Funktionalitäten 324x324 Pixel Kamerasensor: Benutzen Sie einen der Kerne von Portenta und verwenden Sie das OpenMV für den Arduino-Editor um Bilderkennungsalgorithmen auszuführen 100 Mbps Ethernet-Anschluss: Verbinden Sie Ihre Portenta H7 mit dem kabelgebundenen Internet 2 Onboard-Mikrofone zur Richtungsschallerkennung: Schall in Echtzeit erfassen und analysieren JTAG-Konnektor: Führen Sie Low-Level-Debugging Ihres Portenta-Boards oder spezielle Firmware-Updates mit einem externen Programmiergerät durch SD-Card-Anschluss: Speichern Sie Ihre erfassten Daten auf der Karte oder lesen Sie Konfigurationsdateien aus Das Vision Shield wurde als Erweiterung der Arduino Portenta-Familie entwickelt. Die Portenta-Boards verfügen über Multicore-32-Bit-ARM-Cortex-Prozessoren®™ und laufen mit Hunderten von Megahertz, haben Megabytes Programmspeicher und verfügen über ausreichend RAM. Portenta-Boards sind mit WiFi und Bluetooth ausgestattet. Embedded Computer Bilderkennung leicht gemacht Arduino hat sich mit OpenMV zusammengetan, um Ihnen eine kostenlose Lizenz für die OpenMV IDE Entwicklungsumgebung anzubieten. Ein einfacher Weg in die Bilderkennungsentwicklung mit MicroPython als Programmiersprache. Laden Sie den OpenMV für Arduino Editor von unserer professionellen Tutorial-Seite herunter und blättern Sie durch diverse Beispiele, die wir für Sie in der OpenMV IDE vorbereitet haben. Unternehmen auf der ganzen Welt entwickeln ihre kommerziellen Produkte bereits auf der Grundlage dieses einfachen, aber leistungsstarken Ansatzes zur Erkennung, Filterung und Klassifizierung von Bildern, QR-Codes und anderem. Debuggen mit professionellen Tools Verbinden Sie Ihre Portenta H7 über den JTAG-Anschluss mit einem professionellen Debugger. Nutzen Sie professionelle Software-Tools wie die von Lauterbach oder Segger auf Ihrem Board, um Ihren Code Schritt für Schritt zu debuggen. Das Vision Shield zeigt die erforderlichen Pins an, um einfach Ihr externes JTAG Interface anschließen zu können. Kamera Himax HM-01B0 Kameramodul Auflösung 320 x 320 aktive Pixel Auflösung mit Unterstützung für QVGA Bildsensor Hochempfindliche 3,6-μ-BrightSense™-Pixeltechnologie Mikrofon 2 x MP34DT05 Länge 66 mm Breite 25 mm Gewicht 11 gr Weitere Informationen finden Sie hier in den Tutorials von Arduino.
Der intelligente digitale Thermostat-Temperaturregler ist ein kleiner Schalterregler (77 x 51 mm), mit dem Sie Ihren eigenen Thermostat erstellen können. Mit seinem NTC-Sensor und seinen LED-Anzeigen können Sie je nach gemessener Temperatur bis zu 10A 220V schalten.
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!
Sie sind noch kein Mitglied? Hier klicken!
PbMonitor v1.0Ein Batterieüberwachungssystem für USV und Energiespeicher
Solarladeregler mit MPP-TrackingTeil 1: Grundlagen eines Solarreglers für Insel-Anlagen
B-Feld-Integrationsmagnetometer mit selbstgebauten Sensoren
Präzise, richtig oder genau?Ihre Messgeräte müssen alles sein!
AD7124 – Ein Präzisions-ADC in der PraxisHinweise für die Sensor-Signalaufbereitung
PID-RegelungswerkzeugOptimieren Sie ganz einfach Ihre Parameter
embedded world 2025
Aller Anfang ......muss nicht schwer sein: Klangeinstellung!
Academy Pro BoxBook + Online Course + Hardware
Milliohmmeter-AdapterNutzen Sie die Präzision Ihres Multimeters!
Der nächste Meilenstein bei HalbleiternWeiter in Richtung 1,4 nm
Steckverbinder in DurchstecktechnikDas Beste aus zwei Welten: THR
FrequenzzählerPortabel und mit automatischer GPS-Kalibrierung
Analoge MessgeräteBemerkenswerte Bauteile
Stand-alone-QuarztesterWie genau ist Ihre Taktquelle?
Preiswerter I²C-TesterSchließen Sie I²C-Chips direkt an Ihren PC an
Aus dem Leben gegriffenWer das Kleine nicht ehrt...
2025: Eine Odyssee in die KIDie transformativen Auswirkungen auf die Softwareentwicklung
Projekt 2.0Korrekturen, Updates und Leserbriefe
Standalone-MIDI-Synthesizer mit Raspberry PiTeil 2: Setup mit Intelligenz aufwerten
Nortonisierter Wien-Brücken-OszillatorKleine Änderungen führen zu bedeutenden Verbesserungen
10-Cent-Controller in der PraxisRISC-V-Mikrocontroller CH32V003 und MounRiver Studio ausprobiert
Audio-Player mit FPGA und EqualizerTeil 2: Lautstärkeregelung, erweitertes Mischen und ein Web-Interface
Sprachsteuerung von IoT-Projekten mit Amazon Alexa gibt dem Leser einen tiefen Einblick in die Technik der Sprachsteuerung am Beispiel von Amazon Alexa. Es erklärt detailliert Schritt für Schritt, wie man Raspberry Pi, ESP8266/32 und Arduino mit einem Sprachassistenten verbindet und steuert. Dieses geschieht anhand von Projekten aus den Bereichen Hausautomation und Robotik.
