Das Pico-10DOF-IMU ist ein IMU-Sensor-Erweiterungsmodul, das speziell für Raspberry Pi Pico entwickelt wurde. Es enthält Sensoren wie Gyroskop, Beschleunigungsmesser, Magnetometer und Barozeptor und nutzt den I²C-Bus für die Kommunikation. In Kombination mit dem Raspberry Pi Pico können damit Umgebungsdaten wie Temperatur und Luftdruck erfasst oder ganz einfach ein Roboter gebaut werden, der Bewegungen, Gesten und Ausrichtung erkennt.
Merkmale
Standard-Raspberry-Pi-Pico-Header, unterstützt die Raspberry-Pi-Pico-Serie
Integriertes ICM20948 (3-Achsen-Gyroskop, 3-Achsen-Beschleunigungsmesser und 3-Achsen-Magnetometer) zur Erkennung von Bewegungsgesten, Ausrichtung und Magnetfeld
Integrierter Luftdrucksensor LPS22HB zur Messung des atmosphärischen Drucks der Umgebung
Kommt mit Entwicklungsressourcen und Handbuch (Raspberry Pi Pico C/C++ und MicroPython-Beispiele)
Spezifikationen
Betriebsspannung
5 V
Beschleunigungsmesser
Auflösung: 16 Bit Messbereich (konfigurierbar): ±2, ±4, ±8, ±16g Betriebsstrom: 68,9 uA
Gyroskop
Auflösung: 16 Bit Messbereich (konfigurierbar): ±250, ±500, ±1000, ±2000°/Sek Betriebsstrom: 1,23 mA
Magnetometer
Auflösung: 16 Bit Messbereich: ±4900µT Betriebsstrom: 90uA
Barozeptor Messbereich: 260 ~ 1260 hPa Messgenauigkeit (normale Temperatur): ±0,025 hPa Messgeschwindigkeit: 1Hz - 75Hz
Dieses Display entspricht der Norm Nokia 5110 und ist damit ideal zum Anzeigen von Messwertdaten bzw. Messwertgraphen bei einem Mikrocontroller oder einem Einplatinencomputer. Zusätzlich ist es zu allen Raspberry Pi, Arduino, CubieBoard, Banana Pi und Mikrocontrollern kompatibel – ohne zusätzlichen Aufwand.
Technische Daten
Chipsatz
Philips PCD8544
Schnittstelle
SPI
Auflösung
84 x 48 Pixel
Spannungsversorgung
2,7-3,3 V
Besondere Merkmale
Hintergrundbeleuchtung
Kompatibel mit
Raspberry Pi, Arduino, CubieBoard, Banana Pi und Mikrocontroller
Abmessungen
45 x 45 x 14 mm
Gewicht
14 g
Das SparkFun GPS-RTK2 legt die Messlatte für hochpräzises GPS höher und ist das neueste in einer Reihe von leistungsstarken RTK-Karten mit dem ZED-F9P-Modul von u-blox. Das ZED-F9P ist ein Spitzenmodul für hochgenaue GNSS- und GPS-Ortungslösungen, einschließlich RTK mit einer dreidimensionalen Genauigkeit von 10 mm. Mit dieser Karte werden Sie in der Lage sein, die X-, Y- und Z-Position Ihres (oder eines beliebigen Objekts) innerhalb der Breite Ihres Fingernagels zu bestimmen! Das ZED-F9P ist einzigartig, da es sowohl als Rover als auch als Basisstation eingesetzt werden kann. Durch die Verwendung unseres praktischen Qwiic-Systems ist kein Löten erforderlich, um ihn mit dem Rest Ihres Systems zu verbinden. Dennoch haben wir die Pins im 0,1"-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Wir haben sogar eine wiederaufladbare Backup-Batterie eingebaut, um die neueste Modulkonfiguration und Satellitendaten bis zu zwei Wochen lang verfügbar zu halten. Diese Batterie hilft beim "Warm-Start" des Moduls und verkürzt die Zeit bis zur ersten Reparatur drastisch. Das Modul verfügt über einen "Survey-in"-Modus, der es ermöglicht, das Modul als Basisstation zu verwenden und RTCM 3.x-Korrekturdaten zu erzeugen. Die Konfigurationsmöglichkeiten des Moduls
Die Anzahl der Konfigurationsmöglichkeiten des ZED-F9P ist unglaublich! Geofencing, variable I2C-Adresse, variable Update-Raten, sogar die hochgenaue RTK-Lösung kann auf 20Hz erhöht werden. Der GPS-RTK2 hat sogar fünf Kommunikationsanschlüsse, die alle gleichzeitig aktiv sind: USB-C (der sich als COM-Port enumeriert), UART1 (mit 3,3V TTL), UART2 für den RTCM-Empfang (mit 3,3V TTL), I2C (über die beiden Qwiic-Anschlüsse oder ausgebrochene Pins) und SPI.
Sparkfun hat außerdem eine umfangreiche Arduino-Bibliothek für u-blox-Module geschrieben, um das GPS-RTK2 einfach über das Qwiic Connect System auszulesen und zu steuern. Lassen Sie NMEA hinter sich! Verwenden Sie eine viel leichtere binäre Schnittstelle und gönnen Sie Ihrem Mikrocontroller (und seinem einen seriellen Port) eine Pause. Die SparkFun Arduino-Bibliothek zeigt, wie man Breitengrad, Längengrad, sogar Kurs und Geschwindigkeit über I2C auslesen kann, ohne dass ständige serielle Abfragen nötig sind.
