Das DIY Mini Digital-Oszilloskop-Kit (mit Gehäuse) ist ein einfach zu bauender Bausatz für ein kleines digitales Oszilloskop. Neben dem Netzschalter verfügt es nur über eine weitere Steuerung, einen Drehgeber mit eingebautem Druckknopf. Der Mikrocontroller des Kits ist vorprogrammiert. Das 0,96" OLED-Display hat eine Auflösung von 128 x 64 Pixel. Das Oszilloskop verfügt über einen Kanal, der Signale bis zu 100 kHz messen kann. Die maximale Eingangsspannung beträgt 30 V, die minimale Spannung beträgt 0 V.
Das Kit besteht aus Durchgangslochkomponenten (THT) und oberflächenmontierten Bauteilen (SMD). Daher erfordert der Zusammenbau des Bausatzes das Löten von SMD-Teilen, was einige Erfahrung im Löten erfordert.
Technische Daten
Vertikaler Bereich: 0 bis 30 V
Horizontaler Bereich: 100 µs bis 500 ms
Triggertyp: Auto, Normal und Single
Triggerflanke: Steigend und fallend
Triggerpegel: 0 bis 30 V
Run/Stop-Modus
Automatische Frequenzmessung
Stromversorgung: 5 V Micro-USB
10 Hz, 5 V Sinuswellenausgang
9 kHz, 0 bis 4,8 V Rechteckwellenausgang
Display: 0,96" OLED-Bildschirm
Abmessungen: 57 x 38 x 26 mm
Downloads
Documentation
Die mattschwarze Platine ist extra dick und verfügt über dezente weiße Markierungen, darunter ein alphanumerisches Raster und PIN-Beschriftungen. Das Verdrahtungsmuster – das klassischer Steckbretter – ist leicht zu erkennen, wenn man sich die freigelegten Leiterbahnen auf der Unterseite des Bretts ansieht.
Das Kit wird komplett mit dem „Integrated Circuit Leg“-Ständer und 8 farbcodierten Rändelschrauben-Anschlussklemmen geliefert. Mithilfe der Anschlussklemmen und Lötpunkte können Sie mit blanken Drähten, Kabelschuhen, Krokodilklemmen und/oder Lötstellen eine Verbindung zu Ihrem „IC“ herstellen. Die Verbindungen zu den 8 Anschlussklemmen erfolgen über die dreipoligen Streifen auf der Leiterplatte; Jedes ist mit der entsprechenden PIN gekennzeichnet.
Features
Ständer aus eloxiertem Aluminium
Presspass-Gewindeeinsätze der Größe 8-32 (8 Stück), vorinstalliert im Protoboard
Alle Materialien (einschließlich Platine und Ständer) sind RoHS-konform (bleifrei)
Dreilappige gewindeformende Schrauben (6 Stück, schwarz, Gewindegröße 6-32) und Abstandshalter zur Montage des Ständers.
Abmessungen: 13,25 x 8,06 x 2,54 mm
Abmessungen zusammengebaut: 13,25 x 9,9 x 4,3 cm
Diese Leiterplattenhalterung ist ein vielseitiges und zuverlässiges Werkzeug für Präzisionslötungen und Motherboard-Reparaturen. Die aus hochtemperaturbeständigem Kunststein gefertigte Halterung bietet außergewöhnliche Haltbarkeit und Stabilität. Seine korrosionsbeständigen, antistatischen und verformungsbeständigen Eigenschaften gewährleisten eine langfristige Leistung und machen ihn zu einem unverzichtbaren Werkzeug für Fachleute, die mit empfindlichen elektronischen Komponenten arbeiten.
Eines seiner herausragenden Merkmale ist das Doppellager-Klemmsystem. Die Doppelschrauben ermöglichen eine sanfte Gleiteinstellung und sorgen für einen sicheren und stabilen Halt auf Ihrer Leiterplatte. Dieses innovative Design stellt sicher, dass Ihre Arbeit auch bei komplizierten Lötaufgaben präzise und problemlos bleibt.