Der Leser erfährt, wie man Heizkessel, Roboter und Gartenhäuser mit dieser modernen Mensch-Maschine-Schnittstelle kommandieren kann. Der Autor Walter Trojan führt dabei den Leser in die vielschichtige Welt der Amazon Web Services ein, wo er neben dem Alexa Skills Kit weitere Module wie AWS Lambda und IoT Core kennenlernt.
Das erwartet den Leser:
Kapitel 1: Sprachassistenten setzen sich durch
Kapitel 2: Alexa intern
Kapitel 3: Der erste Alexa Skill
Kapitel 4: Alexa Skills für Fortgeschrittene
Kapitel 5: Erster Hardware-Skill auf Raspberry Pi
Kapitel 6: Auch Alexa liebt die Arduino-IDE
Kapitel 7: Hacks mit Schaltern
Kapitel 8: Alexa steuert ein Gartenhaus
Kapitel 9: Auch Roboter gehorchen Alexa
Kapitel 10: Alexa geht fremd
Mit einem Arduino-Board ohne zusätzliche Sensoren kann man nicht viel anfangen. Dieses Buch richtet sich an jeden, der seinem Arduino-Uno-Board mit Hilfe von zahlreichen Sensoren Leben einhauchen möchte. Wie das geht, zeigt der Autor Schritt für Schritt mit zahlreichen Abbildungen, und das in einer leicht verständlichen Sprache.Damit ein Mikrocontroller wie der Arduino Uno Einfluss auf seine Umwelt nehmen kann, sind Sensoren und Aktoren erforderlich, die von einer Software gesteuert werden. Inzwischen gibt es eine große Auswahl an Sensor-Modulen, die an das Arduino-Board angeschlossen werden können.Als Einstieg in die faszinierende Welt der Sensorik wird in diesem Buch auf das auch bei Elektor erhältliche 37 Module umfassende Sensor-Kit zurückgegriffen. In diesem populären Set sind die Sensoren auf einer kleinen Platine montiert und mit Steckverbindern ausgestattet, was den Anschluss via Breadboard oder Drahtbrücken vereinfacht. Mit den auch für Einsteiger einfach anzuwendenden Sensor-Modulen lassen sich schnell beeindruckende Erfolge erzielen, ohne dass man tief in die Materie der Elektronik eintauchen muss.Die Funktionsweise und Beschaltung der einzelnen Sensoren wird ausführlich erklärt und ihre Verwendung durch die gut dokumentierten Beispielprogramme leicht nachvollziehbar gemacht.
In diesem Buch geht es um spannende und zugleich lehrreiche Anwendungen mit PIC-Mikrocontrollern. Mit dabei sind unter anderem ein „Stiller Alarm“, ein Personen- Sensor, ein Ultraschall-Radarsystem, eine Digitaluhr, ein VU-Meter, ein RGB-Fader, ein serielles Datennetz und eine Laufschrift-Anzeige.Sie können dieses Buch als Projektgrundlage nutzen, um die Projekte Ihrer Wahl aufzubauen und zu erproben. Alle Projekte sind uneingeschränkt praxistauglich. Die präzisen Beschreibungen, Schaltungen und Fotos der Versuchsaufbauten auf Steckplatten machen das Aufbauen und Ausprobieren zum spannenden Vergnügen.Sie können mit diesem Buch auch Ihr Wissen erweitern. Zu jedem Projekt wird der technische Hintergrund erläutert. Es wird erklärt, weshalb wir den beschriebenen Weg gewählt haben, um das Projekt zu realisieren. Auch die Inhalte von Datenblättern werden erläutert, so dass die Eigenschaften der Mikrocontroller nicht im Verborgenen bleiben. Sie können die Projekte ausbauen, erweitern, kombinieren und anpassen.Bei den in den Projekten eingesetzten Mikrocontroller-Typen handelt es sich um PIC12F675, PIC16F628, PIC16F876A und insbesondere PIC16F877. Es wird auch erklärt, wie Programme – geschrieben für einen bestimmten PIC-Typ – an andere PIC-Typen angepasst werden können.Sämtliche Software, die für die Durchführung der Projekte erforderlich ist, kann kostenlos aus dem Internet heruntergeladen werden. Das gilt auch für die Open-Source-Sprache JAL. Diese leistungsstarke, leicht erlernbare Programmiersprache ist sowohl im professionellen Bereich als auch bei nicht professionellen Entwicklern weltweit verbreitet.Dieses Buch ist auch ein gutes Nachschlagewerk. Die Beschreibung aller Elemente der Programmiersprache JAL und der von uns verwendeten Erweiterungsbibliotheken ist einzigartig. Das ausführliche Stichwortverzeichnis weist den Weg zu dem Projekt, das Sie als Grundlage Ihrer eigenen Entwicklung nutzen können. Selbst wenn Sie alle Projekte erprobt haben und Ihr Wissen über die PIC-Mikrocontroller-Familie stark gewachsen ist, wird Ihnen dieses Buch noch nützlich sein.
Fliegen ist wohl einer der ältesten Träume der Menschheit. Dieser Traum ist immer noch ein Traum, denn ein durchschnittlicher Linienflug bedeutet vor allem eines: ganz lange sitzen mit zu vielen anderen Leuten, in einem zu engem Raum mit zu wenig Toiletten. Nein, da ist es viel besser, mit einem Multikopter zu fliegen. Wenn Sie die Welt durch eine Multikopterkamera betrachten, ähnelt das dem wirklichen Fliegen eines Vogels mehr als alles andere.
