Inhalt
Theorie & Anwendung
Es werde Licht – Physikalische Grundlagen zu Licht und Beleuchtung
Illuminati – Beleuchtungstechnik: Grundlagen und Anwendungen
Steuerzentrale – LED-Leistungseinheit und -Steuerung auf einem Chip
LED-Beamer-Technologie – Funktionsweise und Anwendungen
Hitzeschild – Kaltleiter als Strombegrenzer für LEDs
Strahler 09 – Ansteuerelektronik und Wärmemanagement für Leuchtmittel auf LED-Basis
LEDs für eine neue Ära in der Lichttechnik – Die Leuchtdiode und ihre Möglichkeiten aus Sicht eines Herstellers
Ökobilanz von LED-Lampen – Ergebnisse einer Gesamtlebenszyklusanalyse für LED-Lampen
Lichtpumpe – Spannungswandler mit Konstantstromausgang für 0,5-W- und 1-W-Power-LEDs
LED the sun shine – LED-Licht fürs Automobil
Licht im Tunnel – Die XLamp LED-Serie von Cree
Selbstbauprojekte
Ambilight mit Bluetooth – Ein modulares RGB-Power-LED-System mit PC-Schnittstelle
Universelle LED-Lampe – Mit programmierbarem Farbwechsel
LED-Tester – Lichtstärke prüfen und vergleichen
Künstlerischer LED-Dimmer – Farbmischung stufenlos einstellen
Computerisierter LED-Weihnachtsbaum
LED-Würfel – Mogeln unmöglich!
Inhalt:
Theorie & Anwendung
UV-Leistungslichtquelle auf Leuchtdiodenbasis
Wasserentkeimung mit UV-Leuchtdioden
Cool down: LEDs richtig kühlen
Umrüstung: Referenzdesign für eine LED-Leuchte
Netzteil-Architekturen für Power- und RGB-LEDs
Selbstbauprojekte
Optische Messtechnik bei Leuchtdioden
Sternschnuppe: ein Meteor aus LEDs
LED-Interface mit 64 Ausgängen
Inhalt
Theorie & Anwendung
Thermische Simulation von LED-Systemen
LUVLED
100 LEDs
LEDs ans Netz
Laserstrukturierung von TCOs
Ha(l)lo LED
Wärmemanagement bei LEDs
3D-Laserscanning mit Linienlaser und Smart Camera
Selbstbauprojekte
Lichtbögen für die Modelleisenbahn
LED-Anwendungen mit Arduino
LED-Treiber für Maglite-Taschenlampe
Inhalt
Praxis
Flash Box – Projekt: RGB-Controller für LED-Stripes
LED-Module für Spot-Leuchten à la Zhaga – Referenzdesign: Zhaga-kompatibles LED-Modul auf Basis der Cree XLamp XB-D
LUVLED II – Optimierung eines Kühlkonzeptes zur Aktivluftkühlung eines Hochleistungs-UV-LED-Moduls
Lumen-Pumpe – HB-LEDs für Niedervolt-Systeme mit Li-Ion-Batterien
Bei Licht besehen – Licht-Design mit LEDs
Qualitätssicherung – Optische Charakterisierung von Leuchtdioden
LED-Treiber für Scheinwerfer – Synchroner Buck-Boost-Schaltregler für LED-Frontscheinwerfer
Theorie & Anwendung
LEDs am TRIAC-Dimmer – LED-Treiber für isolierte Offline-LED-Beleuchtungen ohne Optokoppler
Kalte Platte – Platinentechnik ermöglicht effizientes Wärmemanagement und mehrdimensionale LED-Lichtgestaltung
Abweichler – Kolorimetrie und Binning-Grundlagen
Info
Marktübersicht – LED-Hersteller, LED-Treiber-Hersteller
Licht mit LEDs: kreatives Leuchten-Design
Plädoyer für LED-Arrays – Multichip-LED-Module für ein flexibleres Leuchtendesign
Zugeschnittene Lichtleistung – Optogan X10 Chip-on-Board-System
Mid-Power LEDs im Aufwind – Trends bei Seoul Semiconductor für LEDs der Allgemeinbeleuchtung
Aktuell – Treiber, LEDs, Entwicklungs-Boards
Inhalt
Praxis