Features
Gleichzeitiger Empfang von GPS, GLONASS, Galileo und BeiDou
Empfang der Bänder L1C/A und L2C
Spannung: 5 V oder 3,3 V, aber alle Logik ist 3,3 V
Strom: 68 mA - 130 mA (variiert mit Konstellationen und Tracking-Status)
Zeit bis zum ersten Fix: 25 s (kalt), 2 s (heiß)
Max Navigation Rate:
PVT (Basisortung über UBX-Binärprotokoll) - 25 Hz
RTK - 20 Hz
Raw - 25 Hz
Horizontale Positionsgenauigkeit:
2,5 m ohne RTK
0,010 m mit RTK
Max. Höhe: 50k m
Max. Geschwindigkeit: 500 m/s
Gewicht: 6,8 g
Abmessungen: 43,5 mm x 43,2 mm
2 x Qwiic-Stecker
Heutzutage verwenden immer mehr und intelligentere Telefone und Laptops USB-C-Anschlüsse wegen ihrer leistungsstarken Funktion, mit der Strom, Daten und Videoinformationen übertragen werden können. Durch die USB-C-Lösung kann das Gerät im Vergleich zum Thunderbolt 3- oder HDMI-kompatiblen Anschluss auch viel dünner werden. Aus diesem Grund haben wir den tragbaren USB-C-Monitor CrowVi entwickelt.Der superdünne CrowVi 13,3-Zoll-Monitor verfügt über 2 USB-C-Anschlüsse, einer dient der Stromversorgung und der andere dient der Datenübertragung von Video- und Touchscreen-Befehlen. Der Bildschirm kann auch über den Mini-HDMI-kompatiblen Anschluss angeschlossen werden Port. Die Auflösung von CrowVi beträgt 1920x1080, was ein besseres Erlebnis beim Spielen und Ansehen von Filmen bietet.FeaturesDas CrowVi-Gehäuse besteht aus einer Aluminiumlegierung, ist nur 5 mm dick und der Bildschirmrand ist nur 6 mm schmal. Der gesamte Monitor sieht exquisit und elegant aus.CrowVi kann nicht nur als Dual-Monitor für Smartphones und Laptops fungieren, sondern auch als Einzelmonitor für Gaming-Geräte und einige Computer-Mainframes wie Mac mini, Raspberry Pi usw.CrowVi bietet Ihnen im Vergleich zum Smartphone eine viel größere Ansicht. Es ermöglicht bessere Erlebnisse beim Spielen und Ansehen von Filmen.Technische DatenBildschirm13,3' TFT IPS LCDBildschirmgröße294,5 x 164 mmDicke5-10 mmAuflösung1920 x 1080Helligkeit300 NitsAktualisierungsrate60 HzFarbraum16,7 Mio., NTSC 72%, sRGB bis zu 100%Kontrast800:1HintergrundbeleuchtungLEDBetrachtungswinkel178°Seitenverhältnis16:9SprecherZwei Lautsprecher 8 Ω, 2 WShellAluminiumlegierungEingabeMini-HD, USB-C, PDAusgabe3,5-mm-KopfhöreranschlussMachtPD 5-20 V oder USB-C 3.0Betriebstemperatur0-50°CAbmessungen313 x 198 x 10 mmGewicht (Smart Case)350 gGewicht (Monitor)700 gLieferumfang13,3-Zoll-Touchscreen-MonitorIntelligentes GehäuseUSB-C-auf-USB-C-Kabel (1 m)USB-A-zu-USB-C-Stromkabel (1 m)HDMI-zu-Mini-HDMI-Kabel (1 m)Netzteil (5 V/2 A)HDMI-zu-Mini-HDMI-AdapterStaubtuchHandbuchDownloadsUser manual
Das farbige, spiralgebundene SIK-Handbuch (im Lieferumfang enthalten) enthält Schritt-für-Schritt-Anleitungen mit Schaltplänen und Anschlusstabellen für den Aufbau jedes Projekts und jeder Schaltung mit den enthaltenen Teilen. Es werden vollständige Beispielcodes zur Verfügung gestellt, neue Konzepte und Komponenten werden direkt vor Ort erklärt, und Tipps zur Fehlerbehebung bieten Hilfe, wenn etwas schief geht.
Das Kit erfordert keine Lötarbeiten und wird für Anfänger ab 10 Jahren empfohlen, die ein Arduino-Starterkit suchen. Für die SIK-Version 4.1 hat Sparkfun einen völlig neuen Ansatz für die Vermittlung von eingebetteter Elektronik gewählt. In früheren Versionen des SIK konzentrierte sich jede Schaltung auf die Einführung einer neuen Technologie. Mit SIK v4.1 werden die Komponenten im Kontext der Schaltung, die Sie bauen, vorgestellt. Jede Schaltung baut auf der letzten auf und führt zu einem Projekt, das alle im Handbuch vorgestellten Komponenten und Konzepte beinhaltet. Mit neuen Bauteilen und einer völlig neuen Strategie werden Sie, auch wenn Sie den SIK schon einmal benutzt haben, eine ganz neue Erfahrung machen!
Das SIK V4.1 enthält das Redboard Qwiic, womit Sie in das SparkFun Qwiic-Ökosystem einsteigen können, nachdem Sie sich mit den SIK-Schaltungen vertraut gemacht haben. Das SparkFun Qwiic Connect System ist ein Ökosystem von I2C-Sensoren, Aktoren, Abschirmungen und Kabeln, die das Prototyping schneller und weniger fehleranfällig machen. Alle Qwiic-fähigen Boards verwenden einen gemeinsamen 4-poligen JST-Stecker im Raster 1mm. Dies reduziert den Platzbedarf auf der Leiterplatte und polarisierte Anschlüsse bedeuten, dass man nichts falsch anschließen kann. Mit der Erweiterung des SparkFun RedBoard Qwiic müssen Sie eine neue Treiberinstallation herunterladen, die sich von der des originalen SparkFun RedBoard unterscheidet.
Inklusive
SparkFun RedBoard Qwiic
Arduino- und Breadboard-Halterung
SparkFun Inventor's Kit Guidebook
Weißes lötfreies Breadboard
Transportkoffer
SparkFun Mini-Schraubendreher
16 x 2 Weiß-auf-Schwarz-LCD (mit Headern)
SparkFun Motor Driver (mit Stiftleisten)
Paar Gummiräder
Paar Hobby-Getriebemotoren
Kleiner Servo
Ultraschall-Abstandssensor
TMP36 Temperatursensor
6' USB Micro-B Kabel
Überbrückungsdrähte
Fotozelle
Dreifarbige LED
Rote, blaue, gelbe und grüne LEDs
Rote, blaue, gelbe und grüne taktile Tasten
10K Trimmpotentiometer
Mini-Netzschalter
Piezo-Lautsprecher
AA-Batteriehalter
330 und 10KWiderstände
Binder Clip
Dual-Lock™-Befestigung
Das AVR-IoT WA-Entwicklungsboard kombiniert einen leistungsstarken ATmega4808 AVR MCU, einen ATECC608A CryptoAuthentication™ Secure Element IC und den vollständig zertifizierten ATWINC1510 Wi-Fi-Netzwerkcontroller – was die einfachste und effektivste Möglichkeit bietet, Ihre eingebettete Anwendung mit Amazon Web Services zu verbinden ( AWS). Das Board verfügt außerdem über einen integrierten Debugger und erfordert keine externe Hardware zum Programmieren und Debuggen der MCU.