Multikopter boomen. 2015 wurden drei Mal so viele verkauft wie 2014. Multikopter beeindrucken auch durch eine Technologie, die es vor zehn Jahren noch nicht gab (oder die damals unbezahlbar war). Die Akkus, der Flugcontroller, die Stabilisierung, die Kameras bis hin zu den Motoren, das sind alles neue Produkte und Technologien! Und diese entwickeln sich überdies sehr schnell weiter. In dieser Zeitschrift lesen Sie, wie Sie Ihren Multikopter mit der neuesten Technik aufrüsten können oder wie Sie gar einen Multikopter kaufen, der seiner Zeit voraus ist.
Multikopterträume sind auch Träume von Anwendungen, die vor ein paar Jahren kaum vorstellbar waren. Es ist wie bei der Einführung des PCs in den achtziger Jahren: Wir ahnen noch nicht einmal, wie die Welt morgen aussehen wird. Da für (fast) alle Multikopter-Anwendungen neuartige Software entwickeln werden muss, werden auch andere IT-Bereiche davon profitieren. In dieser Zeitschrift finden Sie auch hierzu Informationen.
Der Traum eines jeden Modelleisenbahners ist es, seine Anlage möglichst dem großen Vorbild getreu aufzubauen und zu steuern. Entsprechend dem heutigen Stand der Technik wird hierzu die Elektronik mit ihrer gesamten Bandbreite eingesetzt: vom passiven Bauelement über das aktive, der integrierten Schaltung bis hin zum PC. Dabei passiert es leider manchem Modelleisenbahner, dass er den Anschluss verpasst, weil er keinen Zugang hat zu der modernen Technik und der damit verbundenen Elektronik.Die vierteilige Buchreihe Elektronik & Modellbahn schafft Abhilfe und bringt die Elektronik dem Modelleisenbahner näher. Jeder hat die Möglichkeit, gemäß seinem Wissensstand in die Technik einzusteigen.Der 2. Band aus der "Elektronik und Modellbahn"-Reihe befasst sich mit den gängigsten Bauelementen. Mit Hilfe von Transistoren, digitalen ICs und Operationsverstärkern lassen sich Anzugs- und Abfallverzögerungen, Lichtschranken, Fahrregler, NF-Verstärker, Filter und viele andere Dinge ohne riesigen Schaltungsaufwand schnell und unkompliziert aufbauen.Weitere Bücher aus dieser Reihe:
Elektronik & Modellbahn 1 (PDF)
Elektronik & Modellbahn 3 (PDF)
Elektronik & Modellbahn 4 (PDF)
Der Traum eines jeden Modelleisenbahners ist es, seine Anlage möglichst dem großen Vorbild getreu aufzubauen und zu steuern. Entsprechend dem heutigen Stand der Technik wird hierzu die Elektronik mit ihrer gesamten Bandbreite eingesetzt: vom passiven Bauelement über das aktive, der integrierten Schaltung bis hin zum PC. Dabei passiert es leider manchem Modelleisenbahner, dass er den Anschluss verpasst, weil er keinen Zugang hat zu der modernen Technik und der damit verbundenen Elektronik.Die vierteilige Buchreihe Elektronik & Modellbahn schafft Abhilfe und bringt die Elektronik dem Modelleisenbahner näher. Jeder hat die Möglichkeit, gemäß seinem Wissensstand in die Technik einzusteigen.Dieses Buch ist das erste einer vierbändigen Reihe, die mit den elektronischen Grundlagen beginnt und bei der digitalen Modellbahn-Steuerung im Motorola-Format endet. Das Buch beschreibt kurz und prägnant die wichtigsten elektronischen passiven sowie aktiven Bauteile; deren Aufbau und Funktion. Viele Zeichnungen und Skizzen erleichtern das Verständnis. Hiermit ist es dann, nicht nur für den Modelleisenbahner einfach, mit den folgenden Bänden umzugehen.Buch 2 beschreibt Grundschaltungen, Buch 3 und 4 die gesamte Steuerungselektronik.Weitere Bücher aus dieser Reihe:
Elektronik & Modellbahn 2 (PDF)
Elektronik & Modellbahn 3 (PDF)
Elektronik & Modellbahn 4 (PDF)
Ziel dieses Buches ist, auf einfache Weise zu zeigen, wie mit der populären Hochsprache C# ein PC programmiert werden kann. Am Anfang beschreibt das Buch Datentypen und Programmsteuerungen, die dann um fortschrittliche Konzepte wie die objektorientierte Programmierung, Threads, die Internetkommunikation und Datenbanken erweitert werden. Alle verwendeten Code-Beispiele stehen unter "Downloads" zum Herunterladen bereit. Mit den vorgestellten Konzepten können auf einfache Weise eigene Ergebnisse erzielt und somit der Lernprozess unterstützt werden. Auch professionelle Software-Tools von Microsoft stehen zum kostenlosen Download zur Verfügung. Die Anwender stellen für Microsoft's Visual Studio 2010 eine Vielzahl von Steuerungen, Eigenschaften, Methoden und Ereignissen bereit.Leser, die die Hardware eines PCs steuern wollen, erhalten genaue Anleitungen. In den Kapiteln über PC-Schnittstellen wird das Erbe der seriellen und parallelen Ports besprochen, analoge Zugänge steuern die Soundkarte und verwenden DirectX-Treiber von Microsoft. Die Anbindung des allgegenwärtigen USB-Ports wird genau erklärt, einschließlich des Entwurfs von Hard- und Software zur Steuerung eines PIC-Boards via USB.Viele Programmbeispiele, praktische Übungen und Links auf Support-Videos vervollständigen dieses Buch – das teilweise in englischer Originalsprache.Universitätsdozenten bieten für die meisten Kapitel Hilfen in Form von herunterladbaren PowerPoint-Präsentationen an.Das vorliegende Buch von Dr. John Allwork berücksichtigt bei der C#-Entwicklung auch die neue Version Visual Studio 2010 und das Microsoft-Betriebssystem Windows 7.
