Das LILYGO T-Display-S3 Long ist ein vielseitiges Entwicklungsboard mit dem ESP32-S3R8 Dual-Core-LX7-Mikroprozessor. Es verfügt über ein kapazitives 3,4" Touch-TFT-LCD mit einer Auflösung von 180 x 640 Pixeln und bietet eine reaktionsschnelle Schnittstelle für verschiedene Anwendungen.
Dieses Board ist ideal für Entwickler, die eine kompakte und dennoch leistungsstarke Lösung für Projekte suchen, die Touch-Eingabe und drahtlose Kommunikation erfordern. Die Kompatibilität mit gängigen Programmierumgebungen sorgt für ein reibungsloses Entwicklungserlebnis.
Technische Daten
MCU
ESP32-S3R8 Dual-Core LX7 Mikroprozessor
Drahtlose Konnektivität
Wi-Fi 802.11, BLE 5 + BT Mesh
Programmierplattform
Arduino IDE, VS-Code
Flash
16 MB
PSRAM
8 MB
Bat-Spannungserkennung
IO02
Onboard-Funktionen
Boot + Reset-Taste, Batterieschalter
Anzeige
3,4" kapazitives Touch-TFT-LCD
Farbtiefe
565, 666
Auflösung
180 x 640 (RGB)
Funktionierendes Netzteil
3,3 V
Schnittstelle
QSPI
Lieferumfang
1x T-Display S3 Long
1x Stromkabel
2x STEMMA QT/Qwiic-Schnittstellenkabel (P352)
1x Female Pin (zweireihig)
Downloads
GitHub
This book is intended as a highly-practical guide for Hobbyists, Engineers and Scientists wishing to build measurement and control systems to be controlled by a local or remote Personal Computer running the Linux operating system. Both hardware and software aspects of designing typical embedded systems are covered in detail with schematics, code listings and full descriptions. Numerous examples have been designed to show clearly how straightforward it can be to create the interfaces between digital and analog electronics, with programming techniques for creating control software for both local and remote systems. Hardware developers will appreciate the variety of circuits, including a novel, low cost modulated wireless link and will discover how using Matlab® overcomes the need for specialist programming skills.
Software developers will appreciate how a better understanding of circuits plus the freedom offered by Linux to directly control at the register level enables them to optimize related programs. There is no need to buy special equipment or expensive software tools in order to create embedded projects covered in this book. You can build such quality systems quickly using popular low-cost electronic components and free distributed or low-cost software tools. Some knowledge of basic electronics plus the very basics of C programming only is required.
Many projects in this book are developed using Matlab® being a very popular worldwide computational tool for research in engineering and science. The book provides a detailed description of how to combine the power of Matlab® with practical electronics.
With an emphasis on learning by doing, readers are encouraged by examples to program with ease; the book provides clear guidelines as to the appropriate programming techniques “on the fly”. Complete and well-documented source code is provided for all projects.
If you want to learn how to quickly build Linux-based applications able to collect, process and display data on a PC from various analog and digital sensors, how to control circuitry attached to a computer, then even how to pass data via a network or control your embedded system wirelessly and more – then this is the book for you!
Features of this Book
Use the power, flexibility and control offered only by a Linux operating system on a PC.
Use a free, distributed downloadable GNU C compiler Use (optional) a low-cost Student Version of Matlab®.
Use low-cost electronic sub-assemblies for projects.
Improve your skills in electronics, programming, networking and wireless design.
A full chapter is dedicated to controlling your sound card for audio input and output purposes.
Program sound using OSS and ALSA.
Learn how to combine electronic circuits, software, networks and wireless technologies in the complete embedded system.
Lo-Fi (ESP32 + LoRa-Kombination) ist die perfekte Lösung für alle, die eine drahtlose Kommunikation über große Entfernungen in einer Vielzahl von Anwendungen mit WiFi-Funktionen aufbauen möchten. LoRa bietet eine außergewöhnliche Reichweite und einfache Konnektivität und ermöglicht Ihnen die nahtlose Kommunikation mit Geräten in einer Entfernung von bis zu 5 m.
Geräte bieten neben dem WLAN-Zugang eine effiziente und vertrauenswürdige Wahl für die drahtlose Kommunikation über große Entfernungen, um Internet-Clouds zu verbinden, die sich am besten für Internet-of-Things-Anwendungen eignen und Konnektivität in abgelegenen und anspruchsvollen Umgebungen ermöglichen.