LED-KommunikatorDesign-Studie: Verwendung von handelsüblichen LEDs zur bidirektionalen Kommunikation
Nachrichten-Ticker Bau eines Internet-News-Tickers
ALS es Licht wurde Controller steuert Beleuchtungseinrichtungen nach Umgebungshelligkeit und Uhrzeit
BULI - Button-Lichtspiele Effekte mit LED2812 und Cortex-M0+
Theorie & Anwendung
DesignCorner: Schaltungen, Tipps und Kniffe- Posistor gegen den Hitzetod- High-Brightness-LEDs an Niedervolt-Stromversorgungen betreiben- Derating mit PTC-Thermistoren in LED-Treiberschaltungen- Der Umgang mit LED-Strings- LED-Treiber für unterschiedliche Wandler-Topologien- LED-Konstantstromtreiber in Schaltreglertechnik
Grenzen überschreiten
Ansteuerung von LEDs mit gepulstem Überstrom
Ansteuerung von LED-Matrixschaltungen
MultitalentController treibt LEDs, regelt Solarzellen und lädt Batterien
Dimmungstechniken für LEDs
Info
OLED – Die FlächenlichtquelleZum Entwicklungsstand der organischen Leuchtdiode
400 LED-Lampen auf dem Prüfstand
Über dem LimitLEDs mit höheren Treiberströmen ansteuern
AktuellNeue LEDs, LED-Lampen, Treiber, Netzteile, Zubehör und Entwicklungs-Tools
Eine Welle aus Lichtblitzen bewegt sich durch den Raum, Nebel steigt aus allen Ecken auf. Plötzlich schweben bunte Lichtstrahlen passend zur Musik über den Köpfen der Zuschauer. Diese und andere Szenen kennt man aus professionellen Veranstaltungen und Lichtshows. Doch mit ein wenig Know-how und etwas Kreativität können auch Anfänger mit einfachen und günstigen Mitteln vergleichbare Effekte beispielsweise im Schultheater oder im Jugendclub erzielen. Für Einsteiger, die die faszinierende Welt des Lichtdesigns und der Showgestaltung kennenlernen möchten, werden die Grundlagen der eingesetzten Lichttechnik erklärt. Das Buch bringt Licht in den Ablauf der Showprogrammierung mit Pult und PC und beleuchtet die Konzepte hinter einem ansprechenden Lichtdesign. Im zweiten Teil des Buches werden viele Selbstbautipps vorgestellt, mit deren Hilfe professionelle Showelemente auch mit einfachen Mitteln möglich sind. Dazu gehören vor allem Hinweise zu elektronischen Schaltungen und Programmiertipps. Auch die Sicherheit kommt nicht zu kurz und so finden sich an vielen Stellen Informationen, wie sich Unfälle vermeiden lassen und wo die Grenzen für Amateure liegen. Die Autoren aus verschiedenen Internet-Projekten arbeiten selbst mit diesen Mitteln und haben bereits viele Lichtshows erstellt und erfolgreich aufgeführt. Schritt für Schritt zur professionellen Lightshow Technikgrundlagen einfach erklärt Teure Fehlkäufe vermeiden: Geräteberatung für Einsteiger Leicht verständliche Selbstbautipps zu DMX Viele weiterführende Internetlinks zur Vertiefung
Das T-Deck ist ein Gerät im Taschenformat mit einem 2,8" IPS-LCD-Display (320 x 240), einer Minitastatur und einem ESP32-Dual-Core-Prozessor. Es ist zwar kein richtiges Smartphone, bietet aber viel Potenzial für Technikbegeisterte. Mit etwas Programmierkenntnissen können Sie es in ein eigenständiges Messaging-Gerät oder eine tragbare Codierungsplattform verwandeln.