Darüber hinaus ist die Halterung mit mehreren Fehlausrichtungsschnallen ausgestattet, die eine Vielzahl von Kartenpositionen bieten, um unterschiedliche Formen und Größen von Motherboards aufzunehmen. Diese Anpassungsfähigkeit macht es perfekt für die einfache und effiziente Abwicklung verschiedener Reparaturprojekte.
Abmessungen: 155 x 80 x 20 mm
Gewicht: 298 g
Der LDS02 wird mit 2x AAA-Batterien betrieben und ist für den Langzeitgebrauch konzipiert. Diese beiden Batterien können etwa 16.000 bis 70.000 Uplink-Pakete bereitstellen. Sobald die Batterien leer sind, kann der Benutzer das Gehäuse einfach öffnen und sie durch zwei handelsübliche AAA-Batterien ersetzen.
Es sendet Daten regelmäßig jeden Tag sowie für jede einzelne Öffnungs-/Schließaktion. Außerdem zählt es die Türöffnungszeiten und berechnet die letzte Türöffnungsdauer. Der Benutzer kann den Uplink auch für jedes Öffnungs-/Schließungsereignis deaktivieren. Stattdessen kann das Gerät jedes Öffnungsereignis und jeden Uplink regelmäßig zählen. Es verfügt auch über die Funktion „Offen-Alarm“. Der Benutzer kann diese Funktion so einstellen, dass das Gerät einen Alarm sendet, wenn die Tür eine bestimmte Zeit lang offen war. Jeder LDS02 ist mit einem Satz eindeutiger Schlüssel für die LoRaWAN-Registrierung vorinstalliert. Registrieren Sie diese Schlüssel beim LoRaWAN-Server und er stellt nach dem Einschalten automatisch eine Verbindung her.
Merkmale
LoRaWAN v1.0.3 Klasse A
SX1262 LoRa-Kern
Durch Öffnen/Schließen-Erkennung
2 x AAA LR03-Batterien
Durch Öffnungs-/Schließungsstatistiken
AT-Befehle zum Ändern von Parametern
Uplink in regelmäßigen Abständen und Aktion zum Öffnen/Schließen
Offener Daueralarm
Downlink zum Ändern der Konfiguration
Anwendungen
Drahtlose Alarm- und Sicherheitssysteme
Haus- und Gebäudeautomation
Industrielle Überwachung und Steuerung
LWL01 wird mit einer CR2032-Knopfbatterie betrieben und kann bei guter LoRaWAN-Netzwerkabdeckung bis zu 12.000 Uplink-Pakete übertragen (basierend auf SF 7, 14 dB). Bei schlechter LoRaWAN-Netzwerkabdeckung können ~ 1.300 Uplink-Pakete übertragen werden (basierend auf SF 10, 18,5 B). Das Designziel für eine Batterie beträgt bis zu 2 Jahre. Der Benutzer kann die CR2032-Batterie zur Wiederverwendung einfach austauschen.
Der LWL01 sendet regelmäßig Daten jeden Tag sowie bei Wasserleckereignissen. Außerdem werden die Zeiten von Wasserleckereignissen gezählt und die Dauer des letzten Wasserlecks berechnet.
Jeder LWL01 ist mit einem Satz eindeutiger Schlüssel für die LoRaWAN-Registrierung vorinstalliert. Registrieren Sie diese Schlüssel beim lokalen LoRaWAN-Server und er stellt nach dem Einschalten automatisch eine Verbindung her.
Merkmale
LoRaWAN v1.0.3 Klasse A
SX1262 LoRa-Kern
Wasserleckerkennung
CR2032-Batteriebetrieben
AT-Befehle zum Ändern von Parametern
Uplink in regelmäßigen Abständen und Wasserleck-Ereignis
Downlink zum Ändern der Konfiguration
Anwendungen
Drahtlose Alarm- und Sicherheitssysteme
Haus- und Gebäudeautomation
Industrielle Überwachung und Steuerung
Drahtlose Kommunikation – sei es zur Ton-, Daten- oder Bildübertragung – prägt unser heutiges Leben. Während noch Mitte des letzten Jahrhunderts der Rundfunk (und etwas später das Fernsehen) die dominierenden Anwendungen der drahtlosen Kommunikation waren, gibt es heute kaum mehr ein technisches Gerät, das nicht das Mittel der drahtlosen Kommunikation nutzt. Allen voran das beliebte Smartphone.