Im Auslieferungszustand ist auf der MCU ein Firmware-Image vorinstalliert, mit dem Sie mithilfe der integrierten Temperatur- und Lichtsensoren schnell eine Verbindung zur AWS-Plattform herstellen und Daten an diese senden können. Sobald Sie bereit sind, Ihr eigenes benutzerdefiniertes Design zu erstellen, können Sie mithilfe der kostenlosen Softwarebibliotheken in Atmel START oder MPLAB Code Configurator (MCC) ganz einfach Code generieren.
Das AVR-IoT WA-Board wird von zwei preisgekrönten integrierten Entwicklungsumgebungen (IDEs) unterstützt – Atmel Studio und Microchip MPLAB X IDE – und gibt Ihnen die Freiheit, mit der Umgebung Ihrer Wahl Innovationen zu entwickeln.
Merkmale
ATmega4808 Mikrocontroller
Vier Benutzer-LEDs
Zwei mechanische Tasten
mikroBUS-Header-Footprint
TEMT6000 Lichtsensor
MCP9808 Temperatursensor
ATECC608A CryptoAuthentication™-Gerät
WINC1510 WiFi-Modul
Onboard-Debugger
Auto-ID zur Platinenidentifizierung in Atmel Studio und Microchip MPLAB
Eine grüne Betriebs- und Status-LED auf der Platine
Programmieren und Debuggen
Virtueller COM-Port (CDC)
Zwei DGI GPIO-Leitungen
USB- und batteriebetrieben
Integriertes Li-Ion/LiPo-Akkuladegerät
ESP32-S2-Saola-1R ist ein kleines ESP32-S2-basiertes Entwicklungsboard. Die meisten I/O-Pins sind zur einfachen Anbindung auf beiden Seiten bis zu den Stiftleisten herausgebrochen. Entwickler können Peripheriegeräte entweder mit Überbrückungskabeln verbinden oder ESP32-S2-Saola-1R auf einem Steckbrett montieren.
ESP32-S2-Saola-1R ist mit dem ESP32-S2-WROVER-Modul ausgestattet, einem leistungsstarken, generischen Wi-Fi-MCU-Modul, das über eine umfangreiche Auswahl an Peripheriegeräten verfügt. Es ist eine ideale Wahl für vielfältige Anwendungsszenarien rund um das Internet der Dinge (IoT), tragbare Elektronik und Smart Home. Die Platine verfügt über eine PCB-Antenne und verfügt über einen 4 MB externen SPI-Flash und einen zusätzlichen 2 MB pseudostatischen SPI-RAM (PSRAM).
Merkmale
MCU
ESP32-S2 eingebetteter Xtensa®-Single-Core-32-Bit-LX7-Mikroprozessor, bis zu 240 MHz
128 KB ROM
320 KB SRAM
16 KB SRAM im RTC
W-lan
802.11 b/g/n
Bitrate: 802.11n bis zu 150 Mbit/s
A-MPDU- und A-MSDU-Aggregation
Unterstützung für 0,4 µs Schutzintervall
Mittenfrequenzbereich des Betriebskanals: 2412 ~ 2484 MHz
Hardware
Schnittstellen: GPIO, SPI, LCD, UART, I²C, I²S, Kameraschnittstelle, IR, Impulszähler, LED-PWM, TWAI (kompatibel mit ISO 11898-1), USB OTG 1.1, ADC, DAC, Berührungssensor, Temperatursensor
40-MHz-Quarzoszillator
4 MB SPI-Flash
Betriebsspannung/Stromversorgung: 3,0 ~ 3,6 V
Betriebstemperaturbereich: –40 ~ 85 °C
Abmessungen: 18 × 31 × 3,3 mm
Anwendungen
Allgemeiner IoT-Sensor-Hub mit geringem Stromverbrauch
Generische IoT-Datenlogger mit geringem Stromverbrauch
Kameras für Video-Streaming
Over-the-Top-Geräte (OTT).
USB-Geräte
Spracherkennung
Bilderkennung
Mesh-Netzwerk
Heimautomatisierung
Smart-Home-Systemsteuerung
Intelligentes Gebäude
Industrielle Automatisierung
Intelligente Landwirtschaft
Audioanwendungen
Anwendungen im Gesundheitswesen
Wi-Fi-fähiges Spielzeug
Tragbare Elektronik
Einzelhandels- und Gastronomieanwendungen
Intelligente POS-Geräte
PÚCA DSP ist ein Arduino-kompatibles Open-Source-ESP32-Entwicklungsboard für Audio- und digitale Signalverarbeitungsanwendungen (DSP) mit umfangreichen Audioverarbeitungsfunktionen. Es bietet Audioeingänge, -ausgänge, ein rauscharmes Mikrofonarray, eine integrierte Testlautsprecheroption, zusätzlichen Speicher, Batterielademanagement und ESD-Schutz – alles auf einer kleinen, Breadboard-freundlichen Platine.
Synthesizer, Installationen, Voice UI und mehr
PÚCA DSP kann für eine breite Palette von DSP-Anwendungen eingesetzt werden, unter anderem in den Bereichen Musik, Kunst, Kreativtechnik und adaptive Technologie. Beispiele aus dem Musikbereich sind digitale Musiksynthese, mobile Aufnahmen, Bluetooth-Lautsprecher, drahtlose Richtmikrofone und die Entwicklung intelligenter Musikinstrumente. Beispiele aus dem Bereich Kunst sind akustische Sensornetzwerke, Klangkunstinstallationen und Internet-Radioanwendungen. Beispiele aus dem Bereich der kreativen und adaptiven Technologie sind das Design von Sprachbenutzerschnittstellen (VUI) und Web-Audio für das Internet der Klänge.