The EC200U-EU C4-P01 development board features the EC200U-EU LTE Cat 1 wireless communication module, offering a maximum data rate of up to 10 Mbps for downlink and 5 Mbps for uplink. It supports multi-mode and multi-band communication, making it a cost-effective solution.
The board is designed in a compact and unified form factor, compatible with the Quectel multi-mode LTE Standard EC20-CE. It includes an onboard USB-C port, allowing for easy development with just a USB-C cable.
Additionally, the board is equipped with a 40-pin GPIO header that is compatible with most Raspberry Pi HATs.
Features
Equipped with EC200U-EU LTE Cat 1 wireless communication module, multi-mode & multi-band support
Onboard 40-Pin GPIO header, compatible with most Raspberry Pi HATs
5 LEDs for indicating module operating status
Supports TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS protocols, etc.
Supports GNSS positioning (GPS, GLONASS, BDS, Galileo, QZSS)
Onboard Nano SIM card slot and eSIM card slot, dual card single standby
Onboard MIPI connector for connecting MIPI screen and is fully compatible with Raspberry Pi peripherals
Onboard camera connector, supports customized SPI cameras with a maximum of 300,000 pixels
Provides tools such as QPYcom, Thonny IDE plugin, and VSCode plugin, etc. for easy learning and development
Comes with online development resources and manual (example in QuecPython)
Technische Daten
Applicable Regions
Europe, Middle East, Africa, Australia, New Zealand, Brazil
LTE-FDD
B1, B3, B5, B7, B8, B20, B28
LTE-TDD
B38, B40, B41
GSM / GPRS / EDGE
GSM: B2, B3, B5, B8
GNSS
GPS, GLONASS, BDS, Galileo, QZSS
Bluetooth
Bluetooth 4.2 (BR/EDR)
Wi-Fi Scan
2.4 GHz 11b (Rx)
CAT 1
LTE-FDD: DL 10 Mbps; UL 5 Mbps
LTE-TDD: DL 8.96 Mbps; UL 3.1 Mbps
GSM / GPRS / EDGE
GSM: DL 85.6 Kbps; UL 85.6 Kbps
USB-C Port
Supports AT commands testing, GNSS positioning, firmware upgrading, etc.
Communication Protocol
TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS
SIM Card
Nano SIM and eSIM, dual card single standby
Indicator
P01: Module Pin 1, default as EC200A-XX PWM0
P05: Module Pin 5, NET_MODE indicator
SCK1: SIM1 detection indicator, lights up when SIM1 card is inserted
SCK2: SIM2 detection indicator, lights up when SIM2 card is inserted
PWR: Power indicator
Buttons
PWK: Power ON/OFF
RST: Reset
BOOT: Forcing into firmware burning mode
USB ON/OFF: USB power consumption detection switch
Antenna Connectors
LTE main antenna + DIV / WiFi (scanning only) / Bluetooth antenna + GNSS antenna
Operating Temperature
−30~+75°C
Storage Temperature
−45~+90°C
Downloads
Wiki
Quectel Resources
Das OWON XDS3102A ist ein 12-Bit-2-Kanal-Digitalspeicheroszilloskop (100 MHz) mit Digitalmultimeter und 2-Kanal-Arbiträrwellenformgenerator (25 MHz). Es verfügt über einen Touchscreen, einen VGA-Ausgang, WLAN und einen 13200-mA-Akku.
Leistung
8-Bit-, 12-Bit- oder 14-Bit-ADC mit hoher Auflösung, der die Wellenformdetails vollständig wiederherstellt
40 Mio. Aufzeichnungslänge, maximale Wellenform-Aktualisierungsrate von 75.000 wfms/s
Ohne Hintergrundrauschen, vertikale Empfindlichkeit in 1 mV/div – 10 V/div
Multi-Trigger- und Bus-Dekodierungsfunktion
SCPI und LabVIEW werden unterstützt
Merkmale
Ultradünnes Gehäusedesign, weniger Platzbedarf
Multi-Interface-Integration – USB-Host, USB-Gerät, USB-Anschluss für PictBridge, LAN, AUX und mehr
VGA-Anschluss – eine bessere Lösung für die Videoerweiterung und Lehrdemonstrationen
8 Zoll 800 x 600 hochauflösendes LCD
Optionaler Mehrpunkt-Touchscreen, benutzerfreundlicheres Bedienerlebnis
Spezifikationen
Bandbreite
100 MHz
Beispielrate
1 GS/s
Vertikale Auflösung (A/D)
12 Bit
Rekordlänge
40M
Horizontale Skala (s/div)
2 ns/div - 1000s/div, Schritt für Schritt 1 - 2 - 5
Kanal
2 + 1 (extern)
Anzeige
8" Farb-LCD, 800 x 600 Pixel
Wellenformmathematik
+, -, ×, ÷, FFT, FFTrms, Intg, Diff, Sqrt, benutzerdefinierte Funktion, Digitalfilter (Tiefpass, Hochpass, Bandpass, Bandsperre)
Triggertyp
Flanke, Video, Impuls, Steigung, Runt, Windows, Timeout, N-te Flanke, Logik, I²C, SPI, RS232
Busdekodierung
I²C, SPI, RS232
Kommunikationsinterface
USB-Host, USB-Gerät, USB-Anschluss für PictBridge, Trig Out (P/F), LAN
Stromversorgung
100–240 VAC, 50/60 Hz, CAT II
Energieverbrauch
<15W
Sicherung
2A, T-Klasse, 250 V
Abmessungen
340 x 177 x 90 mm
Gewicht
2,6 kg
Der Picoboy ist ein leistungsstarkes Mini-Handheld mit einer Größe von nur 3 x 5 cm. Er eignet sich, um das Programmieren zu lernen, eigene Spiele zu entwickeln oder einfach nur, um damit zu spielen. Eine Einführung in die Programmierung mit der Arduino-Umgebung und MicroPython steht zur Verfügung.