Daneben gibt es sehr viele Anwendungen, die wir nicht sofort und automatisch mit den Begriffen Radio oder Funk verbinden, die aber auf der Nutzung elektromagnetischer Strahlung basieren. So zum Beispiel der Wagenschlüssel, die über Bluetooth verbundenen Kopfhörer, der automatische Rasenmäher, die gehassten Radargeschwindigkeitsmesser, der Laptop, der über Wi-Fi mit dem Internet verbunden ist, die kleinen Navigationsempfänger, usw.
Diesen Anwendungen gemeinsam ist die Nutzung physikalischer Gegebenheiten durch die Technik. Ob Radar, Satellitenfernsehen, oder einfach nur das alte Mittelwellenradio, alle bauen auf denselben Grundlagen auf.
Das Ziel dieses Buch ist es, diese Grundlagen zu erläutern und damit das Verständnis für die darauf aufbauenden Anwendungen zu fördern. Es soll Studenten den Einstieg ins Fachgebiet erleichtern und Voraussetzungen für den Zugang zu den Standardwerken der Fachliteratur schaffen. Es richtet sich aber auch an Personen, die an der Physik und der Technik interessiert sind und einen tieferen Einblick in die Grundlagen der drahtlosen Kommunikation und deren Anwendung erhalten wollen.
Im Gegensatz zu anderen Raspberry Pi-Boards verfügt der Raspberry Pi Pico nicht über einen integrierten Videoausgang.
Dank programmierbarer IO (PIO) und dieser Pico-DVI-Socke ist es jedoch möglich, dem Raspberry Pi Pico einen DVI-Videoausgang hinzuzufügen!
Die Pico DVI Sock wurde von Luke Wren, einem Raspberry Pi-Ingenieur, in seiner Freizeit entwickelt. Er hat das Design online unter einer CC0-Lizenz veröffentlicht, sodass jeder die Hardware aus seinen bereitgestellten Dateien bauen kann.
Die physische Videoschnittstelle der Pico DVI Sock ist ein HDMI-Anschluss, der jedoch ein DVI-Signal ausgibt. Historisch gesehen ist HDMI ein Nachfolger von DVI – DVI-Signale können also einfach über HDMI übertragen werden. Mit einfachen passiven Adaptern können Sie HDMI-Kabel an einen DVI-Anschluss anschließen.
Der DVI-Sockel kann an ein Ende des Raspberry Pi Pico gelötet werden. Dank der wellenförmigen Kanten des Pico ist das Löten sehr einfach. Lassen Sie Ihrer Kreativität freien Lauf mit einem zusätzlichen digitalen Videoausgang am Pico.
Hier einige Anregungen/mögliche Projektideen:
Mini-Spielekonsole basierend auf dem Raspberry Pi Pico
Ausgabe der Messwerte auf einem Monitor
Whether you are an electronics enthusiast or engineering professional, this book provides the reader with an introduction to the use of the CadSoft’s EAGLE PCB design software package.
EAGLE is a user-friendly, powerful and affordable software package for the efficient design of printed circuit boards. It offers the same power and functionality to all users, at a smaller cost than its competitors. A free version of EAGLE is available to enthusiasts for their own use.
EAGLE can be used on the main computing platforms including: Microsoft Windows (XP, Vista or Windows 7); Linux (based on kernel 2.6 or above) and Apple Mac OS X (Version 10.6 or higher). Any hardware that supports these software platforms will run the EAGLE application.
The book is intended for anyone who wants an introduction to the capabilities of EAGLE. The reader may be a novice at PCB design or a professional wanting to learn about EAGLE, with the intention of migrating from another CAD package.
This book will quickly allow you to:
obtain an overview of the main modules of EAGLE: the schematic editor; layout editor and autorouter in one single interface;
learn to use some of the basic commands in the schematic and layout editor modules of EAGLE;
apply your knowledge of EAGLE commands to a small project;
learn more about some of the advanced concepts of EAGLE and its capabilities;
understand how EAGLE relates to the stages of PCB manufacture;
create a complete project, from design through to PCB fabrication. The project discussed in the book is a popular, proven design from the engineering team at Elektor.