Funktionen
Gerät mit leistungsstarkem ESP32 S3 WROOM-1, das über einen Xtensa Dual-Core-32-Bit-LX7-Mikroprozessor mit bis zu 240 MHz verfügt
Integriertes WLAN & Bluetooth LE für drahtlose Konnektivität
Typ-C-Schnittstelle für Programmierung/Stromversorgung
1,14-Zoll-TFT-Display für visuelle Interaktionen
GPIO-Breakouts für den Anschluss zusätzlicher Peripheriegeräte
Breadboard-kompatibel für einfache DIY-Breadboarding-Projekte
2 separate, vom Benutzer programmierbare Tasten sowie Reset- und Boot-Tasten
3,7-V-Lithiumbatterieanschluss für einen tragbaren Anwendungsfall mit integrierter Ladeoption
Verwenden Sie das LoRa-Spreizspektrum der neuen Generation, um eine stabile Kommunikation sicherzustellen
Für LoRa höhere Geschwindigkeit und eine größere Datenübertragungsreichweite von bis zu 5 km
Anwendungen
Internet der Dinge (IoT)
Smart Home-Automatisierung
Landwirtschaftliche Automatisierung
Notfalldienste
Umweltüberwachung
Industrielle Automatisierung
Technische Daten
Mikrocontroller: ESP32 S3 WROOM-1
Drahtlose Schnittstelle: WiFi, BLE, LoRa
Protokoll: 802.11b/g/n, Bluetooth 5.0
Speichergröße: 16 MB Flash, 384 kB ROM, 8 MB SRAM
Versorgungsspannung: 5 V
Betriebsspannung: 3,3 V
Displaygröße: 1,14 Zoll
Anzeigetyp: TFT
Anzeigeauflösung: 135 x 240 Pixel
Anzeigetreiber: ST7789V
Anzeigedarstellung: RGB
Anzeigefarbe: 4k/65k/252k
Display-Leuchtdichte: 400 Cd/m²
Betriebstemperatur: -20 bis 70°C
Lagertemperatur: -30 bis 80°C
LoRa-Modulspezifikationen:
Trägerfrequenz (lizenzfreies ISM): 868 MHz
Chip: Basierend auf dem SX1262 RF-Chip
Reichweite: 5 km
Sendeleistung: 22 dBm
Empfangsempfindlichkeit: -147 dBm
Datenrate: Bis zu 62,5 kbps
Kommunikationsport: UART seriell
Downloads
Getting started guide
Hardware design files
Lieferumfang
1x Lo-Fi Board
1x Antenne (868 MHz)
USB-Logikanalysatoren am PC mit Arduino, Raspberry Pi und Co
Schritt-für-Schritt-Anleitungen führen Sie in die Analyse moderner Protokolle von I²C, SPI, UART, RS-232, NeoPixel, WS28xx, HD44780 und 1-Wire Protokollen ein. Anhand zahlreicher Experimentierschaltungen mit dem Raspberry Pi Pico, Arduino Uno und dem Bus Pirate üben Sie die praxisnahe Anwendung gängiger USB-Logikanalysatoren ein.
Alle in diesem Buch vorgestellten Experimentierschaltungen wurden gründlich getestet und sind funktionsfähig. Die notwendigen Programmlistings sind enthalten, es sind keine besonderen Programmier- oder Elektronikkenntnisse für diese Schaltungen notwendig. Es werden die Programmiersprachen MicroPython und C mit den Entwicklungsumgebungen Thonny und Arduino IDE eingesetzt.
Dieses Buch verwendet mehrere Modelle flexibler und weit verbreiteter USB-Logikanalysatoren und zeigt die Stärken und Schwächen jeder Preisklasse. Sie werden herausfinden, welche Kriterien für Ihre Arbeit wichtig sind und in der Lage sein, das passende Gerät für Sie zu finden.
Egal ob Arduino, Raspberry Pi oder Raspberry Pi Pico: Die abgebildeten Beispielschaltungen ermöglichen einen schnellen Einstieg in die Protokollanalyse und können auch als Grundlage für eigene weitere Experimente dienen.
Sie werden alle wichtigen Begriffe und Zusammenhänge kennenlernen, eigene Experimente durchführen, selbstständig Protokolle analysieren und nach der Lektüre dieses Buches – im Bereich der digitalen Signale und Protokolle – ein umfassendes Wissen aufgebaut haben.
USB-Logikanalysatoren am PC mit Arduino, Raspberry Pi und Co
Schritt-für-Schritt-Anleitungen führen Sie in die Analyse moderner Protokolle von I²C, SPI, UART, RS-232, NeoPixel, WS28xx, HD44780 und 1-Wire Protokollen ein. Anhand zahlreicher Experimentierschaltungen mit dem Raspberry Pi Pico, Arduino Uno und dem Bus Pirate üben Sie die praxisnahe Anwendung gängiger USB-Logikanalysatoren ein.
Alle in diesem Buch vorgestellten Experimentierschaltungen wurden gründlich getestet und sind funktionsfähig. Die notwendigen Programmlistings sind enthalten, es sind keine besonderen Programmier- oder Elektronikkenntnisse für diese Schaltungen notwendig. Es werden die Programmiersprachen MicroPython und C mit den Entwicklungsumgebungen Thonny und Arduino IDE eingesetzt.
Dieses Buch verwendet mehrere Modelle flexibler und weit verbreiteter USB-Logikanalysatoren und zeigt die Stärken und Schwächen jeder Preisklasse. Sie werden herausfinden, welche Kriterien für Ihre Arbeit wichtig sind und in der Lage sein, das passende Gerät für Sie zu finden.
Egal ob Arduino, Raspberry Pi oder Raspberry Pi Pico: Die abgebildeten Beispielschaltungen ermöglichen einen schnellen Einstieg in die Protokollanalyse und können auch als Grundlage für eigene weitere Experimente dienen.
Sie werden alle wichtigen Begriffe und Zusammenhänge kennenlernen, eigene Experimente durchführen, selbstständig Protokolle analysieren und nach der Lektüre dieses Buches – im Bereich der digitalen Signale und Protokolle – ein umfassendes Wissen aufgebaut haben.