Sie benötigen dazu nichts als einen PC, den PicoBoy und ein USB-C-Kabel.
Da der PicoBoy kompatibel zum Raspberry Pi Pico und zur Arduino-Umgebung ist, finden sich im Netz unzählige weitere Tutorials, Beispiele und Bibliotheken, die das Programmieren erleichtern.
Technische Daten
1,3" OLED-Display mit 128 x 64 Pixeln (schwarz/weiß)
Durch RP2040-Mikrocontroller kompatibel zum Raspberry Pi Pico
2x 133 MHz ARM M0+
2 MB Flash
264 KB RAM
USB-C-Schnittstelle für Programmierung und Datenübertragung
3 vorinstallierte Spiele
5-Wege-Joystick
Beschleunigungssensor (kann jetzt auch in Python verwendet werden!)
Stromversorgung über USB-C oder eine CR2032-Knopfzelle
Abmessungen: 49,2 x 29,1 x 14,5 mm
Downloads
GitHub
Entfesseln Sie den Mozart in Ihnen mit Piano HAT, einem kleinen musikalischen Begleiter für Ihren Raspberry Pi!
Piano HAT ist von Zachary Igielmans PiPiano inspiriert und mit seinem Segen hergestellt. Wir haben seine fantastische Idee für ein schickes Klavier-Add-on für den Raspberry Pi aufgegriffen, es berührungsempfindlich gemacht und Fässer mit unserem Markenzeichen Pimoroni-Lack hinzugefügt.
Spielen Sie Musik in Python, steuern Sie Software-Synthesizer auf Ihrem Pi und übernehmen Sie die Kontrolle über Hardware-Synthesizer!
Features
16 kapazitive Touchpads (verknüpfen Sie jedes mit seiner eigenen Python-Funktion!)
13 Klaviertasten (eine volle Oktave)
Oktavaufwärts-/abwärtstasten
Instrumentenzyklus-Taste (ideal für die Verwendung mit Synthesizern)
16 helle weiße LEDs (lassen Sie sie automatisch leuchten oder übernehmen Sie die Steuerung mit Python)
2x Microchip CAP1188 kapazitive Touch-Treiberchips
Verwenden Sie es, um Software- oder Hardware-Synthesizer über MIDI zu steuern
Kompatibel mit allen 40-Pin-Header Raspberry Pi-Modellen
Wird komplett montiert geliefert
Downloads
Python library
Pinout
Der SDS011-Sensor ermittelt die Feinstaub-Partikelkonzentration in der Luft mit Hilfe des Streulichtverfahrens.
Durch den USB-UART-Adapter lässt sich der Sensor zusätzlich direkt an einem Computer auslesen.
Technische Daten
Schnittstelle
UART (3,3 V Pegel)
Auflösung
0,3 µg/m3
Reaktionszeit
Weitere Besonderheit
Integrierter Lüfter
Strom in Ruhezustand
Versorgungsstrom
70 mA
Betriebsspannung
5 V
Abmessungen
70 x 70 x 24 mm
Gewicht
70 g
Lieferumfang
1x SDS011 Feinstaubsensor
1x Anschlusskabel
1x USB-UART-Adapter
Downloads
Datenblatt
Handbuch
Der digitale 3-Achsen-Beschleunigungsmesser von Grove (LIS3DHTR) ist ein kostengünstiger 3-Achsen-Beschleunigungsmesser in einem Paket von Grove-Produkten. Er basiert auf dem LIS3DHTR-Chip, der mehrere Bereiche und Schnittstellen zur Auswahl bietet. Sie werden kaum glauben, dass ein so kleiner 3-Achsen-Beschleunigungsmesser I²C-, SPI- und ADC-GPIO-Schnittstellen unterstützt, was bedeutet, dass Sie jede beliebige Art der Verbindung mit Ihrer Entwicklungsplatine wählen können. Außerdem kann dieser Beschleunigungsmesser auch die Umgebungstemperatur überwachen, um den dadurch verursachten Fehler zu beheben.
Merkmale
Messbereich: ±2 g, ±4 g, ±8 g, ±16 g, mehrere Bereiche wählbar.
Option für mehrere Schnittstellen: Grove I²C-Schnittstelle, SPI-Schnittstelle, ADC-Schnittstelle.
Temperatur einstellbar: Der durch die Temperatur verursachte Fehler kann angepasst und feinabgestimmt werden.