Technische Daten
Mikrocontroller
ESP32-S3FN16R8 Dual-Core LX7 Mikroprozessor
Drahtlose Konnektivität
2,4 GHz WLAN & Bluetooth 5 (LE)
Entwicklung
Arduino, PlatformIO, MicroPython
Flash
16 MB
PSRAM
8 MB
Batterie-ADC-Pin
IO04
Onboard-Funktionen
Trackball, Mikrofon, Lautsprecher
Display
2,8" ST7789 SPI-Schnittstelle IPS
Auflösung
320 x 240 (voller Betrachtungswinkel)
Sendeleistung
+22 dBm
SX1262 LoRa Transceiver (Frequenz)
868 MHz
Abmessungen
100 x 68 x 11 mm
Lieferumfang
1x T-Deck ESP32-S3 LoRa
1x FPC-Antenne (868 MHz)
1x Stecker (6-polig)
1x Stromkabel
Downloads
GitHub
LILYGO T-Display RP2040 Raspberry Pi Modul mit 1,14-Zoll LCD-Entwicklungsboard
Dieses Board basiert auf einem Raspberry Pi Pico RP2040 mit Dual Cortex-M0+ und 4 MB Flash-Speicher. Es ist mit einem 1,14-Zoll-Farb-IPS-Display ausgestattet. Das ST7789V-Display hat eine Auflösung von 135 x 240 Pixeln und ist über die SPI-Schnittstelle verbunden.
Technische Daten
MCU
RP2040 Dual ARM Cortex M0+
Flash-Speicher
4 MB
Schnittstellen
2x UART, 2x SPI, 2x I²C, 6x PWM
Programmiersprache
C/C++, MicroPython
Unterstützte Machine Learning-Bibliothek
TensorFlow Lite
Onboard-Funktionen
Tasten: IO06+IO07, Batteriestromerkennung
TFT-Display
1,14-Zoll ST7789V IPS LCD
Auflösung
135 x 240, Vollfarbe
Schnittstelle
4-Wire SPI-Schnittstelle
Betriebstemperatur
-20°C ~ +70°C
Arbeitsspannung
3,3 V
Steckverbinder
JST-GH 1,25 mm 2-polig
Lieferumfang
LILYGO T-Display RP2040
Unbestückte Steckerleisten
JST-Kabel
Downloads
Pinbelegung
GitHub
Das LILYGO T-Display-S3 Long ist ein vielseitiges Entwicklungsboard mit dem ESP32-S3R8 Dual-Core-LX7-Mikroprozessor. Es verfügt über ein kapazitives 3,4" Touch-TFT-LCD mit einer Auflösung von 180 x 640 Pixeln und bietet eine reaktionsschnelle Schnittstelle für verschiedene Anwendungen.
Dieses Board ist ideal für Entwickler, die eine kompakte und dennoch leistungsstarke Lösung für Projekte suchen, die Touch-Eingabe und drahtlose Kommunikation erfordern. Die Kompatibilität mit gängigen Programmierumgebungen sorgt für ein reibungsloses Entwicklungserlebnis.
Technische Daten
MCU
ESP32-S3R8 Dual-Core LX7 Mikroprozessor
Drahtlose Konnektivität
Wi-Fi 802.11, BLE 5 + BT Mesh
Programmierplattform
Arduino IDE, VS-Code
Flash
16 MB
PSRAM
8 MB
Bat-Spannungserkennung
IO02
Onboard-Funktionen
Boot + Reset-Taste, Batterieschalter
Anzeige
3,4" kapazitives Touch-TFT-LCD
Farbtiefe
565, 666
Auflösung
180 x 640 (RGB)
Funktionierendes Netzteil
3,3 V
Schnittstelle
QSPI
Lieferumfang
1x T-Display S3 Long
1x Stromkabel
2x STEMMA QT/Qwiic-Schnittstellenkabel (P352)
1x Female Pin (zweireihig)
Downloads
GitHub
The LILYGO TTGO T-Display-GD32 is a compact and minimalist development board featuring a powerful GD32VF103CBT6 RISC-V microcontroller.
Ideal for IoT applications, wearables, and rapid prototyping, it provides versatile connectivity options like GPIO, SPI, UART, and I²C interfaces. Thanks to its efficient RISC-V architecture and clear, high-quality screen, this board is perfect for small projects requiring graphical interfaces or data visualization in a space-saving form factor.