Benutzeroberfläche mit doppelter Hintergrundbeleuchtung: Die doppelt beleuchtete Taste ist genau wie die einzelne hintergrundbeleuchtete Taste, macht aber doppelt so viel Spaß! Verwenden Sie diese Komponente, wenn Sie etwas nach oben und unten oder von rechts nach links bewegen müssen. Mit ausgeschnittenem Vinyl können Sie Symbole und Aufkleber auf Stoff erstellen, die Ihren Benutzern die Tastenfunktion zeigen.
Merkmale
Komponente: 4,6' x 6,3'
Einzelne Knopfgröße: 1' Radiuskreis
Haltbarkeit der Presse: Bis zu 10.000 Pressungen unter 5 lbf
LED-Spannung: 5V
Wie der Mini-Drucksensor, aber größer! Unsere 3x3-Mega-Druckmatrix verfügt über 6 Ableitungen, sodass Sie den Punkt, an dem Sie sich in der 3x3-Matrix befinden, kartieren und eine Druckkartierung über einer Oberfläche erhalten können. Jeder Bereich verfügt über eine analoge Anzeige, die je nach Gewicht des Artikels auf dem Drucksensor variiert. Im Allgemeinen liegen Sensorwerte zwischen 500 Kohm und 100 Ohm, abhängig von der auf den Sensor ausgeübten Kraft.
Merkmale
Komponente: 5' x 6,5
Erfassungsbereich 3,0' im Quadrat
Dicke: ca. 20 mil
Die einzelne Taste mit Hintergrundbeleuchtung ist ein einfacher mechanischer Schalter mit einer LED im Inneren. Wenn Sie die Taste drücken, wird der Stromkreis geschlossen und Ihr Pin auf High oder Low geschaltet. Verwenden Sie die eingebettete LED, um ein leuchtendes Stromsymbol, ein Logo oder was auch immer Ihren Vorstellungen entspricht, zu erstellen.
Merkmale
Haltbarkeit der Presse: Bis zu 10.000 Pressvorgänge unter 22,24 N (5lbf)
LED-Spannung: 5V
Komponente: 2' x 3' Einzelperson (5,08 cm x 7,62 cm)
Knopfgröße: Kreis mit 1' Radius (2,54 cm)
Fertige und selbst aufgebaute Arduino-Knoten im TTN
LoRaWAN hat sich als Kommunikationslösung im IoT hervorragend entwickelt. The Things Network (TTN) hat hierzu seinen Beitrag geleistet. Aktuell wird The Things Network auf The Things Stack Community Edition (TTS (CE)) aktualisiert. Die Cluster von TTN V2 werden gegen Ende 2021 geschlossen.
Der Autor zeigt Ihnen die notwendigen Schritte, damit Sie in gewohnter Weise LoRaWAN-Knoten mit Hilfe von TTS (CE) betreiben und vielleicht auch das Netz der Gateways durch ein eigenes Gateway erweitern. Mittlerweile gibt es sogar für den mobilen Einsatz geeignete LoRaWAN-Gateways mit denen Sie über Ihr Mobiltelefon Verbindung zum TTN-Server aufbauen können.
In diesem Buch werden eine Reihe kommerzieller und Arduino-basierter LoRaWAN-Knoten als auch neue, kostengünstige und für den Batteriebetrieb geeignete Hardware zum Aufbau autonomer LoRaWAN-Knoten vorgestellt.
Die Registrierung von LoRaWAN-Knoten und Gateways im TTS (CE) sowie die Bereitstellung der erhobenen Daten über MQTT und die Visualisierung über Node-RED, Cayenne, Thingspeak und Datacake ermöglichen komplexe IoT-Projekte und völlig neue Anwendungen zu sehr geringen Kosten.
Das vorliegende Buch versetzt Sie in die Lage, mit batteriebetriebenen Sensoren (LoRaWAN-Knoten) erfasste Daten drahtlos im Internet bereitzustellen und zu visualisieren.
Sie lernen die Grundlagen für Smart-City- und IoT-Anwendungen, die beispielsweise die Messung von Luftqualität, Wasserständen, Schneehöhen, das Ermitteln von freien Parkfeldern (Smart Parking) und die intelligente Steuerung der Straßenbeleuchtung (Smart Lighting) u.a.m. ermöglichen.
Fertige und selbst aufgebaute Arduino-Knoten im TTN
LoRaWAN hat sich als Kommunikationslösung im IoT hervorragend entwickelt. The Things Network (TTN) hat hierzu seinen Beitrag geleistet. Aktuell wird The Things Network auf The Things Stack Community Edition (TTS (CE)) aktualisiert. Die Cluster von TTN V2 werden gegen Ende 2021 geschlossen.
Der Autor zeigt Ihnen die notwendigen Schritte, damit Sie in gewohnter Weise LoRaWAN-Knoten mit Hilfe von TTS (CE) betreiben und vielleicht auch das Netz der Gateways durch ein eigenes Gateway erweitern. Mittlerweile gibt es sogar für den mobilen Einsatz geeignete LoRaWAN-Gateways mit denen Sie über Ihr Mobiltelefon Verbindung zum TTN-Server aufbauen können.
In diesem Buch werden eine Reihe kommerzieller und Arduino-basierter LoRaWAN-Knoten als auch neue, kostengünstige und für den Batteriebetrieb geeignete Hardware zum Aufbau autonomer LoRaWAN-Knoten vorgestellt.
