Der eigene Taktgeber auf dem Motorino sorgt für ein sehr genaues PWM-Signal und somit eine genaue Positionierung.
Die Platine verfügt über 2 Eingänge für Spannung von 4,8-6 V, über die zusammen bis zu 11 A eingespeist werden können, sodass eine optimale Versorgung der Motoren stets gewährleistet ist und somit auch größere Projekte mit ausreichend Strom beliefert werden können.
Die Versorgung läuft zentral über den Motorino, der für jeden Motor separat einen Anschluss für Spannung, Masse und die Steuerleitung zur Verfügung stellt.
Durch den eingebauten Kondensator wird der Strom zusätzlich gepuffert, hierdurch wird das Einbrechen der Spannung bei kurzzeitiger Mehrbelastung reduziert, die sonst zum Ruckeln führen könnte. Zusätzlich hat man noch die Möglichkeit, einen weiteren Kondensator anzuschließen.
Die Ansteuerung und Programmierung der Motoren kann (wie gewohnt) weiterhin bequem über den Arduino bedient werden. Anleitung und Codebeispiele erlauben auch Einsteigern, schnell Ergebnisse zu erzielen.
Besonderheiten
16 Kanäle, eigener Taktgeber für Servomotoren (PWM)
Eingang 1
Hohlstecker 5,5 / 2,1 mm , 4,8-6 V / 5 A max
Eingang 2
Schraubklemme, 4,8-6 V / 6 A max
Kommunikation
16 x PWM
Kompatibel mit
Arduino Uno, Mega und viele weitere Mikrovontroller mit Arduino-kompatiblem Pinout
Maß (BxHxT)
69 x 24 x 56 mm
Lieferumfang
Platine, Bedienungsanleitung, Retail-Verpackung
Das Power Delivery Board verwendet einen eigenständigen Controller, um mit den Stromadaptern zu verhandeln und auf eine höhere Spannung als nur 5V umzuschalten. Dies verwendet den gleichen Stromadapter für verschiedene Projekte, anstatt sich auf mehrere Stromadapter zu verlassen, die unterschiedliche Ausgangsspannungen bereitstellen. Das Board kann als Teil des Qwiic-Connect-Systems von SparkFun geliefert werden, so dass Sie keine Lötarbeiten durchführen müssen, um herauszufinden, wie die Dinge ausgerichtet sind.
Das SparkFun Power Delivery Board nutzt die Vorteile des Power-Delivery-Standards mit einem Standalone-Controller von STMicroelectronics, dem STUSB4500. Der STUSB4500 ist ein USB-Power-Delivery-Controller, der Senkengeräte anspricht. Er implementiert einen proprietären Algorithmus zur Aushandlung eines Stromversorgungsvertrags mit einer Quelle (d. h. einer Steckdose oder einem Netzteil), ohne dass ein externer Mikrocontroller erforderlich ist. Sie benötigen jedoch einen Mikrocontroller, um die Karte zu konfigurieren. PDO-Profile werden in einem integrierten nichtflüchtigen Speicher konfiguriert. Der Controller übernimmt die ganze Arbeit der Leistungsaushandlung und bietet eine einfache Möglichkeit zur Konfiguration über I2C.
Um die Karte zu konfigurieren, benötigen Sie einen I2C-Bus. Das Qwiic-System macht es einfach, das Power Delivery Board mit einem Mikrocontroller zu verbinden. Je nach Anwendung können Sie den I2C-Bus auch über die durchkontaktierten SDA- und SCL-Löcher anschließen.