Kompaktes, integriertes Design
PÚCA DSP wurde für den mobilen Einsatz konzipiert. In Verbindung mit einem externen 3,7-V-Akku kann er fast überall eingesetzt oder in nahezu jedes Gerät, Instrument oder jede Installation integriert werden. Sein Design entstand aus monatelangen Experimenten mit verschiedenen ESP32-Entwicklungsboards, DAC-Breakout-Boards, ADC-Breakout-Boards, Mikrofon-Breakout-Boards und Audio-Anschluss-Breakout-Boards, und – trotz seiner geringen Größe – schafft er es, all diese Funktionen in einem einzigen Board zu vereinen. Und das ohne Kompromisse bei der Signalqualität.
Technische Daten
Prozessor und Speicher
Espressif ESP32 Pico D4 Prozessor
32-bit Dual-Core 80 MHz/160 MHz/240 MHz
4 MB SPI Flash mit 8 MB zusätzlichem PSRAM (Original Edition)
Drahtloses 2,4-GHz-WLAN 802.11b/g/n
Bluetooth BLE 4.2
3D-Antenne
Audio
Wolfson WM8978 Stereo-Audio-Codec
Audio-Line-In am 3,5-mm-Stereoanschluss
Audio-Kopfhörer-/Line-Ausgang am 3,5-mm-Stereoanschluss
Stereo-Aux-Line-In, Audio-Mono-Out zum GPIO-Header geleitet
2x Knowles SPM0687LR5H-1 MEMS-Mikrofone
ESD-Schutz an allen Audioeingängen und -ausgängen
Unterstützung für Abtastraten von 8, 11,025, 12, 16, 22,05, 24, 32, 44,1 und 48 kHz
1-W-Lautsprechertreiber, auf GPIO-Header geroutet
DAC SNR 98 dB, THD -84 dB ('A'-gewichtet bei 48 kHz)
ADC SNR 95 dB, THD -84 dB (‘A’-gewichtet bei 48 kHz)
Line-Eingangsimpedanz: 1 MOhm
Line-Ausgangsimpedanz: 33 Ohm
Formfaktor und Konnektivität
Breadboard-freundlich
70 x 24 mm
11x GPIO-Pins mit 2,54 mm Rastermaß, mit Zugriff auf beide ESP32-ADC-Kanäle, JTAG und kapazitive Touch-Pins
USB 2.0 über USB-Typ-C-Anschluss
Stromversorgung
3,7/4,2 V Lithium-Polymer-Akku, USB oder externe 5 V DC-Stromquelle
ESP32 und Audio-Codec können softwaregesteuert in Energiesparmodi versetzt werden
Erkennung des Batteriespannungspegels
ESD-Schutz am USB-Datenbus
Downloads
GitHub
Datasheet
Links
Crowd Supply Campaign (includes FAQs)
Hardware Overview
Programming the Board
The Audio Codec
Das SparkFun RedBoard Qwiic ist eine Arduino-kompatible Platine, die Funktionen verschiedener Arduinos mit dem Qwiic Connect System kombiniert.
Merkmale
ATmega328-Mikrocontroller mit Optiboot-Bootloader
Kompatibel mit R3 Shield
CH340C Seriell-USB-Konverter
Spannungspegel-Jumper von 3,3 V bis 5 V
A4 / A5 Brücken
Spannungsregler AP2112
ISP-Header
Eingangsspannung: 7 V - 15 V
1 Qwiic-Anschluss
16 MHz Taktfrequenz
32 k Flash-Speicher
Komplette SMD-Konstruktion
Verbesserter Reset-Knopf
Ein moderner USB-C-Anschluss macht die Programmierung einfach. Zusätzlich zu den herausgebrochenen Pins ermöglichen zwei separate Qwiic-fähige I2C-Anschlüsse eine einfache Verkettung von Qwiic-fähigen Geräten. Für fortgeschrittene Anwender, die die Leistung und Geschwindigkeit professioneller Tools nutzen möchten, haben wir die SWD-Pins freigelegt. Ein USB-A-Anschluss ist für Prozessor-Boards mit USB-Host-Unterstützung vorgesehen.
Eine Pufferbatterie ist für Prozessor-Boards mit RTC vorgesehen. Wenn Sie eine "Menge" GPIO mit einem einfach zu programmierenden, marktreifen Modul benötigen, ist das ATP genau das Richtige für Sie. Wir haben sogar einen praktischen Jumper hinzugefügt, um den Stromverbrauch für Low-Power-Tests zu messen.
Merkmale
M.2-Anschluss
Betriebsspannungsbereich
~3,3 V bis 6,0 V (über VIN an AP7361C 3,3V Spannungsregler)
3,3 V (über 3V3)
Ports [1]
1 x USB Typ C
1 x USB Typ A Host
2 x Qwiic Aktiviert I2C
1 x CAN
1 x I2S
2 x SPI
2 x UARTs
2 x Dedizierte Analog-Pins
2 x Dedizierte PWM-Pins
2 x Dedizierte digitale Pins
12 x Allzweck-Eingangs-/Ausgangs-Pins
1 x SWD 2x5 Stiftleiste
1 mAh Batterie-Backup für RTC
Tasten
Rücksetzen
Booten
LEDs
Power
3,3 V
Phillips #0 M2.5x3mm Schraube enthalten
Das Data Logging Carrier Board bietet Anschlüsse für I2C über einen Qwiic-Stecker oder Standard-PTH-Pins mit 0,1"-Abstand sowie SPI- und serielle UART-Anschlüsse für die Datenerfassung von Peripheriegeräten, die diese Kommunikationsprotokolle verwenden.