After reading this book while practicing some of the examples, and completing the projects, the reader should feel confident about taking on more challenging endeavors.
Zusätzliche Staffeleibretter für AxiDraw V3/A3 können als Ersatz oder zur Bereitstellung zusätzlicher Werkstücke für den schnellen Wechsel zum nächsten Plot verwendet werden.
Dieses Set besteht aus einer 11,75 x 17 Zoll (29,85 x 43,18 cm) großen Hartfaserplatte mit angebrachten Gummifüßen sowie acht Mikrobinderklammern.
15 Sensor-Module & 21 Tutorials
Das Elecrow All-in-One Starter Kit für Arduino ist die perfekte Wahl für Einsteiger, die die Arduino-Welt auf unterhaltsame und leicht zugängliche Weise erkunden möchten. Das Kit enthält über 20 interaktive Tutorials, von einfach bis fortgeschritten. Diese Schritt-für-Schritt-Anleitungen helfen Ihnen, die Sensornutzung zu meistern, logisches Denken zu entwickeln und Ihre Kreativität zu wecken.
Das Kit enthält insgesamt 15 Sensoren: 14 integrierte Sensoren und einen Feuchtigkeitssensor mit Crowtail-Schnittstelle. Jeder Sensor bietet einzigartige Funktionen und ist somit ideal für Arduino-Einsteiger. Zusätzlich enthält das Kit sechs Crowtail-Schnittstellen, die Kompatibilität mit über 150 Crowtail-Sensortypen ermöglichen und hervorragende Erweiterbarkeit bieten. Diese Funktionen machen es zu einem hervorragenden Einstiegswerkzeug zur Förderung von logischem Denken und Innovation.
Im Gegensatz zu den meisten Starterkits verwendet dieses All-in-One-Kit ein einheitliches Platinendesign – kein Steckbrett, kein Löten und keine Verkabelung erforderlich. So können Sie sich ganz auf das Programmieren und Erlernen von Arduino konzentrieren.
Features
15 Sensoren mit unterschiedlichen Funktionen, 21 kreative Tutorials
Gleiches Platinendesign für Sensoren, kein Löten erforderlich, direkter Einsatz
Tragbarer Koffer (klein und fein)
Reservierte 6 Crowtail-Schnittstellen (3x I/O, 2x I²C, 1x UART)
Visualisierter Siebdruck, entsprechend den Eigenschaften jedes Sensors
Technische Daten
All-in-One-Starterkit für Raspberry Pi Pico 2
All-in-One-Starterkit für Arduino
Hauptprozessor
Raspberry Pi Pico 2 RP2350
ATmega328P
Anzahl der Sensoren
17 Sensoren
15 Sensoren (inkl. 1 Feuchtigkeitssensor)
Sensorplatinen-Design
Integrierte Sensorplatine, kein Löten oder aufwendige Verkabelung erforderlich
Display
2,4" TFT-Vollfarb-Touchscreen
N/A
Umgebungsbeleuchtung
20 Vollfarb-Umgebungslichter, schaltbar über den Touchscreen
N/A
Integrierte Minispiele
Ja
Nein
Erweiterungsschnittstellen
N/A
6 Crowtail-Schnittstellen(3x I/O, 2x I²C, 1x UART)
Programmierumgebung
Basierend auf Arduino-Software
Anzahl der Tutorials
21 kreative Tutorials
Schnittstelle
USB-C
Abmessungen
195 x 170 x 46 mm
Gewicht
380 g
340 g
Lieferumfang
1x Elecrow All-in-One Starter Kit für Arduino
1x Feuchtigkeitssensor mit Kabel
1x IR-Fernbedienung
1x USB-C Kabel
Downloads
Datasheet
Manual
Wiki
Dieses hochempfindliche Picoammeter ist für die Messung und Aufzeichnung sehr kleiner Ströme bis hinunter in den pA-Bereich konzipiert und damit ein ideales Instrument für wissenschaftliche und Forschungsanwendungen, einschließlich Physik, Materialwissenschaft und Elektronenmikroskopie.