Merkmale
Eingangs- und Ausgangsspannungsbereich von 5-20V
Ausgangsstrom bis zu 5A
Drei konfigurierbare Stromabgabeprofile
Automatischer Type-C™- und USB-PD-Sink-Controller
Zertifizierter USB Type-C™ rev 1.2 und USB PD rev 2.0 (TID #1000133)
Integrierte VBUS-Spannungsüberwachung
Integrierte VBUS-Switch-Gate-Treiber (PMOS)
Ein stromsparendes, open source, 2,7-Zoll-IoT-Display, das mit einem ESP32-S2-Modul betrieben wird und über SHARPs Memory-in-Pixel (MiP)-Bildschirmtechnologie verfügt. Der Newt ist ein batteriebetriebenes, immer aktives, an der Wand montierbares Display, das online Wetter, Kalender, Sportergebnisse, To-Do-Listen, Zitate … eigentlich alles aus dem Internet abrufen kann! Es beinhaltet einen ESP32-S2-Mikrocontroller, den Sie mit Arduino, CircuitPython, MicroPython oder ESP-IDF Entwicklungsumgebung programmieren können. Es ist perfekt für Maker: Die Memory-in-Pixel (MiP)-Technologie von Sharp vermeidet die von E-Ink-Displays bekannten langsamen Aktualisierungszeiten Eine Echtzeituhr (RTC) wurde hinzugefügt, um Timer und Alarme zu unterstützen Der Newt wurde unter Berücksichtigung eines Batteriebetriebs entwickelt. Jede Komponente auf der Platine wurde aufgrund geringer Leistungsaufnahme ausgewählt. Newt wurde entwickelt, um 'unverkabelt' zu arbeiten, was bedeutet, dass es an Orten montiert werden kann, an denen ein Netzkabel unpraktisch wäre, z. B. eine Wand, ein Kühlschrank, ein Spiegel oder Whiteboard. Mit dem optionalen Ständer sind Schreibtische, Regale und Nachttische ebenfalls gute Aufstelloptionen. Newt ist Open Source und damit stehen alle Designdateien und Bibliotheken zur Verfügung um überprüft, verwendet oder abgeändert werden zu können. Dies sollte jedoch nicht erforderlich sein. Jeder Newt wird mit funktionierendem Code und folgenden Funktionen geliefert: Aktuelle Wetterdetails Stündliche und tägliche Wettervorhersage Alarm Zeitschaltuhr Inspirierende Zitate Vorhersage der Luftqualität Gewohnheitskalender Kurzzeit Timer (Pomodoro-Technik) Oblique Strategiekarten Um loszulegen, befolgen Sie nur die Anweisungen zur WLAN-Konfiguration. Es sind keine App-Downloads erforderlich. Leistungsbeschreibung Display Sharp Memory LCD-Anzeige Bildschirmgröße 2,7 Zoll Auflösung 240 x 400 Ruhestrom 30 µA Aktualisierungsrate Regelmäßige Bildschirmaktualisierung erforderlich Nein Eingabetasten 10 kapazitive Felder, 1 Druckknopf RTC inklusive Ja Lautsprecher inklusive Ja Spannungsversorgung USB Type-C Batterie im Lieferumfang enthalten Nein Programmiersprachen Arduino, CircuitPython, ESP IDF, MicroPython Abmessungen 91 x 61 x 9 mm Mikrocontroller Espressif ESP32-S2-WROVER Modul mit 4 MB Flash und 2 MB PSRAM Wi-Fi-fähig Unterstützt Arduino, MicroPython, CircuitPython und ESP-IDF Ruhestrom bis zu 25 μA Display 2,7 Zoll, 240 x 400 Pixel MiP-LCD Liefert kontrastreiche, hochauflösende Inhalte mit geringer Latenz und extrem niedrigem Stromverbrauch Der reflektierende Modus nutzt das Umgebungslicht und macht damit eine separate Hintergrundbeleuchtung unnötig Zeitmessung, Timer und Alarm RV-3028-C7 RTC Optimiert für extrem niedrigen Stromverbrauch (45 μA) Kann gleichzeitig einen periodischen Timer, einen Countdown-Timer und einen Alarm verwalten Hardware-Interrupt für Timer und Alarm 43 Byte nichtflüchtiger Benutzerspeicher, 2 Byte Benutzer-RAM Separater UNIX-Zeitzähler Summer Lautsprecher bzw. Summer mit Mini-Class-D-Verstärker am DAC-Ausgang A0 kann Töne oder Lo-Fi-Audioclips abspielen Benutzereingabe Netzschalter Zwei