Specifications
Chipset
GD32VF103CBT6
FLASH
128 kB
SRAM
32 kB
On-board clock
108 MHz crystal oscillator
Working Voltage
2.7-3.6 V
Button
BOOT - RESET
LCD
ST7789 1.14" IPS 240 x 135
USB to TTL
CP2104
Modular interface
TIMER, UART, SPI, I²C, PWM, ADC, DAC, CAN, USBOTG
Working Temperature Range
−40~85°C
Peripheral
Button, RGB LED, SD slot, LCD
Power Supply Input
USB 5 V @ 1 A
Charging Current
500 mA
Battery Input
3.7-4.2 V
USB
USB-C
Dimensions
51.49 x 25.2 x 10 mm
Weight
10 g
Downloads
GitHub
LILYGO T-Display-S3 ESP32-S3 1.9-Zoll ST7789 LCD-Display Entwicklungsboard WiFi Bluetooth 5.0 Wireless Modul 170x320 Auflösung
T-Display-S3 ist ein Entwicklungsboard, dessen Hauptsteuerchip ESP32-S3 ist. Es ist mit einem 1,9-Zoll-LCD-Farbbildschirm und zwei programmierbaren Tasten ausgestattet. Kommunikation über die I8080-Schnittstelle behält das gleiche Layout-Design wie T-Display. Sie können den ESP32-S3 direkt für die USB-Kommunikation oder Programmierung verwenden.
Technische Daten
MCU
ESP32-S3R8 Dual-Core LX7 Mikroprozessor
Wireless-Konnektivität
Wi-Fi 802.11, BLE 5 + BT Mesh
Programmierplattform
Arduino IDE Micropython
Flash
16 MB
PSRAM
8 MB
Bat-Spannungserkennung
IO04
Onboard functions
Boot + Reset + IO14 Button
LCD
1.9" diagonal, Full-color TFT Display
Drive Chip
ST7789V
Resolution
170(H)RGB x320(V) 8-Bit Parallel Interface
Working power supply
3.3 V
Support
STEMMA QT / Qwiic
Connector
JST-GH 1.25 mm 2-pin
Downloads
Pinout
GitHub
Das T-Journal ist ein günstiges ESP32-Kamera-Entwicklungsboard mit einer OV2640-Kamera, einer Antenne, einem 0,91-Zoll-OLED-Display, einigen freiliegenden GPIOs und einer Micro-USB-Schnittstelle. Damit lässt sich Code einfach und schnell auf das Board hochladen.
Spezifikationen
Chipsatz Expressif-ESP32-PCIO-D4 240 MHz Xtensa Single-/Dual-Core 32-Bit LX6 Mikroprozessor
FLASH QSPI-Flash/SRAM, bis zu 4x 16 MB
SRAM 520 kB SRAM Schlüssel zurücksetzen, IO32
Anzeige 0,91' SSD1306
Betriebskontrollleuchte rot
USB auf TTL CP2104
Kamera OV2640, 2 Megapixel
Analoges Servo für den Lenkmotor
Integrierter Taktgeber: 40 MHz Quarzoszillator
Betriebsspannung 2,3-3,6 V
Arbeitsstrom ca. 160 mA
Arbeitstemperaturbereich -40℃ ~ +85℃
Größe 64,57 x 23,98 mm
Netzteil USB 5 V/1 A
Ladestrom 1 A
Batterie 3,7 V Lithiumbatterie
W-lan
Standard FCC/CE/TELEC/KCC/SRRC/NCC (ESP32-Chip)
Protokoll 802.11 b/g/n/e/i (802.11n, Geschwindigkeit bis zu 150 Mbit/s) A-MPDU- und A-MSDU-Polymerisation, unterstützt 0,4 μS Schutzintervall
Frequenzbereich 2,4 GHz~2,5 GHz (2400 M ~ 2483,5 M)
Sendeleistung 22 dBm
Kommunikationsentfernung 300m
Bluetooth
Protokoll entspricht Bluetooth v4.2BR/EDR und BLE-Standard
Radiofrequenz mit -98 dBm Empfindlichkeit NZIF-Empfänger Klasse-1, Klasse-2 und Klasse-3-Sender AFH
Audiofrequenz CVSD- und SBC-Audiofrequenz
Software
WLAN-Modus Station/SoftAP/SoftAP+Station/P2P
Sicherheitsmechanismus WPA/WPA2/WPA2-Enterprise/WPS Verschlüsselungstyp AES/RSA/ECC/SHA
Firmware-Upgrade UART-Download/OTA (Download und Schreiben der Firmware über Netzwerk/Host)
Unterstützung bei der Softwareentwicklung, Cloud-Server-Entwicklung/SDK für die Entwicklung von Benutzer-Firmware
Netzwerkprotokoll IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT
Benutzerkonfiguration AT + Befehlssatz, Cloud-Server, Android/iOS-App
Betriebssystem FreeRTOS
Inbegriffen
1x ESP32-Kameramodul (Fischaugenobjektiv)
1x WLAN-Antenne
1x Stromleitung
Downloads
Kamerabibliothek für Arduino
Das T-Journal ist ein günstiges ESP32-Kamera-Entwicklungsboard mit einer OV2640-Kamera, einer Antenne, einem 0,91-Zoll-OLED-Display, einigen freiliegenden GPIOs und einer Micro-USB-Schnittstelle. Damit lässt sich Code einfach und schnell auf das Board hochladen.