3/5V Stromversorgung
Spezifikationen
Stromversorgung
3/5 V
Schnittstellen
IC/SPI/GPIO ADC
I²C-Adresse
Standardmäßig 0x19, kann auf 0x18 geändert werden, wenn SDO-Pin mit GND verbunden wird
ADC GPIO Stromeingang
0 – 3,3 V
Unterbrechung
Ein Unterbrechungs-Pin reserviert
SPI-Modus einrichten
Verbinden Sie den CS-Pin mit GND
Inbegriffen
1x digitaler 3-Achsen-Beschleunigungsmesser von Grove (LIS3DHTR)
1x Grove-Kabel
Downloads
LIS3DHTR Datenblatt
Hardwareschema
Arduino-Bibliothek
Der DiP-Pi Power Master ist ein fortschrittliches Stromversorgungssystem mit integrierten Sensorschnittstellen, das die meisten möglichen Anforderungen für Anwendungen auf Basis des Raspberry Pi Pico abdeckt. Es kann das System zusätzlich zum Original-Micro-USB des Raspberry Pi Pico mit bis zu 1,5 A bei 4,8 V versorgen, geliefert von 6–18 VDC für verschiedene Stromversorgungssysteme wie Autos, Industrieanlagen usw. Es unterstützt LiPo- oder Li-Ion-Akkus mit automatischem Ladegerät sowie die automatische Umschaltung von Kabelstrom auf Batteriestrom oder umgekehrt (USV-Funktionalität), wenn die Kabelstromversorgung unterbrochen wird. Die Extended Powering Source (EPR) ist mit einer rücksetzbaren PPTC-Sicherung, umgekehrter Polarität und auch ESD geschützt. Der DiP-Pi Power Master verfügt über eine in den Raspberry Pi Pico integrierte RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf alle Stromquellen (USB, EPR oder Batterie) wirkt. Der Benutzer kann (über die A/D-Pins des Raspberry Pi Pico) den Batteriestand und den EPR-Wert mit den A/D-Wandlern von PICO überwachen. Beide A/D-Eingänge sind mit 0402-Widerständen (0 Ohm) überbrückt. Wenn der Benutzer diese Pico-Pins aus irgendeinem Grund für seine eigene Anwendung verwenden muss, kann er daher problemlos entfernt werden. Das Ladegerät lädt den angeschlossenen Akku automatisch auf (sofern verwendet), aber der Benutzer kann das Ladegerät zusätzlich ein-/ausschalten, wenn seine Anwendung dies benötigt. DiP-Pi Power Master kann für kabelbetriebene Systeme, aber auch für rein batteriebetriebene Systeme mit EIN/AUS verwendet werden. Der Status jeder Stromquelle wird durch separate Informations-LEDs angezeigt (VBUS, VSYS, VEPR, CHGR, V3V3). Der Benutzer kann jede Kapazität vom Typ LiPo oder Li-Ion verwenden; Es muss jedoch darauf geachtet werden, PCB-geschützte Batterien mit einem maximal zulässigen Entladestrom von 2 A zu verwenden. Das integrierte Batterieladegerät ist so eingestellt, dass es die Batterie mit einem Strom von 240 mA lädt. Dieser Strom wird durch einen Widerstand eingestellt. Wenn der Benutzer also mehr oder weniger benötigt, kann er ihn selbst ändern.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi Power Master mit integrierten 1-Draht- und DHT11/22-Sensorschnittstellen ausgestattet. Durch die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen eignet sich der DiP-Pi Power Master ideal für Anwendungen wie Datenlogger, Pflanzenüberwachung, Kühlschränke usw.
DiP-Pi Power Master wird durch zahlreiche gebrauchsfertige Beispiele unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Raspberry Pi Pico-Pinbelegung kompatibel
Unabhängige informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter, der auf alle Stromquellen wirkt (USB, EPR, Batterie)
Externe Stromversorgung 6-18 V DC (Autos, Industrieanwendungen usw.)
Überwachung des externen Strompegels (6-18 VDC).
Überwachung des Batteriestands
Verpolungsschutz
PPTC-Sicherungsschutz
ESD-Schutz
Automatisches Batterieladegerät (für PCB-geschütztes LiPo, Li-Ion – 2 A max.) Automatisch/Benutzersteuerung
Automatische Umschaltung von Kabelbetrieb auf Batteriebetrieb und umgekehrt (USV-Funktionalität)
Mit der USB-Stromversorgung, der externen Stromversorgung und der Batterieversorgung können verschiedene Stromversorgungsschemata gleichzeitig verwendet werden
1,5 A bei 4,8 V Abwärtswandler auf EPR
Eingebetteter 3,3 V @ 600 mA LDO
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Externe Stromversorgung 6–18 V (über spezielle Buchse – 3,4/1,3 mm)
Externe Batterie
Unterstützte Batterietypen
LiPo mit Schutzplatine, max. Strom 2A
Li-Ion mit Schutzplatine, max. Strom 2A
Eingebettete Peripheriegeräte und Schnittstellen
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexi-Cut-Gehäuse
Systemüberwachung
Batteriestand über Raspberry Pi Pico ADC0 (GP26)
EPR-Level über Raspberry Pi Pico ADC1 (GP27)
Informative LEDs
VB (VUSB)
USA (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
Systemschutz
Sofortiger Raspberry Pi Pico-Hardware-Reset-Knopf
ESD-Schutz auf EPR
Verpolungsschutz bei EPR
PPTC 500 mA @ 18 V-Sicherung am EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO Über den aktuellen Schutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2-Unzen-Kupfer-Leiterplatte, hergestellt für eine ordnungsgemäße Hochstromversorgung und Kühlung
6-mil-Spur-/6-mil-Lücken-Technologie, 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersionsgold
Mehrschichtige Kupfer-Thermorohre für eine erhöhte thermische Reaktion des Systems und eine bessere passive Kühlung
Downloads
Datenblatt
Datenblatt
Sind Sie die vielen verschiedenen Arduino-Boards leid und müssen sich entscheiden, welche Funktionen Sie benötigen?