programmierbare Tasten für Reset und Boot 10 kapazitive Felder Power Newt ist für den Betrieb von ein bis zwei Monaten bis zum erneuten Ladevorgang mit einem 500mAh LiPo-Akku ausgelegt. Die genaue Laufzeit variiert. (Insbesondere reduziert starke Wi-Fi-Nutzung die Batterieladung schneller.) USB-Typ-C-Anschluss für Programmierung, Stromversorgung und Aufladen Spannungsregler mit niedrigem Ruhestromverbrauch (TOREX XC6220), der 1 A Strom ausgeben und mit nur bis zu 8 μA Eigenbedarf arbeiten kann. JST-Stecker für einen Lithium-Ionen-Akku Batterieladeregelschaltung (MCP73831) Anzeige für niedrigen Batteriestand (1 μA Ruhestrom) Software Newt-Hardware ist kompatibel mit Open-Source-Arduino-Bibliotheken für ESP32-S2, Adafruit GFX (Schriftarten), Adafruit Sharp Memory Display (Display Writing) und RTC RV-3028-C7 (RTC) Arduino-Bibliotheken und Beispielprogramme befinden sich in der Entwicklung und werden vor dem Start in unserem GitHub-Repository verfügbar sein CircuitPython-Bibliotheken und Registrierung stehen auf der Roadmap, mit der Entwicklung einer CircuitPython-Bibliothek für die RV-3028-Echtzeituhr als Hauptmeilenstein. Lieferumfang Phambili Newt – Komplett montiert mit vorinstallierter Firmware Lasergeschnittener Tischständer Mini-Magnetfüße Erforderliche Schrauben Support & Dokumentation Vollständige Gebrauchsanweisung (Auf Englisch) GitHub: Arduino-Bibliothek und Codebasis (Auf Englisch) GitHub: Board-Schaltpläne (Auf Englisch) Videos von Prototypen oder Demos (Aufgenommen auf dem „Hackaday“. Auf Englisch)
Arduino-, MicroPython- und CircuitPython-kompatibles, kompaktes Entwicklungsboard mit Raspberry Pi RP2040
RP2040-0.42LCD ist ein leistungsstarkes Entwicklungsboard mit integriertem 0.42" LCD (70x40 Auflösung) mit flexiblen digitalen Schnittstellen.
Es enthält den RP2040 Mikrocontroller-Chip des Raspberry Pi. Der RP2040 verfügt über einen Dual-Core Arm Cortex-M0+ Prozessor, der mit 133 MHz getaktet ist, mit 264 KB internem SRAM und 2 MB Flash-Speicher.
Technische Spezifikationen
SoC
Raspberry Pi RP2040 Dual-Core Cortex-M0+ Mikrocontroller mit bis zu 125 MHz, mit 264 KB SRAM
Speicher
2 MB SPI-Flash
Display
0,42-Zoll-OLED
USB
1x USB Typ-C Anschluss für Stromversorgung und Programmierung
Expansion
- Qwiic I²C-Anschluss- 7-polige und 8-polige Stiftleisten mit bis zu 11x GPIOs, 2x SPI, 2x I²C, 4x ADC, 1x UART, 5 V, 3,3 V, VBAT, GND
Misc
- Reset- und Boot-Tasten- RGB-LED, Betriebs-LED
Stromversorgung
- 5 V über USB-C-Anschluss oder Vin- VBAT-Pin für Batterieeingang- 3,3-V-Regler mit 500-mA-Spitzenleistung
Dimensionen
23.5 x 18 mm
Gewicht
2.5 g
Downloads
GitHub
LuckFox Pico Mini ist ein kompaktes Linux-Mikro-Entwicklungsboard, das auf dem Rockchip RV1103-Chip basiert und eine einfache und effiziente Entwicklungsplattform für Entwickler bietet. Es unterstützt eine Vielzahl von Schnittstellen, einschließlich MIPI CSI, GPIO, UART, SPI, I²C, USB usw., was für eine schnelle Entwicklung und Fehlerbehebung praktisch ist.
Features
Single-Core ARM Cortex-A7 32-Bit-Kern mit integriertem NEON und FPU
Eingebaute, von Rockchip selbst entwickelte NPU der 4. Generation, zeichnet sich durch hohe Rechenpräzision aus und unterstützt die Hybridquantisierung int, int8 und int16. Die Rechenleistung von int8 beträgt 0,5 TOPS und bis zu 1,0 TOPS mit int4
Integrierter, selbst entwickelter ISP3.2 der dritten Generation, unterstützt 4 Megapixel, mit mehreren Bildverbesserungs- und Korrekturalgorithmen wie HDR, WDR, mehrstufiger Rauschunterdrückung usw.