Spezifikationen
Chipsatz Expressif-ESP32-PCIO-D4 240 MHz Xtensa Single-/Dual-Core 32-Bit LX6 Mikroprozessor
FLASH QSPI-Flash/SRAM, bis zu 4x 16 MB
SRAM 520 kB SRAM
Schlüssel zurücksetzen, IO32
Anzeige 0,91' SSD1306
Betriebskontrollleuchte rot
USB auf TTL CP2104
Kamera OV2640, 2 Megapixel
Analoges Servo für den Lenkmotor
Integrierter Taktgeber: 40 MHz Quarzoszillator
Betriebsspannung 2,3-3,6 V
Arbeitsstrom ca. 160 mA
Arbeitstemperaturbereich -40℃ ~ +85℃
Größe 64,57 x 23,98 mm
Netzteil USB 5 V/1 A
Ladestrom 1 A Batterie 3,7 V Lithiumbatterie
W-lan
Standard FCC/CE/TELEC/KCC/SRRC/NCC (ESP32-Chip)
Protokoll 802.11 b/g/n/e/i (802.11n, Geschwindigkeit bis zu 150 Mbit/s) A-MPDU- und A-MSDU-Polymerisation, unterstützt 0,4 μS Schutzintervall
Frequenzbereich 2,4 GHz~2,5 GHz (2400 M ~ 2483,5 M)
Sendeleistung 22 dBm
Kommunikationsentfernung 300m
Bluetooth
Protokoll entspricht Bluetooth v4.2BR/EDR und BLE-Standard
Radiofrequenz mit -98 dBm Empfindlichkeit NZIF-Empfänger Klasse-1, Klasse-2 und Klasse-3-Sender AFH
Audiofrequenz CVSD- und SBC-Audiofrequenz
Software
WLAN-Modus Station/SoftAP/SoftAP+Station/P2P
Sicherheitsmechanismus WPA/WPA2/WPA2-Enterprise/WPS
Verschlüsselungstyp AES/RSA/ECC/SHA
Firmware-Upgrade UART-Download/OTA (Herunterladen und Schreiben der Firmware über Netzwerk/Host)
Unterstützung bei der Softwareentwicklung, Cloud-Server-Entwicklung/SDK für die Entwicklung von Benutzer-Firmware
Netzwerkprotokoll IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT
Benutzerkonfiguration AT + Befehlssatz, Cloud-Server, Android/iOS-App
Betriebssystem FreeRTOS
Inbegriffen
1x ESP32-Kameramodul (Normalobjektiv)
1x WLAN-Antenne
1x Stromleitung
Downloads
Kamerabibliothek für Arduino
Das LILYGO T-Panel S3 ist ein vielseitiges Entwicklungsboard, das für IoT-Anwendungen entwickelt wurde und über ein 4" IPS-LCD mit einer Auflösung von 480 x 480 verfügt.
Angetrieben durch den ESP32-S3-Mikrocontroller bietet es 2,4 GHz-WLAN und Bluetooth 5 (LE)-Konnektivität, mit 16 MB Flash-Speicher und 8 MB PSRAM. Das Board unterstützt Entwicklungsumgebungen wie Arduino, PlatformIO-IDE und MicroPython. Es verfügt insbesondere über eine kapazitive Touch-Schnittstelle, die die Interaktionsmöglichkeiten mit dem Benutzer verbessert. Zu den integrierten Funktionen gehören Boot (IO00), Reset und zwei zusätzliche Tasten, die Flexibilität für verschiedene Anwendungen bieten. Durch diese Kombination von Funktionen eignet sich das T-Panel S3 für eine Vielzahl von IoT-Projekten und Steuerungsschnittstellen für intelligente Geräte.