Mit dem Data Logging Carrier Board können Sie die Stromversorgung sowohl für den Qwiic-Anschluss auf dem Board als auch für eine dedizierte 3,3-V-Stromschiene für nicht-Qwiic-Peripheriegeräte steuern, so dass Sie auswählen können, wann Sie die Peripheriegeräte mit Strom versorgen, von denen Sie die Daten überwachen. Außerdem verfügt es über einen Ladeschaltkreis für einzellige Lithium-Ionen-Akkus und einen separaten RTC-Batterie-Backup-Schaltkreis, um die Stromversorgung einer Echtzeituhrschaltung auf dem Prozessor-Board aufrechtzuerhalten.
Merkmale
M.2 MicroMod-Anschluss
microSD-Buchse
USB-C Anschluss
3,3 V 1 A Spannungsregler
Qwiic-Anschluss
Boot/Reset-Tasten
RTC-Backup-Batterie & Ladeschaltung
Independente 3,3V-Regler für Qwiic-Bus und Peripherie-Erweiterungen
Steuerung durch digitale Pins auf der Prozessorplatine, um stromsparende Sleep-Modi zu ermöglichen
Phillips #0 M2,5 x 3 mm Schraube enthalten
Bringen Sie Farbe in Ihre Projekte mit dieser Kollektion aus roten, grünen, gelben, blauen und weißen LEDs. Sie sind mit verschiedenen Strombegrenzungswiderständen ausgestattet, um die Teile zu schützen und die Helligkeit zu steuern.
Inbegriffen
10-mm-LEDs
1x Hrsg
1x grün
1x gelb
1x blau
1x weiß
5-mm-LEDs
5x Aufl
5x grün
5x gelb
5x blau
5x weiß
3mm LEDs
5x Aufl
5x grün
5x gelb
5x blau
5x weiß
25x 330 Ω Widerstände
10x 1 kΩ Widerstände
10x 10 kΩ Widerstände
10x 100 kΩ Widerstände
10x 1 MΩ Widerstände
ATOM U ist ein kompaktes IoT-Entwicklungskit für Spracherkennung mit geringem Stromverbrauch. Es verwendet einen ESP32-Chipsatz, ausgestattet mit 2 stromsparenden Xtensa 32-Bit LX6 Mikroprozessoren mit einer Hauptfrequenz von bis zu 240 MHz. Eingebaute USB-A-Schnittstelle, IR-Sender, programmierbare RGB-LED. Plug-and-Play, einfaches Hoch- und Herunterladen von Programmen. Integriertes Wi-Fi und digitales Mikrofon SPM1423 (I2S) für die klare Tonaufzeichnung. geeignet für HMI, Speech-to-Text (STT).
Low-Code-Entwicklung
ATOM U unterstützt die grafische Programmierplattform UIFlow, skriptfrei, Cloud-Push; Vollständig kompatibel mit Arduino, MicroPython, ESP32-IDF und anderen Mainstream-Entwicklungsplattformen, um schnell verschiedene Anwendungen zu erstellen.
Hohe Integration
ATOM U verfügt über einen USB-A-Anschluss für die Programmierung/Stromversorgung, einen IR-Sender, eine programmierbare RGB-LED (1) und eine Taste (1). Der fein abgestimmte RF-Schaltkreis sorgt für eine stabile und zuverlässige drahtlose Kommunikation.
Starke Erweiterbarkeit
ATOM U ist ein einfacher Zugang zum Hardware- und Softwaresystem von M5Stack.
Merkmale
ESP32-PICO-D4 (2,4GHz Wi-Fi-Doppelmodus)
Integrierte programmierbare RGB-LED und Taste
Kompaktes Design
Eingebauter IR-Sender
Erweiterbare Pinbelegung und GROVE-Port
Entwicklungsplattform:
UIFlow
MicroPython
Arduino
Spezifikationen
ESP32-PICO-D4
240MHz Doppelkern, 600 DMIPS, 520KB SRAM, 2.4G Wi-Fi
Mikrofon
SPM1423
Empfindlichkeit des Mikrofons
94 dB SPL@1 KHz Typischer Wert: -22 dBFS
Signal-Rausch-Verhältnis des Mikrofons
94 dB SPL@1 KHz, A-gewichtet Typischer Wert: 61,4 dB
Standby-Arbeitsstrom
40.4 mA
Unterstützung der Eingangsschallfrequenz
100 Hz ~ 10 KHz
Unterstützung der PDM-Taktfrequenz
1.0 ~ 3.25 MHz
Gewicht
8.4 g
Dimensionen
52 x 20 x 10 mm
Downloads
Documentation
Das SparkFun Qwiic OpenLog ist der intelligentere und besser aussehende Cousin des äußerst beliebten OpenLog, aber jetzt haben wir die ursprüngliche serielle Schnittstelle auf I²C portiert! Dank der hinzugefügten Qwiic-Anschlüsse können Sie mehrere I²C-Geräte in Reihe schalten und alle protokollieren, ohne Ihren seriellen Port zu belegen. Das Qwiic OpenLog kann riesige Mengen serieller Daten speichern oder „protokollieren“ und als eine Art Blackbox fungieren, um alle von Ihrem Projekt generierten Daten für wissenschaftliche oder Debugging-Zwecke zu speichern. Mit unserem praktischen Qwiic-System ist kein Löten erforderlich, um es mit dem Rest Ihres Systems zu verbinden. Wir haben jedoch immer noch Pins im Abstand von 0,1 Zoll herausgebrochen, falls Sie lieber ein Steckbrett verwenden möchten. Wie sein Vorgänger läuft das SparkFun Qwiic OpenLog auf einem integrierten ATmega328, der dank des integrierten Resonators mit 16 MHz läuft. Der ATmega328 verfügt über den Optiboot-Bootloader, der es dem OpenLog ermöglicht, mit der „Arduino Uno“-Boardeinstellung in der Arduino IDE kompatibel zu sein. Es ist wichtig zu wissen, dass das Qwiic OpenLog im Leerlaufmodus (nichts aufzuzeichnen) ungefähr 2 mA bis 6 mA verbraucht. Während einer vollständigen Aufzeichnung kann das OpenLog jedoch je nach verwendeter microSD-Karte 20 mA bis 23 mA verbrauchen. Das Qwiic OpenLog unterstützt auch Clock Stretching, was bedeutet, dass es noch besser als das Original funktioniert und Daten mit bis zu 20.000 Bytes pro Sekunde bei 400 kHz aufzeichnet. Wenn der Empfangspuffer voll ist, hält dieses OpenLog die Taktleitung und teilt dem Master mit, dass es beschäftigt ist. Sobald das Qwiic OpenLog mit einer Aufgabe fertig ist, gibt es den Takt frei, sodass die Daten ohne Beschädigung weiter fließen können. Für eine noch bessere Leistung ist das OpenLog Artemis das richtige Tool für Sie, mit Protokollierungsgeschwindigkeiten von bis zu 500.000 bps.