Verfügt über eine leistungsstarke Kodierungsleistung, unterstützt den intelligenten Kodierungsmodus und das adaptive Stream-Speichern je nach Szene, spart mehr als 50% Bitrate im Vergleich zum herkömmlichen CBR-Modus, sodass die Bilder von der Kamera hochauflösende Bilder mit geringerer Größe und doppelt so viel Speicherplatz bieten Leerzeichen
Die integrierte RISC-V-MCU unterstützt einen geringen Stromverbrauch und einen schnellen Start, unterstützt eine schnelle Bildaufnahme von 250 ms und lädt gleichzeitig die Al-Modellbibliothek, um die Gesichtserkennung "in einer Sekunde" zu realisieren.
Eingebauter 16-Bit-DRAM DDR2, der anspruchsvolle Speicherbandbreiten bewältigen kann
Integriert mit integriertem POR, Audio-Codec und MAC PHY
Technische Daten
Prozessor
ARM Cortex-A7, Single-Core-32-Bit-CPU, 1,2 GHz, mit NEON und FPU
NPU
Rockchip NPU der 4. Generation, unterstützt int4, int8, int16; bis zu 1,0 TOPS (int4)
ISP
ISP3.2 der dritten Generation, bis zu 4 MP-Eingang bei 30fps, HDR, WDR, Rauschunterdrückung
RAM
64 MB DDR2
Speicher
128 MB SPI NAND Flash
USB
USB 2.0-Host/Gerät über Typ-C
Kameraschnittstelle
MIPI CSI 2-spurig
GPIO-Pins
17 GPIO-Pins
Stromverbrauch
RISC-V-MCU mit geringem Stromverbrauch für schnellen Start
Abmessungen
28 x 21 mm
Downloads
Wiki
YDLIDAR X4PRO ist ein zweidimensionaler 360-Grad-Entfernungsmesser. Basierend auf dem Triangulationsprinzip ist es mit entsprechender Optik, Elektrizität und Algorithmendesign ausgestattet, um eine hochfrequente und hochgenaue Entfernungsmessung zu erreichen. Die mechanische Struktur dreht sich um 360 Grad, um während der Entfernungsmessung kontinuierlich die Winkelinformationen sowie die Punktwolkendaten der Scanumgebung auszugeben.
Features
360-Grad-Omnidirektional-Scanning-Entfernungsmessung
Kleiner Distanzfehler, stabile Leistung und hohe Genauigkeit
Große Reichweite
Starke Beständigkeit gegen Umgebungslichtstörungen
Geringer Stromverbrauch, geringe Größe und lange Lebensdauer
Laserleistung entspricht den Sicherheitsstandards für Laser der Klasse I
Einstellbare Motorgeschwindigkeit, Scanfrequenz beträgt 6-12 Hz
Hochgeschwindigkeits-Bereichswahl, Bereichsfrequenz bis zu 5 kHz
Applikationen
Roboternavigation und Hindernisvermeidung
Roboter-ROS-Lehre und Forschung
Regionale Sicherheit
Umweltscan und 3D-Rekonstruktion
Navigation und Hindernisvermeidung des Roboterstaubsaugers/ROS-Lernroboters
Technische Daten
Frequenzbereich
5000 Hz
Scanfrequenz
6-12 Hz
Reichweite
0,12 10 m
Scanwinkel
360°
Winkelauflösung
0,43-0,85°
Abmessungen
110,6 x 71,1 x 52,3 mm
Downloads
Datasheet
User Manual
Development Manual
SDK
Tool
ROS
Nach dem Einschalten beginnt der YDLIDAR G4 sich zu drehen und die Umgebung um sich herum zu scannen. Die Scandistanz beträgt 16 m und das Gerät bietet eine Scanrate von 9.000 Mal pro Sekunde.
Es macht detaillierte Untersuchungen seiner Umgebung und kann die kleinsten Objekte um sich herum lokalisieren. Mit einem hochpräzisen bürstenlosen Motor und einem Encoder-Disc, der auf Lagern montiert ist, dreht es sich reibungslos und hat eine Betriebsdauer von bis zu 500.000 Stunden.