Technische Daten
MCU1
ESP32-S3
Flash
16 MB
PSRAM
8 MB
Drahtlose Konnektivität
2,4-GHz-WLAN + Bluetooth 5 (LE)
MCU2
ESP32-H2
Flash
4 MB
Drahtlose Konnektivität
IEEE 802.15.4 + Bluetooth 5 (LE)
Entwicklung
Arduino, PlatformIO-IDE, Micropython
Display
4,0" IPS ST7701S LCD (480 x 480)
Auflösung
480 x 480 (RGB)
Schnittstelle
SPI + RGB
Kompatibilitätsbibliothek
Arduino_ GFX, LVGL
Onboard-Funktionen
QWiiCx2 + TF-Karte + AntenneESP32 4x Taste = S3 (Boot + RST) + H2 (Boot + RST)
Transceiver-Modul
RS485
Verwendung des Buskommunikationsprotokolls
UART
Lieferumfang
1x T-Panel S3
1x Female pin (2x 8x1.27)
Downloads
GitHub
T-PicoC3 ist das erste Motherboard von LILYGO mit zwei Mikrocontrollern - ausgestattet mit dem Raspberry Pi RP2040 und dem ESP32-C3-Chip (mit WiFi- und Bluetooth-Unterstützung).
Spezifikationen
MCU
RP2040 Dual ARM Cortex-M0+
Flash
4 MB
Programmiersprache
C/C++, MicroPython
Unterstützte Machine-Learning-Bibliothek
TensorFlow Lite
Onboard-Funktionen
Tasten: IO06+IO07, Batteriestromerkennung
1,14-Zoll ST7789V IPS-LCD
Auflösung
135 x 240
Display
Vollfarbiges TFT
Schnittstelle
4-Wire SPI
Stromversorgung
3,3 V
Betriebstemperatur
-20~70°C
Abmessungen
2,4 x 5,3 cm (B x H)
Downloads
GitHub
This book is intended as a highly-practical guide for Hobbyists, Engineers and Scientists wishing to build measurement and control systems to be controlled by a local or remote Personal Computer running the Linux operating system. Both hardware and software aspects of designing typical embedded systems are covered in detail with schematics, code listings and full descriptions. Numerous examples have been designed to show clearly how straightforward it can be to create the interfaces between digital and analog electronics, with programming techniques for creating control software for both local and remote systems. Hardware developers will appreciate the variety of circuits, including a novel, low cost modulated wireless link and will discover how using Matlab® overcomes the need for specialist programming skills.
Software developers will appreciate how a better understanding of circuits plus the freedom offered by Linux to directly control at the register level enables them to optimize related programs. There is no need to buy special equipment or expensive software tools in order to create embedded projects covered in this book. You can build such quality systems quickly using popular low-cost electronic components and free distributed or low-cost software tools. Some knowledge of basic electronics plus the very basics of C programming only is required.
Many projects in this book are developed using Matlab® being a very popular worldwide computational tool for research in engineering and science. The book provides a detailed description of how to combine the power of Matlab® with practical electronics.
With an emphasis on learning by doing, readers are encouraged by examples to program with ease; the book provides clear guidelines as to the appropriate programming techniques “on the fly”. Complete and well-documented source code is provided for all projects.
If you want to learn how to quickly build Linux-based applications able to collect, process and display data on a PC from various analog and digital sensors, how to control circuitry attached to a computer, then even how to pass data via a network or control your embedded system wirelessly and more – then this is the book for you!
Features of this Book
Use the power, flexibility and control offered only by a Linux operating system on a PC.
Use a free, distributed downloadable GNU C compiler Use (optional) a low-cost Student Version of Matlab®.
Use low-cost electronic sub-assemblies for projects.
Improve your skills in electronics, programming, networking and wireless design.
A full chapter is dedicated to controlling your sound card for audio input and output purposes.
Program sound using OSS and ALSA.
Learn how to combine electronic circuits, software, networks and wireless technologies in the complete embedded system.
Lo-Fi (ESP32 + LoRa-Kombination) ist die perfekte Lösung für alle, die eine drahtlose Kommunikation über große Entfernungen in einer Vielzahl von Anwendungen mit WiFi-Funktionen aufbauen möchten. LoRa bietet eine außergewöhnliche Reichweite und einfache Konnektivität und ermöglicht Ihnen die nahtlose Kommunikation mit Geräten in einer Entfernung von bis zu 5 m.