Das SPA100 verfügt über alle Funktionen zu einem erschwinglichen Preis und kombiniert Empfindlichkeit, Genauigkeit und Stabilität, so dass der Benutzer niedrige Ströme mit hoher Präzision messen und bequem Biasspannungen für Experimente erzeugen kann. Das SPA100 kann auch als Ultrahochohm-Messgerät eingesetzt werden und misst präzise bis in den Teraohm-Bereich.
Das SPA100 wird über USB an den PC angeschlossen und nutzt die kostenlose Software SPA, die es dem Benutzer ermöglicht, auf einfache Weise zu messen, Grafiken zu erstellen und Messwerte mit Zeitstempeln und Informationen zur Messstabilität zu erfassen.
Technische Daten
Eingang: ±2 mA bis ±200 pA in 8 Bereichen
Genauigkeit und Auflösung (2 Hz):
±2 mA Bereich: ±0,1%, Auflösung <20 nA
±200 uA Bereich: ±0,1%, Auflösung <2 nA
±20 uA Bereich: ±0,2%, Auflösung <200 pA
±2 uA Bereich: ±0,2%, Auflösung <20 pA
±200 nA Bereich: ±0,5%, Auflösung <2 pA
±20 nA Bereich: ±0,5%, Auflösung <200 fA
±2 nA Bereich: ±1,0%, Auflösung <20 fA
±200 pA Bereich: ±1,5%, Auflösung <2 fA
Abtastrate: 2 Hz (18 Bit) oder 10 Hz (16 Bit)
Einstellbarer Filter: 1 Sample bis 64 Samples
Ausgangsspannung: -40 V bis +40 V (in 1 V Schritten), Ausgangswiderstand 2,7 KOhm
Widerstandsmessung: ~1 Kohm bis 40 Tohm (z. B. 40 V Quelle, 1 pA Messung)
Genauigkeit: >±0,5% 1 Mohm bis 1 Tohm
Stromversorgung über USB 2.0 (das Instrument verbraucht im Betrieb bis zu 0,3 A)
Lieferumfang
1x SPA100 Source Picoammeter
1x USB-Kabel
Downloads
Manual
Software
Merkmale
Programmieren mit dem micro:bit v2: Elektronik-Reise für Klassenzimmer und zu Hause
Musik machen, Schrittzähler bauen, Licht steuern: ein Baukasten, unzählige Projekte
Schritt für Schritt: Komplett-Set inklusive Anleitungsbuch für Kinder und Jugendliche sowie Leitfaden für Lehrer/innen und Eltern
Electronic Adventure ist ein innovatives Gemeinschaftsprojekt der Elektronikspezialisten JOY-iT und Elektor, die ihr Know-how hier zusammenführen, um interessante und vor allem auch praxistaugliche Bildungs-Produkte mit echtem pädagogischen Nutzen und hoher Qualität zu entwickeln.
Entstehen ist dabei kreativer Inhalt, der in dieser Form einzigartig ist: Der Reisekoffer bietet den Forschern und den sie begleitenden Lehrkräften oder Eltern aufeinander aufbauende Übungen und zeigt Schritt für Schritt, wie einfach man spannende Mikrocontroller-Experimente durchführen kann. Das jugendgerechte und mit Liebe zum Detail gestaltete Anleitungsbuch für Nachwuchsentdecker hat 80 Seiten und ist mit tollen Bildern und viel Platz für Notizen didaktisch durchdacht aufbereitet. Begleitende Erklärvideos ergänzen die Lernreise und machen das Programmieren mit dem micro:bit v2 auf Basis von „Makecode“ im wahrsten Sinne des Wortes zum Kinderspiel.
Auf einer eigenen Website warten die jungen User und ihre Lernbegleiter außerdem noch spannende Momente mit dem micro:bit v2, sowie ein Forum, welches bei Fragen und Problemen weiterhilft. Somit ist dieses Kit nicht nur für den einmaligen Gebrauch geeignet, sondern kann immer wieder neu programmiert werden. Auch der begleitende Leitfaden für Lehrkräfte bzw. Eltern bietet weitere Hintergrundinfos und zusätzliche Vorschläge für die Projektdurchführung.