Die Registrierung von LoRaWAN-Knoten und Gateways im TTS (CE) sowie die Bereitstellung der erhobenen Daten über MQTT und die Visualisierung über Node-RED, Cayenne, Thingspeak und Datacake ermöglichen komplexe IoT-Projekte und völlig neue Anwendungen zu sehr geringen Kosten.
Das vorliegende Buch versetzt Sie in die Lage, mit batteriebetriebenen Sensoren (LoRaWAN-Knoten) erfasste Daten drahtlos im Internet bereitzustellen und zu visualisieren.
Sie lernen die Grundlagen für Smart-City- und IoT-Anwendungen, die beispielsweise die Messung von Luftqualität, Wasserständen, Schneehöhen, das Ermitteln von freien Parkfeldern (Smart Parking) und die intelligente Steuerung der Straßenbeleuchtung (Smart Lighting) u.a.m. ermöglichen.
Dieses LR1302-Modul ist ein LoRaWAN-Gateway-Modul der neuen Generation. Es verfügt über ein Mini-PCIe-Formfaktor-Design und zeichnet sich durch geringen Stromverbrauch und hohe Leistung aus. Basierend auf dem LoRaWA-Basisbandchip SX1302 von Semtech Network bietet das Gateway-Modul LR1302 Gateway-Produkten potenzielle Kapazität für die drahtlose Übertragung über große Entfernungen. Im Vergleich zu den vorherigen LoRa-Chips SX1301 und SX1308 weist der SX1302-Chip eine höhere Empfindlichkeit, einen geringeren Stromverbrauch und eine niedrigere Betriebstemperatur auf. Es unterstützt die 8-Kanal-Datenübertragung, verbessert die Kommunikationseffizienz und -kapazität und unterstützt die Verbindung und Datenübertragung mehrerer Geräte.
Es sind zwei Antennenschnittstellen reserviert, eine zum Senden und Empfangen von LoRa-Signalen und eine U.FL-Schnittstelle (IPEX) zur unabhängigen Übertragung. Es verfügt außerdem über eine Metallabschirmung zum Schutz vor externen Störungen und zur Bereitstellung einer zuverlässigen Kommunikationsumgebung.
Der LR1302 wurde speziell für den IoT-Bereich entwickelt und eignet sich für eine Vielzahl von IoT-Anwendungen. Ob in Smart Cities, Landwirtschaft, Industrieautomation oder anderen Bereichen – das LR1302-Modul sorgt für zuverlässige Verbindungen und effiziente Datenübertragung.
Features
Verwendet den Semtech SX1302-Basisband-LoRa-Chip mit extrem geringem Stromverbrauch und hervorragender Leistung
Der Mini-PCIe-Formfaktor und das kompakte Design erleichtern die Integration in verschiedene Gateway-Geräte, eignen sich für Anwendungsszenarien mit begrenztem Platzangebot und bieten flexible Bereitstellungsoptionen.
Unterstützt die 8-Kanal-Datenübertragung und sorgt für eine effizientere Kommunikationseffizienz und -kapazität
Die extrem niedrige Betriebstemperatur macht eine zusätzliche Kühlung überflüssig und reduziert die Größe des LoRaWAN-Gateways.
Verwendet das SX1250 TX/RX-Frontend mit einer Empfindlichkeit von bis zu -139 dBm@SF12; Sendeleistung bis zu 26 dBm bei 3,3 V
Technische Daten
Frequenz
863-870 MHz (EU868)
Chipsatz
Semtech SX1302 Chip
Empfindlichkeit
-125 dBm bei 125K/SF7-139 dBm bei 125K/SF12
TX-Leistung
26 dBm (mit 3,3-V-Stromversorgung)
Bandbreite
125/250/500 kHz
Kanal
8 Kanäle
LEDs
Leistung: GrünKonfiguration: RotTX: GrünRX: Blau
Formfaktor
Mini PCIe, 52-poliger Golden Finger
Stromverbrauch (SPI-Version)
Standby: 7,5 mATX-Maximalleistung: 415 mARX: 40 mA
Stromverbrauch (USB-Version)
Standby: 20 mATX-Maximalleistung: 425 mARX: 53 mA
LBT (Listen Before Talk)
Unterstützung
Antennenanschluss
U.FL
Betriebstemperatur
-40 bis 85°C
Abmessungen (B x L)
30 x 50,95 mm
Hinweis
LR1302 LoRaWAN Gateway Modul ist nicht inbegriffen.
Downloads
Wiki
SX1302 Datasheet
Schematic Diagram
Eine Einführung in die Schaltungssimulation
LTspice wurde von Mike Engelhardt entwickelt und gehört inzwischen zu Analog Devices. Es handelt sich dabei um ein Programm zur Schaltplanerstellung – einen leistungsstarken, schnellen und kostenlosen SPICE-Simulator sowie um ein Werkzeug zur Darstellung von Kurvenverläufen. Es bietet eine umfangreiche Bauteildatenbank, die weltweit durch SPICE-Modelle unterstützt wird.
Mit LTspice kann man schnell und einfach Schaltpläne erstellen. Dank der leistungsfähigen grafischen Ausgabefunktionen lassen sich Spannungen und Ströme in einer Schaltung, die Leistungsaufnahme der Bauteile und viele weitere Parameter darstellen.