Geräte bieten neben dem WLAN-Zugang eine effiziente und vertrauenswürdige Wahl für die drahtlose Kommunikation über große Entfernungen, um Internet-Clouds zu verbinden, die sich am besten für Internet-of-Things-Anwendungen eignen und Konnektivität in abgelegenen und anspruchsvollen Umgebungen ermöglichen.
Funktionen
Gerät mit leistungsstarkem ESP32 S3 WROOM-1, das über einen Xtensa Dual-Core-32-Bit-LX7-Mikroprozessor mit bis zu 240 MHz verfügt
Integriertes WLAN & Bluetooth LE für drahtlose Konnektivität
Typ-C-Schnittstelle für Programmierung/Stromversorgung
1,14-Zoll-TFT-Display für visuelle Interaktionen
GPIO-Breakouts für den Anschluss zusätzlicher Peripheriegeräte
Breadboard-kompatibel für einfache DIY-Breadboarding-Projekte
2 separate, vom Benutzer programmierbare Tasten sowie Reset- und Boot-Tasten
3,7-V-Lithiumbatterieanschluss für einen tragbaren Anwendungsfall mit integrierter Ladeoption
Verwenden Sie das LoRa-Spreizspektrum der neuen Generation, um eine stabile Kommunikation sicherzustellen
Für LoRa höhere Geschwindigkeit und eine größere Datenübertragungsreichweite von bis zu 5 km
Anwendungen
Internet der Dinge (IoT)
Smart Home-Automatisierung
Landwirtschaftliche Automatisierung
Notfalldienste
Umweltüberwachung
Industrielle Automatisierung
Technische Daten
Mikrocontroller: ESP32 S3 WROOM-1
Drahtlose Schnittstelle: WiFi, BLE, LoRa
Protokoll: 802.11b/g/n, Bluetooth 5.0
Speichergröße: 16 MB Flash, 384 kB ROM, 8 MB SRAM
Versorgungsspannung: 5 V
Betriebsspannung: 3,3 V
Displaygröße: 1,14 Zoll
Anzeigetyp: TFT
Anzeigeauflösung: 135 x 240 Pixel
Anzeigetreiber: ST7789V
Anzeigedarstellung: RGB
Anzeigefarbe: 4k/65k/252k
Display-Leuchtdichte: 400 Cd/m²
Betriebstemperatur: -20 bis 70°C
Lagertemperatur: -30 bis 80°C
LoRa-Modulspezifikationen:
Trägerfrequenz (lizenzfreies ISM): 868 MHz
Chip: Basierend auf dem SX1262 RF-Chip
Reichweite: 5 km
Sendeleistung: 22 dBm
Empfangsempfindlichkeit: -147 dBm
Datenrate: Bis zu 62,5 kbps
Kommunikationsport: UART seriell
Downloads
Getting started guide
Hardware design files
Lieferumfang
1x Lo-Fi Board
1x Antenne (868 MHz)
USB-Logikanalysatoren am PC mit Arduino, Raspberry Pi und Co
Schritt-für-Schritt-Anleitungen führen Sie in die Analyse moderner Protokolle von I²C, SPI, UART, RS-232, NeoPixel, WS28xx, HD44780 und 1-Wire Protokollen ein. Anhand zahlreicher Experimentierschaltungen mit dem Raspberry Pi Pico, Arduino Uno und dem Bus Pirate üben Sie die praxisnahe Anwendung gängiger USB-Logikanalysatoren ein.
Alle in diesem Buch vorgestellten Experimentierschaltungen wurden gründlich getestet und sind funktionsfähig. Die notwendigen Programmlistings sind enthalten, es sind keine besonderen Programmier- oder Elektronikkenntnisse für diese Schaltungen notwendig. Es werden die Programmiersprachen MicroPython und C mit den Entwicklungsumgebungen Thonny und Arduino IDE eingesetzt.
Dieses Buch verwendet mehrere Modelle flexibler und weit verbreiteter USB-Logikanalysatoren und zeigt die Stärken und Schwächen jeder Preisklasse. Sie werden herausfinden, welche Kriterien für Ihre Arbeit wichtig sind und in der Lage sein, das passende Gerät für Sie zu finden.
Egal ob Arduino, Raspberry Pi oder Raspberry Pi Pico: Die abgebildeten Beispielschaltungen ermöglichen einen schnellen Einstieg in die Protokollanalyse und können auch als Grundlage für eigene weitere Experimente dienen.