Der G4 ist eine kostengünstige Lösung für Projekte, die Hinderniserkennung, Hindernisvermeidung und/oder simultane Lokalisierung und Kartierung (SLAM) erfordern. Alle YDLIDAR-Produkte sind ROS-ready.
Features
360 Grad 2D-Reichweiten-Scanning
Stabile Leistung, hohe Präzision
16 m Reichweite
Starke Widerstandsfähigkeit gegenüber Umgebungslichtinterferenzen
Bürstenloser Motorantrieb, stabile Leistung
FDA-Lasersicherheitsstandard Klasse I
360 Grad omnidirektionales Scanning, 5-12 Hz adaptive Scanning-Frequenz
OptoMagnetic-Technologie
Drahtlose Datenkommunikation
Scanrate von 9000 Hz
Dokumentation
ROS-Treiber
Ydlidar-Download-Seite
Unten im Abschnitt "Downloads" finden Sie das Datenblatt sowie die Benutzer- und Entwicklungsanleitungen.
Maker Line ist ein Zeilensensor mit einem Array aus 5 IR-Sensoren, der Linien mit einer Breite von 13 mm bis 30 mm verfolgen kann. Auch die Sensorkalibrierung wird vereinfacht. Es ist nicht mehr nötig, das Potentiometer für jeden einzelnen IR-Sensor einzustellen. Sie müssen nur die Kalibrierungstaste 2 Sekunden lang drücken, um in den Kalibrierungsmodus zu wechseln. Anschließend müssen Sie das Sensorarray über die Linie bewegen, die Taste erneut drücken und schon kann es losgehen.
Die Kalibrierungsdaten werden im EEPROM gespeichert und bleiben auch nach dem Ausschalten des Sensors erhalten. Die Kalibrierung muss daher nur einmal durchgeführt werden, es sei denn, die Sensorhöhe, Linienfarbe oder Hintergrundfarbe hat sich geändert.
Maker Line unterstützt auch zwei Ausgänge: 5 x digitale Ausgänge für den Zustand jedes Sensors unabhängig voneinander, was einem herkömmlichen IR-Sensor ähnelt, aber Sie profitieren von der einfachen Kalibrierung, und auch ein analoger Ausgang, dessen Spannung die Linienposition darstellt. Der analoge Ausgang bietet auch eine höhere Auflösung im Vergleich zu einzelnen digitalen Ausgängen. Dies ist besonders nützlich, wenn beim Bau eines Linienverfolgungsroboters mit PID-Steuerung eine hohe Genauigkeit erforderlich ist.
Merkmale
Betriebsspannung: DC 3,3 V und 5 V kompatibel (mit Verpolungsschutz)
Empfohlene Linienbreite: 13 mm bis 30 mm
Wählbare Linienfarbe (hell oder dunkel)
Erfassungsabstand (Höhe): 4 mm bis 40 mm (Vcc = 5 V, schwarze Linie auf weißer Oberfläche)
Sensor-Aktualisierungsrate: 200 Hz
Einfacher Kalibrierungsprozess
Duale Ausgabetypen: 5 x digitale Ausgänge repräsentieren jeden IR-Sensorstatus, 1 x analoger Ausgang repräsentiert die Zeilenposition.
Unterstützt eine breite Palette von Controllern wie Arduino, Raspberry Pi usw.
Dokumentation
Datenblatt
Tutorial: Einen kostengünstigen Linienverfolgungsroboter bauen
Das SparkFun Thing Plus Matter ist das erste leicht zugängliche Board seiner Art, das Matter und das Qwiic-Ökosystem von SparkFun für die schnelle Entwicklung und das Prototyping von Matter-basierten IoT-Geräten kombiniert. Das drahtlose MGM240P-Modul von Silicon Labs bietet sichere Konnektivität sowohl für 802.15.4 mit Mesh-Kommunikation (Thread) als auch für Bluetooth Low Energy 5.3-Protokolle. Das Modul ist bereit für die Integration in das IoT-Protokoll Matter von Silicon Labs für die Heimautomatisierung .