Ziel dieses Buches ist es, den Entwurf und die Simulation elektronischer Schaltungen mit LTspice zu vermitteln. Es behandelt unter anderem folgende Themen:
DC und AC-Schaltungen
Kleinsignal- und Z-Dioden
Transistorschaltungen inkl. Oszillatoren
Tryristor-, Diac- und Triacschaltungen
Operations verstärkerschaltungen inkl. Oszillatoren
Der 555 Timer-IC
Filter
Spannungsregler
Optokoppler
Erstellung von Spannungskurven
Simulation von Logikschaltungen mit der 74HC-Familie
SPICE-Modellierung
LTspice ist ein äußerst vielseitiges Werkzeug zur Simulation elektronischer Schaltungen mit zahlreichen Funktionen und Anwendungsmöglichkeiten. Eine vollständige Behandlung aller Details würde jedoch den Rahmen dieses Buches sprengen. Daher konzentriert sich das Buch auf die gängigsten Themen wie DC- und AC-Analyse, Parametersweep, Übertragungsfunktionen, Oszillatoren, Diagramme und weitere grundlegende Anwendungen.
Obwohl es sich um eine Einführung handelt, deckt dieses Buch dennoch die meisten Interessensgebiete all jener ab, die sich mit der Simulation elektronischer Schaltungen beschäftigen.
Eine Einführung in die Schaltungssimulation
LTspice wurde von Mike Engelhardt entwickelt und gehört inzwischen zu Analog Devices. Es handelt sich dabei um ein Programm zur Schaltplanerstellung – einen leistungsstarken, schnellen und kostenlosen SPICE-Simulator sowie um ein Werkzeug zur Darstellung von Kurvenverläufen. Es bietet eine umfangreiche Bauteildatenbank, die weltweit durch SPICE-Modelle unterstützt wird.
Mit LTspice kann man schnell und einfach Schaltpläne erstellen. Dank der leistungsfähigen grafischen Ausgabefunktionen lassen sich Spannungen und Ströme in einer Schaltung, die Leistungsaufnahme der Bauteile und viele weitere Parameter darstellen.
Ziel dieses Buches ist es, den Entwurf und die Simulation elektronischer Schaltungen mit LTspice zu vermitteln. Es behandelt unter anderem folgende Themen:
DC und AC-Schaltungen
Kleinsignal- und Z-Dioden
Transistorschaltungen inkl. Oszillatoren
Tryristor-, Diac- und Triacschaltungen
Operations verstärkerschaltungen inkl. Oszillatoren
Der 555 Timer-IC
Filter
Spannungsregler
Optokoppler
Erstellung von Spannungskurven
Simulation von Logikschaltungen mit der 74HC-Familie
SPICE-Modellierung
LTspice ist ein äußerst vielseitiges Werkzeug zur Simulation elektronischer Schaltungen mit zahlreichen Funktionen und Anwendungsmöglichkeiten. Eine vollständige Behandlung aller Details würde jedoch den Rahmen dieses Buches sprengen. Daher konzentriert sich das Buch auf die gängigsten Themen wie DC- und AC-Analyse, Parametersweep, Übertragungsfunktionen, Oszillatoren, Diagramme und weitere grundlegende Anwendungen.
Obwohl es sich um eine Einführung handelt, deckt dieses Buch dennoch die meisten Interessensgebiete all jener ab, die sich mit der Simulation elektronischer Schaltungen beschäftigen.
LuckFox Pico Mini ist ein kompaktes Linux-Mikro-Entwicklungsboard, das auf dem Rockchip RV1103-Chip basiert und eine einfache und effiziente Entwicklungsplattform für Entwickler bietet. Es unterstützt eine Vielzahl von Schnittstellen, einschließlich MIPI CSI, GPIO, UART, SPI, I²C, USB usw., was für eine schnelle Entwicklung und Fehlerbehebung praktisch ist.
Features
Single-Core ARM Cortex-A7 32-Bit-Kern mit integriertem NEON und FPU
Eingebaute, von Rockchip selbst entwickelte NPU der 4. Generation, zeichnet sich durch hohe Rechenpräzision aus und unterstützt die Hybridquantisierung int, int8 und int16. Die Rechenleistung von int8 beträgt 0,5 TOPS und bis zu 1,0 TOPS mit int4
Integrierter, selbst entwickelter ISP3.2 der dritten Generation, unterstützt 4 Megapixel, mit mehreren Bildverbesserungs- und Korrekturalgorithmen wie HDR, WDR, mehrstufiger Rauschunterdrückung usw.
Verfügt über eine leistungsstarke Kodierungsleistung, unterstützt den intelligenten Kodierungsmodus und das adaptive Stream-Speichern je nach Szene, spart mehr als 50% Bitrate im Vergleich zum herkömmlichen CBR-Modus, sodass die Bilder von der Kamera hochauflösende Bilder mit geringerer Größe und doppelt so viel Speicherplatz bieten Leerzeichen
Die integrierte RISC-V-MCU unterstützt einen geringen Stromverbrauch und einen schnellen Start, unterstützt eine schnelle Bildaufnahme von 250 ms und lädt gleichzeitig die Al-Modellbibliothek, um die Gesichtserkennung "in einer Sekunde" zu realisieren.