Sie werden alle wichtigen Begriffe und Zusammenhänge kennenlernen, eigene Experimente durchführen, selbstständig Protokolle analysieren und nach der Lektüre dieses Buches – im Bereich der digitalen Signale und Protokolle – ein umfassendes Wissen aufgebaut haben.
USB-Logikanalysatoren am PC mit Arduino, Raspberry Pi und Co
Schritt-für-Schritt-Anleitungen führen Sie in die Analyse moderner Protokolle von I²C, SPI, UART, RS-232, NeoPixel, WS28xx, HD44780 und 1-Wire Protokollen ein. Anhand zahlreicher Experimentierschaltungen mit dem Raspberry Pi Pico, Arduino Uno und dem Bus Pirate üben Sie die praxisnahe Anwendung gängiger USB-Logikanalysatoren ein.
Alle in diesem Buch vorgestellten Experimentierschaltungen wurden gründlich getestet und sind funktionsfähig. Die notwendigen Programmlistings sind enthalten, es sind keine besonderen Programmier- oder Elektronikkenntnisse für diese Schaltungen notwendig. Es werden die Programmiersprachen MicroPython und C mit den Entwicklungsumgebungen Thonny und Arduino IDE eingesetzt.
Dieses Buch verwendet mehrere Modelle flexibler und weit verbreiteter USB-Logikanalysatoren und zeigt die Stärken und Schwächen jeder Preisklasse. Sie werden herausfinden, welche Kriterien für Ihre Arbeit wichtig sind und in der Lage sein, das passende Gerät für Sie zu finden.
Egal ob Arduino, Raspberry Pi oder Raspberry Pi Pico: Die abgebildeten Beispielschaltungen ermöglichen einen schnellen Einstieg in die Protokollanalyse und können auch als Grundlage für eigene weitere Experimente dienen.
Sie werden alle wichtigen Begriffe und Zusammenhänge kennenlernen, eigene Experimente durchführen, selbstständig Protokolle analysieren und nach der Lektüre dieses Buches – im Bereich der digitalen Signale und Protokolle – ein umfassendes Wissen aufgebaut haben.
Benutzeroberfläche mit doppelter Hintergrundbeleuchtung: Die doppelt beleuchtete Taste ist genau wie die einzelne hintergrundbeleuchtete Taste, macht aber doppelt so viel Spaß! Verwenden Sie diese Komponente, wenn Sie etwas nach oben und unten oder von rechts nach links bewegen müssen. Mit ausgeschnittenem Vinyl können Sie Symbole und Aufkleber auf Stoff erstellen, die Ihren Benutzern die Tastenfunktion zeigen.
Merkmale
Komponente: 4,6' x 6,3'
Einzelne Knopfgröße: 1' Radiuskreis
Haltbarkeit der Presse: Bis zu 10.000 Pressungen unter 5 lbf
LED-Spannung: 5V
Wie der Mini-Drucksensor, aber größer! Unsere 3x3-Mega-Druckmatrix verfügt über 6 Ableitungen, sodass Sie den Punkt, an dem Sie sich in der 3x3-Matrix befinden, kartieren und eine Druckkartierung über einer Oberfläche erhalten können. Jeder Bereich verfügt über eine analoge Anzeige, die je nach Gewicht des Artikels auf dem Drucksensor variiert. Im Allgemeinen liegen Sensorwerte zwischen 500 Kohm und 100 Ohm, abhängig von der auf den Sensor ausgeübten Kraft.
Merkmale
Komponente: 5' x 6,5
Erfassungsbereich 3,0' im Quadrat
Dicke: ca. 20 mil
Die einzelne Taste mit Hintergrundbeleuchtung ist ein einfacher mechanischer Schalter mit einer LED im Inneren. Wenn Sie die Taste drücken, wird der Stromkreis geschlossen und Ihr Pin auf High oder Low geschaltet. Verwenden Sie die eingebettete LED, um ein leuchtendes Stromsymbol, ein Logo oder was auch immer Ihren Vorstellungen entspricht, zu erstellen.
Merkmale
Haltbarkeit der Presse: Bis zu 10.000 Pressvorgänge unter 22,24 N (5lbf)
LED-Spannung: 5V
Komponente: 2' x 3' Einzelperson (5,08 cm x 7,62 cm)
Knopfgröße: Kreis mit 1' Radius (2,54 cm)