Wäre es nicht viel einfacher, alle besten Funktionen auf derselben Platine zu haben und keine Kompromisse eingehen zu müssen? Genau das dachten sich die Leute bei SparkFun und lieferten das fantastische, mit Arduino programmierte SparkFun RedBoard.
Merkmale
ATmega328-Mikrocontroller mit Optiboot (UNO)-Bootloader
Eingangsspannung: 7-15 V
0–5 V-Ausgänge mit 3,3 V-kompatiblen Eingängen
6 Analoge Eingänge
14 digitale I/O-Pins (6 PWM-Ausgänge)
ISP-Header
16 MHz Taktgeschwindigkeit
32 k Flash-Speicher
Kompatibel mit R3 Shield
Komplette SMD-Konstruktion
USB-Programmierung vereinfacht durch den allgegenwärtigen FTDI FT231X
Rote Leiterplatte
Das SparkFun RedBoard kombiniert die Stabilität des FTDI, die Einfachheit des Optiboot-Bootloaders des Uno und die R3-Shield-Kompatibilität des Uno R3.
RedBoard verfügt über die Hardware-Peripheriegeräte, die Sie gewohnt sind:
6 Analoge Eingänge
14 digitale I/O-Pins (6 PWM-Pins)
SPI
UART
Externe Interrupts
Downloads
Treiber
GitHub
Merkmale
Der Rasterabstand beträgt 2,54 mm (1 bis 36 Kontakte pro Reihe) bei vertikaler Ausrichtung
Anzahl der Kontakte: 40
Anzahl der Reihen: 2
Geschlecht: Behälter
Kontaktanschlusstyp: Durchgangsloch
Kontaktbeschichtung: Verzinnte Kontakte
Hoher Betriebstemperaturbereich von -55 °C bis 105 °C für matt verzinnte Kontakte
Kontaktmaterial ist Phosphorbronze Schwarzes glasfaserverstärktes Polyester-Isolatormaterial
Tiger Buy Kontaktsystem
Entspricht den Standards UL E111594 und CSA 090871_0_000
Schrittweise Einführung in das praktische Schaltungsdesign
Der Einstieg in die Elektronik ist nicht so schwierig, wie man vielleicht denkt. Mit diesem Buch werden die wichtigsten Konzepte der Elektrotechnik und Elektronik auf spielerische Weise erkundet, indem verschiedene Experimente durchgeführt und Schaltungen simuliert werden. Es vermittelt Elektronik praxisnah, ohne in komplexen Fachjargon oder lange Berechnungen einzutauchen. Dadurch werden schon bald eigene Projekte ermöglicht.
Es sind keine Vorkenntnisse in Elektronik erforderlich; lediglich einige grundlegende Algebra-Kenntnisse werden in wenigen einfachen Berechnungen verwendet. Viele getestete und funktionierende Projekte und Simulationen werden vorgestellt, um mit dem Aufbau elektronischer Schaltungen vertraut zu werden. Für problemloses Experimentieren – ohne die Gefahr, etwas zu beschädigen – werden zudem frühzeitig auch softwarebasierte Schaltungssimulationen vorgestellt.
Lernziele:
Konzepte von Spannung, Strom und Leistung
Wechselstrom (AC) und Gleichstrom (DC)
Grundlegende Lampenschaltungen mit Schaltern
Passive Bauteile: Widerstände, Kondensatoren und Induktivitäten
RC- und RCL-Schaltungen und Elektromagnetismus
Lautsprecher, Relais, Summer und Transformatoren
Aktive Bauteile: Dioden und LEDs, Bipolartransistoren und MOSFETs
Transistorbasierte Schaltungen
Optokoppler-Schaltungen
Astabile und monostabile Multivibratoren
Verwendung des 555-Timer-ICs
Operationsverstärkertechnik
Digitale Logik
Beispiele: Verstärker, Oszillatoren, Filter und Sensoren
Test- und Messwerkzeuge
Mikrocontroller: Arduino Uno, ESP32, Raspberry Pi Pico und Raspberry Pi
Datenblätter lesen und Auswahl von Komponenten
EMV & EMI sowie Normen & Vorschriften
Lötpastendosierung und Reflow in einem
Der Voltera V-One erstellt zweilagige Prototyp-Leiterplatten auf Ihrem Schreibtisch. Gerber-Dateien gehen rein, gedruckte Leiterplatten kommen raus. Der Dispenser trägt eine leitfähige Tinte auf Silberbasis auf und druckt Ihre Schaltung direkt vor Ihren Augen. Die Bestückung traditioneller und additiver Leiterplatten ist mit den Lotpastendosier- und Reflowfunktionen des V-One einfach. Montieren Sie einfach Ihre Platine auf dem Druckbett und importieren Sie Ihre Gerber-Datei in die Voltera-Software.
Keine Schablonen mehr erforderlich
Die Software von Voltera ist so konzipiert, dass sie leicht zu verstehen ist. Vom Importieren Ihrer Gerber-Dateien bis zum Drücken des Druckknopfes führt Sie die Software sicher durch jeden Schritt.