Eingebauter 16-Bit-DRAM DDR2, der anspruchsvolle Speicherbandbreiten bewältigen kann
Integriert mit integriertem POR, Audio-Codec und MAC PHY
Technische Daten
Prozessor
ARM Cortex-A7, Single-Core-32-Bit-CPU, 1,2 GHz, mit NEON und FPU
NPU
Rockchip NPU der 4. Generation, unterstützt int4, int8, int16; bis zu 1,0 TOPS (int4)
ISP
ISP3.2 der dritten Generation, bis zu 4 MP-Eingang bei 30fps, HDR, WDR, Rauschunterdrückung
RAM
64 MB DDR2
Speicher
128 MB SPI NAND Flash
USB
USB 2.0-Host/Gerät über Typ-C
Kameraschnittstelle
MIPI CSI 2-spurig
GPIO-Pins
17 GPIO-Pins
Stromverbrauch
RISC-V-MCU mit geringem Stromverbrauch für schnellen Start
Abmessungen
28 x 21 mm
Downloads
Wiki
Der LuckFox Pico Ultra ist ein kompakter Single-Board-Computer (SBC) mit dem Rockchip RV1106G3-Chipsatz, der für KI-Verarbeitung, Multimedia und stromsparende Embedded-Anwendungen entwickelt wurde.
Er ist mit einer integrierten 1-TOPS-NPU ausgestattet und eignet sich daher ideal für Edge-KI-Workloads. Mit 256 MB RAM, 8 GB Onboard-eMMC-Speicher, integriertem WLAN und Unterstützung für das LuckFox PoE-Modul bietet das Board Leistung und Vielseitigkeit für eine Vielzahl von Anwendungsfällen.
Der LuckFox Pico Ultra läuft unter Linux und unterstützt eine Vielzahl von Schnittstellen – darunter MIPI CSI, RGB-LCD, GPIO, UART, SPI, I²C und USB – und bietet so eine einfache und effiziente Entwicklungsplattform für Anwendungen in den Bereichen Smart Home, Industriesteuerung und IoT.
Technische Daten
Chip
Rockchip RV1106G3
Prozessor
Cortex-A7 1,2 GHz
Neuronaler Netzwerkprozessor (NPU)
1 TOPS, unterstützt int4, int8, int16
Bildprozessor (ISP)
Max. Eingangsgeschwindigkeit 5 M @30fps
Speicher
256 MB DDR3L
WLAN + Bluetooth
2,4 GHz WiFi-6 Bluetooth 5.2/BLE
Kameraschnittstelle
MIPI CSI 2-Lane
DPI-Schnittstelle
RGB666
PoE-Schnittstelle
IEEE 802.3af PoE
Lautsprecherschnittstelle
MX1,25 mm
USB
USB 2.0 Host/Gerät
GPIO
30 GPIO Pins
Ethernet
10/100M Ethernet-Controller und eingebetteter PHY
Standardspeichermedium
eMMC (8 GB)
Lieferumfang
1x LuckFox Pico Ultra W
1x LuckFox PoE Modul
1x IPX 2,4G 2 dB Antenne
1x USB-A auf USB-C Kabel
1x Schraubensatz
Downloads
Wiki
Das M12-Mount-Objektiv (12 MP, 8 mm) ist ideal für den Einsatz mit dem Raspberry Pi HQ Camera Module und bietet gestochen scharfe, detailreiche Aufnahmen für eine Vielzahl von Anwendungen.
Das M12-Mount-Objektiv (5 MP, 25 mm) ist ideal für den Einsatz mit dem Raspberry Pi HQ Camera Module und bietet gestochen scharfe, detailreiche Aufnahmen für eine Vielzahl von Anwendungen.
ATOM U ist ein kompaktes IoT-Entwicklungskit für Spracherkennung mit geringem Stromverbrauch. Es verwendet einen ESP32-Chipsatz, ausgestattet mit 2 stromsparenden Xtensa 32-Bit LX6 Mikroprozessoren mit einer Hauptfrequenz von bis zu 240 MHz. Eingebaute USB-A-Schnittstelle, IR-Sender, programmierbare RGB-LED. Plug-and-Play, einfaches Hoch- und Herunterladen von Programmen. Integriertes Wi-Fi und digitales Mikrofon SPM1423 (I2S) für die klare Tonaufzeichnung. geeignet für HMI, Speech-to-Text (STT).
Low-Code-Entwicklung
ATOM U unterstützt die grafische Programmierplattform UIFlow, skriptfrei, Cloud-Push; Vollständig kompatibel mit Arduino, MicroPython, ESP32-IDF und anderen Mainstream-Entwicklungsplattformen, um schnell verschiedene Anwendungen zu erstellen.
Hohe Integration
ATOM U verfügt über einen USB-A-Anschluss für die Programmierung/Stromversorgung, einen IR-Sender, eine programmierbare RGB-LED (1) und eine Taste (1). Der fein abgestimmte RF-Schaltkreis sorgt für eine stabile und zuverlässige drahtlose Kommunikation.
Starke Erweiterbarkeit
ATOM U ist ein einfacher Zugang zum Hardware- und Softwaresystem von M5Stack.