Merkmale
Kontinuierliche Datenaufzeichnung mit 20.000 Bytes pro Sekunde ohne Beschädigung
Kompatibel mit Hochgeschwindigkeits-I²C mit 400 kHz
Kompatibel mit microSD-Karten von 64 MB bis 32 GB (FAT16 oder FAT32)
Vorinstallierter Uno-Bootloader, sodass das Aktualisieren der Firmware so einfach ist wie das Laden einer neuen Skizze
Gültige I²C-Adressen: 0x08 bis 0x77
2x Qwiic-Anschlüsse
Downloads
Schema
Eagle-Dateien
Anschlussanleitung
Arduino-Bibliothek
GitHub
Das M5Stack Core Ink Development Kit ist ein neues E-Ink-Display, das einen ESP32-Pico-D4 verwendet, um die Vorteile der E-Ink-Technologie zu nutzen.
E-Ink-Displays schonen die Augen, haben einen extrem geringen Stromverbrauch und können ein Bild auch dann behalten, wenn ihnen der Strom ausgeht.
Features
ESP32 Standard-Wireless-Funktionen WiFi, Bluetooth
Interner 4M-Blitz
Low-Power-Anzeige
180-Grad-Betrachtungswinkel
Erweiterungsports
Eingebauter Magnet
Interne Batterie
Multifunktionstaste
Status-LED
Summer
Deep-Sleep-Funktionalität
Anwendungen
IoT-Terminal
EBook
Industrielles Bedienfeld
Elektronisches Etikett
Inbegriffen
1x CoreInk
1x LiPo 390mAh
1x Typ-C USB (20 cm)
Bitte beachten Sie: Vermeiden Sie bei der Verwendung eine lange Hochfrequenzaktualisierung. Das empfohlene Aktualisierungsintervall beträgt (15 Sekunden/Zeit). Setzen Sie das Gerät nicht über längere Zeit ultravioletten Strahlen aus, da es sonst zu irreversiblen Schäden am Tintensieb kommen kann.
Dieses Modul enthält eine integrierte Trace-Antenne, passt den IC an einen FCC-zugelassenen Footprint an und enthält Entkopplungs- und Timing-Mechanismen, die in einer Schaltung mit dem nackten nRF52840-IC entwickelt werden müssten. Der Bluetooth-Transceiver auf dem nRF52840 verfügt über einen BT 5.1-Stack. Er unterstützt Bluetooth 5, Bluetooth Mesh, IEEE 802.15.4 (Zigbee & Thread) und 2,4Ghz RF-Funkprotokolle (einschließlich des proprietären RF-Protokolls von Nordic), so dass Sie auswählen können, welche Option für Ihre Anwendung am besten geeignet ist.
Merkmale
ARM Cortex-M4-CPU mit einer Fließkommaeinheit (FPU)
1MB interner Flash -- Für alle Ihre Programm-, SoftDevice- und Dateispeicheranforderungen!
256kB interner RAM -- Für Ihren Stack und Heap-Speicher.
Integrierter 2,4GHz-Funk mit Unterstützung für:
Bluetooth Low Energy (BLE) -- Mit Unterstützung für periphere und/oder zentrale BLE-Geräte
Bluetooth 5 -- Mesh Bluetooth!
ANT -- Wenn Sie das Gerät in einen Herzfrequenz- oder Trainingsmonitor verwandeln möchten.
Nordic's proprietäres RF-Protokoll -- Wenn Sie sicher mit anderen Nordic-Geräten kommunizieren wollen.
Jede E/A-Peripherie, die Sie brauchen könnten.
USB -- Verwandeln Sie Ihren nRF52840 in einen USB-Massenspeicher, verwenden Sie eine CDC-Schnittstelle (USB-Seriell) und mehr.
UART -- Serielle Schnittstellen mit Unterstützung für Hardware-Flow-Control, falls gewünscht.
I²C -- Jedermanns liebste 2-Draht bidirektionale Busschnittstelle
SPI -- Wenn Sie die 3+-drahtige serielle Schnittstelle bevorzugen
Analog-Digital-Wandler (ADC) -- Acht Pins am nRF52840 Mini Breakout unterstützen analoge Eingänge
PWM -- Timer-Unterstützung an jedem Pin bedeutet PWM-Unterstützung für die Ansteuerung von LEDs oder Servomotoren.
Echtzeituhr (RTC) -- Behält Sekunden und Millisekunden genau im Auge, unterstützt auch zeitgesteuerte Deep-Sleep-Funktionen.
Drei UARTs
Primär an die USB-Schnittstelle gebunden. Zwei Hardware-UARTs.
Zwei I²C-Busse
Zwei SPI-Busse
Der sekundäre SPI-Bus wird hauptsächlich für Flash-ICs verwendet.
PDM-Audioverarbeitung
Zwei analoge Eingänge
Zwei dedizierte digitale E/A-Pins
Zwei dedizierte PWM-Pins
Elf Allzweck-E/A-Pins
Spracherkennung, Always-on-Sprachbefehle, Gesten- oder Bilderkennung sind mit TensorFlow-Anwendungen möglich. Die Cloud ist beeindruckend robust, aber die ständige Verbindung erfordert Strom und Konnektivität, die möglicherweise nicht verfügbar sind. Edge Computing übernimmt diskrete Aufgaben wie die Feststellung, ob jemand "Ja" gesagt hat, und reagiert entsprechend. Die Audioanalyse wird auf der MicroMod-Kombination und nicht im Web durchgeführt. Dadurch werden Kosten und Komplexität drastisch reduziert und gleichzeitig potenzielle Datenlecks begrenzt.