Kompatibel mit EAGLE, Altium, KiCad, Mentor Graphics, Cadence, DipTrace, Upverter.
Der V-One Desktop-PCB-Drucker enthält alle Zubehörteile und Verbrauchsmaterialien, die Sie für den Start benötigen:
Verbrauchsmaterialen
1 Conductor 2 Kartusche
1 Lotpastenkartusche
10 2"x3" FR4-Substrate
6 3"x4" FR4-Substrate
10 2"x3" FR1-Substrate
6 3"x4" FR1-Substrate
25 230-Mikrometer-Einwegdüsen
1 Polierpad
1 Lötdrahtspule
1 Bohrerset
200 0,4 mm Nieten
200 1,0 mm Nieten
2 Nietwerkzeuge
1 Opferschicht
1 Hello World Starterkit
1 Punk Console Starterkit
Zubehör
2 Substratklemmen und Rändelschrauben
2 Spender mit Kappen
1 Sonde
1 Übung
1 Satz Schutzbrillen
1 Antistatische Voltera-Pinzette
Downloads
Specifications
V-One Software
User Manuals
Safety Datasheets
Technical Datasheets
Voltera CAM file for EAGLE
Substrates and Templates
Mehr Infos
Frequently Asked Questions
More from the Voltera community
Technische Daten
Druckspezifikationen
Mindestspurbreite
0,2 mm
Mindestpassivgröße
1005
Minimaler Pin-zu-Pin-Abstand (leitfähige Tinte)
0,8 mml
Mindestabstand zwischen den Pins (Lötpaste)
0,5 mml
Widerstand
12 mΩ/sq @ 70 um Höhe
Substratmaterial
FR4
Max. Plattenstärke
3 mm
Lötspezifikationen
Lötpastenlegierung
Sn42/Bi57.6/Ag0.4
Lötdrahtlegierung
SnBiAg1
Lötkolbentemperatur
180-210°C
Druckbett
Druckbereich
135 x 113,5 mm
Max. Heizbetttemperatur
240 °C
Rampenrate des beheizten Betts
~2°C/s
Abmessungen/Gewicht
Abmessungen
390 x 257 x 207 mm (L x W x H)
Gewicht
7 kg
Systemvoraussetzungen
Kompatible Betriebssysteme
Windows 7 oder höher, MacOS 10.11 oder höher
Kompatibles Dateiformat
Gerber
Verbindungstyp
Kabelgebundenes USB
Zertifizierung
EN 61326-1:2013
EMC-Anforderungen
IEC 61010-1
Sicherheitsanforderungen
CE-Kennzeichnung
Wird an den Voltera V-One-Druckern angebracht, die an europäische Kunden geliefert werden.
Entwickelt und hergestellt in Kanada.
Mehr technische Informationen
Quickstart
Explore Flexible Printed Electronics on the V-One
Voltera V-One Capabilities Reel
Voltera V-One PCB Printer Walkthrough
Unpacking the V-One
V-One: Solder Paste Dispensing and Reflow All-in-One
Voltera @ Stanford University's Bao Research Group: Robotic Skin and Stretchable Sensors
Voltera @ Princeton: The Future of Aerospace Innovation
Das Interesse an Röhrenschaltungen ist wach...
Gerade im Audiosektor gibt es nach wie vor eine beträchtliche Gruppe ernstzunehmender Fachleute (darunter viele Musiker), die von der klanglichen Überlegenheit neuer und auch alter Röhrentechnologie überzeugt sind. Röhrenverstärker – chromblitzende, z.T. äußerlich ungewöhnlich gestylte Geräte, in denen nicht nur viel elektronisches, mindestens genauso viel handwerkliches Know How steckt – sind für sie "State of the Art" der Klangreproduktion. Wer's nicht glaubt: ein Gang über diverse Audio-Messen ("High-End") überzeugt; sowohl einige der renommierten Großanbieter deutscher, amerikanischer und japanischer Provinienz als auch kleine (aber feine) Firmen bieten Röhrenverstärker. Exzellente, in Handarbeit gefertigte Geräte, seien optisch und klanglich, davon sind Röhrenanhänger fest überzeugt, selbst durch transistorisierte "High-Ender" nun einmal nicht zu schlagen.
Alles hat seine Geschichte...
Die Grundlagen moderner Reproduktionstechnik, das gilt für beide Verstärkertypen gleichermaßen, reichen mittlerweile rund sechzig bis siebzig Jahre zurück in die Zeit, als die Entwicklung und der Einsatz der ersten Kinoverstärker mit dem Aufkommen des Tonfilms realisiert wurden. Wichtige Impulse gab dabei die Vervollkommnung der Aufnahme- und Wiedergabewandler für die Verstärker, die möglichst verzerrungsarm (oder besser das, was man damals darunter verstand) ein relativ breites Frequenzband verarbeiten mussten. Auf der Suche nach Perfektion waren die 40er- und 50er-Jahre besonders bedeutsam: in dieser Zeit wurden Forderungen formuliert und Standards gesetzt, auf denen letztlich unsere modernen Qualitätsanforderungen im Audiobereich basieren.
Dieses Buch wirft einen Blick mit den Schwerpunkten
Erfindung der Elektronenröhre
Entwicklung der Röhren-Audiotechnik und
einer kommentierten Schaltungsdokumentation auf eben diese Geschichte der Reproduktionstechnik in der Röhrenära.