Was ist Matter? Einfach ausgedrückt ermöglicht Matter einen zuverlässigen Betrieb zwischen Smart-Home-Geräten und IoT-Plattformen ohne Internetverbindung, sogar von verschiedenen Anbietern. Auf diese Weise ist Matter in der Lage, zwischen großen IoT-Ökosystemen zu kommunizieren, um ein einziges drahtloses Protokoll zu erstellen, das einfach, zuverlässig und sicher zu verwenden ist.
Das Thing Plus Matter (MGM240P) enthält Qwiic- und LiPo-Batterieanschlüsse und mehrere GPIO-Pins, die sich per Software vollständig multiplexen lassen. Das Board verfügt über das Einzelzellen-LiPo-Ladegerät MCP73831 sowie die Ladezustandsanzeige MAX17048 zum Laden und Überwachen einer angeschlossenen Batterie. Außerdem ist ein µSD-Kartensteckplatz für externe Speicheranforderungen integriert
Das drahtlose MGM240P-Modul basiert auf dem drahtlosen EFR32MG24-SoC mit einem 32-Bit-ARM-Cortext-M33-Core-Prozessor mit 39 MHz, 1536 KB Flash-Speicher und 256 KB RAM. Das MGM240P arbeitet mit gängigen 802.15.4-Wireless-Protokollen (Matter, ZigBee und OpenThread) sowie Bluetooth Low Energy 5.3. Das MGM240P unterstützt Secure Vault von Silicon Labs für Thread-Anwendungen.
Technische Daten
MGM240P Wireless-Modul
Basierend auf dem EFR32MG24 Wireless SoC
32-Bit-ARM-M33-Core-Prozessor (@ 39 MHz)
1536 KB Flash-Speicher
256 KB Arbeitsspeicher
Unterstützt mehrere 802.15.4-Wireless-Protokolle (ZigBee und OpenThread)
Bluetooth Low Energy 5.3
Matter-ready
Secure Vault-Unterstützung
Eingebaute Antenne
Thing Plus Formfaktor (federkompatibel):
Abmessungen: 5,8 x 2,3 cm (2,30 x 0,9")
2 Befestigungslöcher:
4-40 Schrauben kompatibel
21 GPIO-PTH-Ausbrüche
Alle Stifte haben vollständige Multiplexing-Fähigkeit durch Software
SPI-, I²C- und UART-Schnittstellen werden standardmäßig auf beschriftete Pins abgebildet
13 GPIO (6 als analog gekennzeichnet, 7 als GPIO gekennzeichnet)
Alle funktionieren entweder als GPIO oder analog
Eingebauter Digital-Analog-Wandler (DAC)
USB-C-Anschluss
2-poliger JST-LiPo-Akkuanschluss für einen LiPo-Akku (nicht im Lieferumfang enthalten)
4-poliger JST-Qwiic-Anschluss
MC73831 Einzelzellen-LiPo-Ladegerät
Konfigurierbare Laderate (500 mA Standard, 100 mA alternativ)
MAX17048 Einzelzellen-LiPo-Tankanzeige
µSD-Kartensteckplatz
Geringer Stromverbrauch (15 µA, wenn sich MGM240P im Energiesparmodus befindet)
LEDs:
PWR – Rote Power-LED
CHG – Gelbe Batterieladestatus-LED
STAT – Blaue Status-LED
Reset-Taste:
Physischer Taster
Das Reset-Signal kann an A0 gebunden werden, um die Verwendung als Peripheriegerät zu ermöglichen.
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo
Das LILYGO T-Display-S3 Long ist ein vielseitiges Entwicklungsboard mit dem ESP32-S3R8 Dual-Core-LX7-Mikroprozessor. Es verfügt über ein kapazitives 3,4" Touch-TFT-LCD mit einer Auflösung von 180 x 640 Pixeln und bietet eine reaktionsschnelle Schnittstelle für verschiedene Anwendungen.
Dieses Board ist ideal für Entwickler, die eine kompakte und dennoch leistungsstarke Lösung für Projekte suchen, die Touch-Eingabe und drahtlose Kommunikation erfordern. Die Kompatibilität mit gängigen Programmierumgebungen sorgt für ein reibungsloses Entwicklungserlebnis.