Das Board verfügt über zwei MEMS-Mikrofone (eines mit PDM-Schnittstelle, eines mit I2S-Schnittstelle), einen 3-Achsen-Beschleunigungsmesser ST LIS2DH12, einen Anschluss für eine Kamera (separat erhältlich) und einen Qwiic-Anschluss. Ein moderner USB-C-Anschluss macht die Programmierung einfach und wir haben den JTAG-Anschluss für fortgeschrittene Anwender freigelegt, die lieber die Leistung und Geschwindigkeit professioneller Tools nutzen möchten. Wir haben sogar einen praktischen Jumper hinzugefügt, um den Stromverbrauch für Tests mit geringem Stromverbrauch zu messen.
Features
M.2 MicroMod Keyed-E H4,2mm 65 Pins SMD Stecker 0,5mm
Digitales I2C MEMS-Mikrofon PDM Invensense ICS-43434 (COMP)
Digitales PDM-MEMS-Mikrofon PDM Knowles SPH0641LM4H-1 (IC)
ML414H-IV01E Lithium-Batterie für RTC
ST LIS2DH12TR Beschleunigungssensor (3-Achsen, Ultra-Low-Power)
24 Pin 0,5mm FPC Stecker (Himax Kameraanschluss)
USB - C
Qwiic-Anschluss
MicroSD-Buchse
Phillips #0 M2.5x3mm Schraube enthalten
Der Grove DHT11 Temperatur- und Feuchtigkeitssensor ist ein hochwertiger, kostengünstiger digitaler Temperatur- und Feuchtigkeitssensor basierend auf dem DHT11-Modul.
Es ist das am häufigsten verwendete Temperatur- und Feuchtigkeitsmodul für Arduino und Raspberry Pi. Es wird von Hardware-Enthusiasten wegen seiner vielen Vorteile wie geringem Stromverbrauch und hervorragender Langzeitstabilität sehr geschätzt. Eine relativ hohe Messgenauigkeit kann zu sehr geringen Kosten erreicht werden.
Das digitale Single-Bus-Signal wird über den integrierten ADC ausgegeben, wodurch die E/A-Ressourcen der Steuerplatine geschont werden.
Merkmale
Abmessungen: 40 x 20 x 8 mm
Gewicht: 10 g
Batterie: Ausschließen
Eingangsspannung: 3,3 V und 5 V
Messstrom: 1,3 mA - 2,1 mA
Messfeuchtigkeitsbereich: 5 % - 95 % RH
Messtemperaturbereich: -20 ℃ - 60 ℃
Dieses Grove CAN-BUS-Modul, das auf dem GD32E103 basiert, verwendet ein brandneues Design, verwendet den kostengünstigen und leistungsstarken GD32E103-Mikrocontroller als Hauptsteuerung und arbeitet mit einer von uns geschriebenen Firmware zusammen, um die Funktion der seriellen Schnittstelle zu CAN FD zu realisieren.
Funktionen
Unterstützung der CAN-Kommunikation: Implementiert CAN FD mit bis zu 5 Mb/s
Einfache Programmierung: Unterstützung von AT-Befehlen, die eine einfache serielle Schnittstellenprogrammierung ermöglichen
Grove-Ökosystem: Kleine Größe von 20 x 40 x 10 mm, 4-poliger Grove-Steckverbinder zum Plug-and-Play, Arduino-kompatibel
Dieses Grove CAN-BUS-Modul unterstützt die CAN FD (CAN mit flexiblem Datenrate)-Kommunikation, die eine Erweiterung des ursprünglichen CAN-Protokolls gemäß ISO 11898-1 ist und auf erhöhte Bandbreitenanforderungen in Automobilnetzwerken reagiert. Bei CAN FD wird die Datenrate (d. h. die Anzahl der pro Sekunde übertragenen Bits) um das 5-fache im Vergleich zum klassischen CAN erhöht (5 Mbit/s nur für Nutzdaten, die Arbitrierungs-Bitrate ist weiterhin auf 1 Mbit/s begrenzt, um die Kompatibilität zu gewährleisten). Es unterstützt AT-Befehle, die eine einfache serielle Schnittstellenprogrammierung ermöglichen.
Dieses Grove CAN-BUS-Modul basiert auf GD32E103 mit einer Frequenz von bis zu 120 MHz. Es hat eine Flash-Größe von 64 KB bis 128 KB und eine SRAM-Größe von 20 KB bis 32 KB.
Anwendungen
Fahrzeug-Hacking: ermöglicht die Kommunikation zwischen verschiedenen Teilen des Fahrzeugs, einschließlich des Motors, der Übertragung und der Bremsen. Fenster, Türen und Spiegelverstellung.
3D-Drucker
Gebäudeautomatisierung
Beleuchtungssteuersysteme
Medizinische Instrumente und Geräte
Spezifikationen
MCU
GD32E103
UART-Baudrate
Bis zu 115200 (Standard: 9600)
CAN-FD-Baudrate
Bis zu 5 Mb/s
Anzeige
TX- und RX-LED
Arbeitsspannung
3,3 V
Grove-Steckverbinder
4-poliger Grove-Steckverbinder zum Plug-and-Play
Größe
20 x 40 x 10 mm
Downloads
Datenblatt
GitHub
Die MotoPi-Platine ist eine Erweiterungsplatine zur Ansteuerung und Verwendung von bis zu 16 PWM-gesteuerten 5-V-Servomotoren.
Der eigene Taktgeber auf dem MotoPi sorgt für ein sehr genaues PWM-Signal und somit auch für eine genaue Positionierung.
Die Platine verfügt über 2 Eingänge für eine Spannung von 4,8-6 V, über die zusammen bis zu 11 A eingespeist werden können, so dass eine optimale Versorgung der Motoren stets gewährleistet ist und somit auch größere Projekte mit ausreichend Strom beliefert werden können.
Die Versorgung läuft zentral über den MotoPi, der für jeden Motor separat einen Anschluss für Spannung, Masse und die Steuerleitung zur Verfügung stellt.