Merkmale
ESP32-PICO-D4 (2,4GHz Wi-Fi-Doppelmodus)
Integrierte programmierbare RGB-LED und Taste
Kompaktes Design
Eingebauter IR-Sender
Erweiterbare Pinbelegung und GROVE-Port
Entwicklungsplattform:
UIFlow
MicroPython
Arduino
Spezifikationen
ESP32-PICO-D4
240MHz Doppelkern, 600 DMIPS, 520KB SRAM, 2.4G Wi-Fi
Mikrofon
SPM1423
Empfindlichkeit des Mikrofons
94 dB SPL@1 KHz Typischer Wert: -22 dBFS
Signal-Rausch-Verhältnis des Mikrofons
94 dB SPL@1 KHz, A-gewichtet Typischer Wert: 61,4 dB
Standby-Arbeitsstrom
40.4 mA
Unterstützung der Eingangsschallfrequenz
100 Hz ~ 10 KHz
Unterstützung der PDM-Taktfrequenz
1.0 ~ 3.25 MHz
Gewicht
8.4 g
Dimensionen
52 x 20 x 10 mm
Downloads
Documentation
Das M5Stack Core Ink Development Kit ist ein neues E-Ink-Display, das einen ESP32-Pico-D4 verwendet, um die Vorteile der E-Ink-Technologie zu nutzen.
E-Ink-Displays schonen die Augen, haben einen extrem geringen Stromverbrauch und können ein Bild auch dann behalten, wenn ihnen der Strom ausgeht.
Features
ESP32 Standard-Wireless-Funktionen WiFi, Bluetooth
Interner 4M-Blitz
Low-Power-Anzeige
180-Grad-Betrachtungswinkel
Erweiterungsports
Eingebauter Magnet
Interne Batterie
Multifunktionstaste
Status-LED
Summer
Deep-Sleep-Funktionalität
Anwendungen
IoT-Terminal
EBook
Industrielles Bedienfeld
Elektronisches Etikett
Inbegriffen
1x CoreInk
1x LiPo 390mAh
1x Typ-C USB (20 cm)
Bitte beachten Sie: Vermeiden Sie bei der Verwendung eine lange Hochfrequenzaktualisierung. Das empfohlene Aktualisierungsintervall beträgt (15 Sekunden/Zeit). Setzen Sie das Gerät nicht über längere Zeit ultravioletten Strahlen aus, da es sonst zu irreversiblen Schäden am Tintensieb kommen kann.
Merkmale
Dual-Core 64-Bit RISC-V RV64IMAFDC (RV64GC) CPU / 400 MHz (normal)
Duale unabhängige FPU mit doppelter Präzision
8 MB On-Chip-SRAM mit 64 Bit Breite
Neuronaler Netzwerkprozessor (KPU) / 0,8 Tops
Feldprogrammierbares IO-Array (FPIOA)
AES, SHA256-Beschleuniger
Direct Memory Access Controller (DMAC)
Micropython-Unterstützung
Unterstützung der Firmware-Verschlüsselung
Onboard-Hardware:
Blitz: 16M Kamera: OV7740
2x Knöpfe
Statusanzeige-LED
Externer Speicher: TF-Karte/Micro SD
Schnittstelle: HY2.0/kompatibel mit GROVE
Anwendungen
Gesichtserkennung/-erkennung
Objekterkennung/-klassifizierung
Ermitteln Sie die Größe und Koordinaten des Ziels in Echtzeit
Erhalten Sie den Typ des erkannten Ziels in Echtzeit
Formerkennung, Videorecorder
Inbegriffen
1x UNIT-V (einschließlich 20 cm 4P-Kabel und USB-C-Kabel)
M5Stamp Fly ist ein programmierbarer Open-Source-Quadcopter mit dem StampS3 als Hauptcontroller. Es integriert ein 6-Achsen-Gyroskop BMI270 und ein 3-Achsen-Magnetometer BMM150 zur Lage- und Richtungserkennung. Der Luftdrucksensor BMP280 und zwei Abstandssensoren VL53L3 ermöglichen eine präzise Höhenhaltung und Hindernisvermeidung. Der optische Durchflusssensor PMW3901MB-TXQT bietet eine Verschiebungserkennung.
Das Kit enthält einen Summer, eine Reset-Taste und WS2812 RGB LEDs für Interaktion und Statusanzeige. Es ist mit einer 300 mAh-Hochvoltbatterie und vier kernlosen Hochgeschwindigkeitsmotoren ausgestattet. Die Platine verfügt über einen INA3221AIRGVR zur Strom-/Spannungsüberwachung in Echtzeit und verfügt über zwei Grove-Anschlüsse für zusätzliche Sensoren und Peripheriegeräte.
Der Stamp Fly ist mit Debugging-Firmware vorinstalliert und kann mit einem Atom-Joystick über das ESP-NOW-Protokoll gesteuert werden. Benutzer können zwischen automatischem und manuellem Modus wählen und so Funktionen wie präzises Schweben und Flips einfach implementieren. Der Firmware-Quellcode ist Open Source, wodurch sich das Produkt für Bildung, Forschung und verschiedene Drohnenentwicklungsprojekte eignet.