Technische Daten
MCU
ESP32-S3R8 Dual-Core LX7 Mikroprozessor
Drahtlose Konnektivität
Wi-Fi 802.11, BLE 5 + BT Mesh
Programmierplattform
Arduino IDE, VS-Code
Flash
16 MB
PSRAM
8 MB
Bat-Spannungserkennung
IO02
Onboard-Funktionen
Boot + Reset-Taste, Batterieschalter
Anzeige
3,4" kapazitives Touch-TFT-LCD
Farbtiefe
565, 666
Auflösung
180 x 640 (RGB)
Funktionierendes Netzteil
3,3 V
Schnittstelle
QSPI
Lieferumfang
1x T-Display S3 Long
1x Stromkabel
2x STEMMA QT/Qwiic-Schnittstellenkabel (P352)
1x Female Pin (zweireihig)
Downloads
GitHub
The EC200U-EU C4-P01 development board features the EC200U-EU LTE Cat 1 wireless communication module, offering a maximum data rate of up to 10 Mbps for downlink and 5 Mbps for uplink. It supports multi-mode and multi-band communication, making it a cost-effective solution.
The board is designed in a compact and unified form factor, compatible with the Quectel multi-mode LTE Standard EC20-CE. It includes an onboard USB-C port, allowing for easy development with just a USB-C cable.
Additionally, the board is equipped with a 40-pin GPIO header that is compatible with most Raspberry Pi HATs.
Features
Equipped with EC200U-EU LTE Cat 1 wireless communication module, multi-mode & multi-band support
Onboard 40-Pin GPIO header, compatible with most Raspberry Pi HATs
5 LEDs for indicating module operating status
Supports TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS protocols, etc.
Supports GNSS positioning (GPS, GLONASS, BDS, Galileo, QZSS)
Onboard Nano SIM card slot and eSIM card slot, dual card single standby
Onboard MIPI connector for connecting MIPI screen and is fully compatible with Raspberry Pi peripherals
Onboard camera connector, supports customized SPI cameras with a maximum of 300,000 pixels
Provides tools such as QPYcom, Thonny IDE plugin, and VSCode plugin, etc. for easy learning and development
Comes with online development resources and manual (example in QuecPython)
Technische Daten
Applicable Regions
Europe, Middle East, Africa, Australia, New Zealand, Brazil
LTE-FDD
B1, B3, B5, B7, B8, B20, B28
LTE-TDD
B38, B40, B41
GSM / GPRS / EDGE
GSM: B2, B3, B5, B8
GNSS
GPS, GLONASS, BDS, Galileo, QZSS
Bluetooth
Bluetooth 4.2 (BR/EDR)
Wi-Fi Scan
2.4 GHz 11b (Rx)
CAT 1
LTE-FDD: DL 10 Mbps; UL 5 Mbps
LTE-TDD: DL 8.96 Mbps; UL 3.1 Mbps
GSM / GPRS / EDGE
GSM: DL 85.6 Kbps; UL 85.6 Kbps
USB-C Port
Supports AT commands testing, GNSS positioning, firmware upgrading, etc.
Communication Protocol
TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS
SIM Card
Nano SIM and eSIM, dual card single standby
Indicator
P01: Module Pin 1, default as EC200A-XX PWM0
P05: Module Pin 5, NET_MODE indicator
SCK1: SIM1 detection indicator, lights up when SIM1 card is inserted
SCK2: SIM2 detection indicator, lights up when SIM2 card is inserted
PWR: Power indicator
Buttons
PWK: Power ON/OFF
RST: Reset
BOOT: Forcing into firmware burning mode
USB ON/OFF: USB power consumption detection switch
Antenna Connectors
LTE main antenna + DIV / WiFi (scanning only) / Bluetooth antenna + GNSS antenna
Operating Temperature
−30~+75°C
Storage Temperature
−45~+90°C
Downloads
Wiki
Quectel Resources
Hier finden Sie alle Arten von Teilen, Komponenten und Zubehör, die Sie in verschiedenen Projekten benötigen, angefangen von einfachen Kabeln, Sensoren und Displays bis hin zu bereits vormontierten Modulen und Kits.