Durch den eingebauten Kondensator wird der Strom zusätzlich gepuffert. Hierdurch wird das Einbrechen der Spannung bei kurzzeitiger Mehrbelastung abgemildert, die sonst zum Ruckeln führen könnte. Zusätzlich hat man noch die Möglichkeit, einen weiteren Kondensator anzuschließen.
Der integrierte Analog-Digital-Wandler bietet neue Möglichkeiten wie z. B. die Steuerung über einen Joystick.
Die Ansteuerung und Programmierung der Motoren kann (wie gewohnt) weiterhin bequem über den Raspberry Pi bedient werden. Anleitung und Codebeispiele erlauben auch Einsteigern, schnell Ergebnisse zu erzielen.
Besonderheiten
16 Kanäle, eigener Taktgeber für Servomotoren (PWM), inkl. Analog-Digital-Wandler
Eingang 1
Hohlstecker 5,5 / 2,1 mm, 4,8-6 V, 5 A max.
Eingang 2
Schraubklemme, 4,8-6 V, 6 A max.
Kompatibel mit
Raspberry Pi A+, B+, 2B, 3B
Maße (BxHxT)
65 x 24 x 56 mm
Lieferumfang
Platine, Bedienungsanleitung, Befestigungsmaterial, Retail-Verpackung
Das OKdo E1 ist ein äußerst kostengünstiges Entwicklungsboard, das auf dem Dual-Core-Arm-Cortex-M33-Mikrocontroller LPC55S69JBD100 von NXP basiert. Das E1-Board eignet sich perfekt für industrielles IoT, Gebäudesteuerung und -automatisierung, Unterhaltungselektronik sowie allgemeine eingebettete und sichere Anwendungen.
Merkmale
Prozessor mit Arm TrustZone, Floating Point Unit (FPU) und Memory Protection Unit (MPU)
CASPER Crypto-Coprozessor zur Hardwarebeschleunigung für bestimmte asymmetrische kryptografische Algorithmen
PowerQuad Hardware Accelerator für Fest- und Gleitkomma-DSP-Funktionen
SRAM Physical Unclonable Function (PUF) zur Schlüsselgenerierung, -speicherung und -rekonstruktion
PRINCE-Modul zur Echtzeit-Verschlüsselung und Entschlüsselung von Flash-Daten
AES-256- und SHA2-Engines
Bis zu neun Flexcomm-Schnittstellen. Jede Flexcomm-Schnittstelle kann per Software als USART-, SPI-, I²C- und I²S-Schnittstelle ausgewählt werden
USB 2.0 High-Speed-Host/Geräte-Controller mit On-Chip-PHY
USB 2.0 Full-Speed Host/Geräte-Controller mit On-Chip-PHY
Bis zu 64 GPIOs Sichere digitale Ein-/Ausgabe-Kartenschnittstelle (SD/MMC und SDIO).
Spezifikationen
LPC55S69JBD100 640-KByte-Flash-Mikrocontroller
Eingebauter CMSIS-DAP v1.0.7-Debugger basierend auf LPC11U35
Interne PLL-Unterstützung für einen Betrieb mit bis zu 100 MHz, 16 MHz können für den vollen 150-MHz-Betrieb montiert werden.
SRAM 320kB
32-kHz-Quarz für Echtzeituhr
4 Benutzerschalter
3-Farben-LED
Benutzer-USB-Anschluss
2 16-polige Erweiterungsstecker
UART über USB virtueller COM-Port
Wenn Sie nach einer einfachen Möglichkeit suchen, das Löten zu erlernen, oder einfach nur ein kleines Gerät herstellen möchten, das Sie tragen können, ist dieses Set eine großartige Gelegenheit. Das Reaktionsspiel ist ein Lernset, das Ihnen das Löten beibringt und am Ende Ihr eigenes kleines Spiel erhält. Ziel des Spiels ist es, den Knopf neben der LED zu drücken, sobald diese aufleuchtet. Mit jeder richtigen Antwort wird das Spiel etwas schwieriger – die Zeit, die Sie zum Drücken der Taste benötigen, verkürzt sich. Wie viele richtige Antworten können Sie bekommen?
Es basiert auf dem ATtiny404-Mikrocontroller, programmiert in Arduino. Auf der Rückseite befindet sich eine CR2032-Batterie, die das Kit tragbar macht. Es gibt auch einen Schlüsselanhängerhalter. Der Lötvorgang ist anhand der Markierung auf der Leiterplatte recht einfach.
Lieferumfang
1x Platine
1x ATtiny404 Mikrocontroller
4x LEDs
4x Drucktasten
1x Schalter
4x Widerstände (330 Ohm)
1x CR2032-Batteriehalter
1x Batterie CR2032
1x Schlüsselanhängerhalter
Der Pico Cube ist ein 4x4x4 LED-Würfel-HAT für den Raspberry Pi Pico mit einer Betriebsspannung von 5 VDC. Der Pico Cube, ein monochromatisches Grün mit 64 LEDs, ist eine unterhaltsame Möglichkeit, Programmieren zu lernen. Er wurde entwickelt, um Glühbetrieb mit geringem Energieverbrauch, robuster Optik und einfacher Installation auszuführen, so dass Menschen/Kinder/Benutzer die Effekte von LED-Leuchten mit einem unterschiedlichen Farbmuster durch die Kombination von Software und Hardware, d.h. Raspberry Pi Pico, kennenlernen können.
Features
Standard 40 Pins Raspberry Pi Pico Header
Kommunikation über GPIO
64 hochintensive monochromatische LEDs
Einzeln ansteuerbare LEDs
Zugriff auf jede Schicht
Technische Daten
Betriebsspannung: 5 V
Farbe: Grün
Kommunikation: GPIO
LEDs: 64
Lieferumfang
1x Pico Cube Base PCB
4x Layer PCB
8x Pillar PCB
2x Male Berg (1 x 20)
2x Female Berg (1 x 20)
70 LEDs
Hinweis: Der Raspberry Pi Pico ist nicht im Lieferumfang enthalten.
Downloads
GitHub
Wiki
Hier finden Sie alle Arten von Teilen, Komponenten und Zubehör, die Sie in verschiedenen Projekten benötigen, angefangen von einfachen Kabeln, Sensoren und Displays bis hin zu bereits vormontierten Modulen und Kits.