Anwendungen
Bildung
Forschung
Drohnenentwicklung
DIY-Projekte
Features
M5StampS3 als Hauptcontroller
BMP280 zur Luftdruckerkennung
VL53L3-Abstandssensoren zur Höhenhaltung und Hindernisvermeidung
6-Achsen-Lagesensor
3-Achsen-Magnetometer zur Richtungserkennung
Optische Strömungserkennung zur Schwebe- und Verschiebungserkennung
Summer
300 mAh Hochvoltbatterie
Strom- und Spannungserkennung
Grove-Anschlusserweiterung
Technische Daten
M5StampS3
ESP32-S3@Xtensa LX7, 8 MB Flash, WLAN, OTG\CDC-Unterstützung
Motor
716-17600kv
Abstandssensor
VL53L3CXV0DH/1 (0x52) bei max. 3 m
Optischer Durchflusssensor
PMW3901MB-TXQT
Barometrischer Sensor
BMP280 (0x76) bei 300–1100 hPa
3-Achsen-Magnetometer
BMM150 (0x10)
6-Achsen-IMU-Sensor
BMI270
Grove
I²C+UART
Akku
300 mAh 1S Hochvolt-Lithium-Battterie
Strom-/Spannungserkennung
INA3221AIRGVR (0x40)
Summer
Eingebauter passiver Summer @ 5020
Betriebstemperatur
0-40°C
Abmessungen
81,5 x 81,5 x 31 mm
Gewicht
36,8 g
Lieferumfang
1x Stamp Fly
1x 300 mAh Hochvolt-Lithium-Batterie
Downloads
Documentation
Nahezu alle Menschen werden zunehmend mit den Anwendungen der „Künstlichen Intelligenz“ (KI oder AI für engl. Artificial Intelligence) konfrontiert. Musik- oder Videoempfehlungen, Navigationssysteme, Einkaufsvorschläge etc. basieren auf Verfahren, die diesem Bereich zugeordnet werden können.
Der Begriff „Künstliche Intelligenz“ wurde 1956 auf einer internationalen Konferenz, dem Dartmouth Summer Research Project geprägt. Eine grundlegende Idee war dabei, die Funktionsweise des menschlichen Gehirns zu modellieren und darauf basierend fortschrittliche Computersysteme zu konstruieren. Bald sollte klar sein, wie der menschliche Verstand funktioniert. Die Übertragung auf eine Maschine wurde nur noch als ein kleiner Schritt angesehen. Diese Vorstellung erwies sich als etwas zu optimistisch. Dennoch sind die Fortschritte der modernen KI, beziehungsweise ihrem Teilgebiet dem sogenannten „Machine Learning“, nicht mehr zu übersehen.
Um die Methoden des Machine Learnings näher kennenzulernen, sollen in diesem Buch mehrere verschiedene Systeme zum Einsatz kommen. Neben dem PC werden sowohl der Raspberry Pi als auch der „Maixduino“ in den einzelnen Projekten ihre Fähigkeiten beweisen. Zusätzlich zu Anwendungen wie Objekt- und Gesichtserkennung entstehen dabei auch praktisch einsetzbare Systeme wie etwa Flaschendetektoren, Personenzähler oder ein „Sprechendes Auge“.
Letzteres ist in der Lage, automatisch erkannte Objekte oder Gesichter akustisch zu beschreiben. Befindet sich beispielsweise ein Fahrzeug im Sichtfeld der angeschlossenen Kamera, so wird die Information „I see a car!“ über elektronisch erzeugte Sprache ausgegeben. Derartige Geräte sind hochinteressante Beispiele dafür, wie etwa auch blinde oder stark sehbehinderte Menschen von KI-Systemen profitieren können.
Nahezu alle Menschen werden zunehmend mit den Anwendungen der „Künstlichen Intelligenz“ (KI oder AI für engl. Artificial Intelligence) konfrontiert. Musik- oder Videoempfehlungen, Navigationssysteme, Einkaufsvorschläge etc. basieren auf Verfahren, die diesem Bereich zugeordnet werden können.
Der Begriff „Künstliche Intelligenz“ wurde 1956 auf einer internationalen Konferenz, dem Dartmouth Summer Research Project geprägt. Eine grundlegende Idee war dabei, die Funktionsweise des menschlichen Gehirns zu modellieren und darauf basierend fortschrittliche Computersysteme zu konstruieren. Bald sollte klar sein, wie der menschliche Verstand funktioniert. Die Übertragung auf eine Maschine wurde nur noch als ein kleiner Schritt angesehen. Diese Vorstellung erwies sich als etwas zu optimistisch. Dennoch sind die Fortschritte der modernen KI, beziehungsweise ihrem Teilgebiet dem sogenannten „Machine Learning“, nicht mehr zu übersehen.
Um die Methoden des Machine Learnings näher kennenzulernen, sollen in diesem Buch mehrere verschiedene Systeme zum Einsatz kommen. Neben dem PC werden sowohl der Raspberry Pi als auch der „Maixduino“ in den einzelnen Projekten ihre Fähigkeiten beweisen. Zusätzlich zu Anwendungen wie Objekt- und Gesichtserkennung entstehen dabei auch praktisch einsetzbare Systeme wie etwa Flaschendetektoren, Personenzähler oder ein „Sprechendes Auge“.
Letzteres ist in der Lage, automatisch erkannte Objekte oder Gesichter akustisch zu beschreiben. Befindet sich beispielsweise ein Fahrzeug im Sichtfeld der angeschlossenen Kamera, so wird die Information „I see a car!“ über elektronisch erzeugte Sprache ausgegeben. Derartige Geräte sind hochinteressante Beispiele dafür, wie etwa auch blinde oder stark sehbehinderte Menschen von KI-Systemen profitieren können.