Im Vordergrund steht: Lernerfolg durch Spaß
Es sind nicht nur alle benötigten Projektkomponenten sowie ein kindgerecht gestaltetes Experimentierfeld im Lieferumfang enthalten, sondern alle beschriebenen Projekte können auch direkt praktisch angewendet werden und so mit vielen neuen Entdeckungen und jeder Menge Spaß den Lernerfolg fördern. Denn mithilfe des Electronic Adventure Kits lernen Kids nicht nur einen Programmcode zu erstellen, sondern auch einen Schrittzähler zu bauen, Musik nach Noten zu spielen, eine Ampel mit LED zu steuern oder eine Alarmsirene zu programmieren.
Jede Übung beginnt mit einem konkreten Beispiel, das nachgebaut werden soll. Verkabelungen und Code werden vorgegeben, so dass zunächst eine funktionierende Lösung und ein Erfolgserlebnis den Lernerfolg sicherstellen. Anschließend werden die einzelnen Aspekte der Elektronik und der Programmierung erklärt und weitere Differenzierungen angeboten sowie Transferaufgaben vorgeschlagen.
Pilotprojekt des Landes NRW: Neues Lern-Kit ist Teil des „Pakts für Informatik“
„Die Reise mit dem BBC micro:bit“ wird im Rahmen eines Pilotprojektes „Pakt für Informatik“ des Landes NRW in der Praxis eingesetzt. Schirmherr ist das Ministerium für Wirtschaft, Innovation und Digitalisierung. Gemeinsam mit der Hochschule Rhein-Waal (Campus Kamp-Lintfort) finden an Schulen in deren Umgebung experimentelle Workshops statt, welche auch personell durch die beteiligten Unternehmen unterstützt werden.
Enthaltene Projekte
Willkommen
Musik machen
Automatischer Schrittzähler
Lichtsteuerung mit LEDs
Digitale und analoge Signale
Weg mit dem Kompass finden
Licht und Schatten
Die LED-Matrix
Temperaturüberwachung
Botschaften verschicken
Lieferumfang
Anleitungsbuch (80-seitig)
Begleitheft (36-seitig)
Experimentaufbau
USB-Kabel
Kupferband
Aluminiumfolie
Krokodilklemmen
Piezo-Sommer
Widerstände
Farbige LEDs
Batterien
Batteriehalter
Gummiband
Fotodiode
RGB-LED
BBC micro:bit v2
Support-Website
www.electronic-adventure.de
This book contains more than 400 simple electronic circuits which are developed and tested in practice by the authors. The technical solutions presented in the book are intended to stimulate the creative imagination of readers and broaden their area of thought. This should allow readers to look beyond the horizons of possibilities and use ordinary electronic items in a new way. This book includes new and original radio electronic multipurpose circuits. The chapters of the book are devoted to power electronics and measuring equipment and contain numerous original circuits of generators, amplifiers, filters, electronic switches based on thyristors and CMOS switch elements. Wired and wireless systems as well as security and safety systems are presented. Due to the high relevance and increased interest of readers in little-known or not readily available information, the different chapters of this book describe the use of electronic devices in industrial electronics and for research, as well as new instruments and equipment for medical use, gas-discharge and Kirlian photography. A number of technical devices presented in this book are related to research of the mysteries of the earth, nature and human beings by using radio electronic devices. This book will be useful for both radio amateurs and professionals.
A Handbook on DIY
Nowadays, security problems are rarely properly solved or correctly addressed. Electronic security is only part of the chain in making a system secure. Electronic security is usually addressed as network or software security, neglecting other aspects, but the chain is only as strong as its weakest link.
This book is about electronic hardware security, with an emphasis on problems that you can solve on a shoestring DIY budget. It deals mostly with secure communications, cryptosystems, and espionage. You will quickly appreciate that you can’t simply buy a trustworthy and reliable cryptosystem off the shelf. You will then realise that this applies equally to individuals, corporations, and governments.
If you want to increase your electronic security awareness in a world already overcrowded with networks of microphones and cameras, this is a book for you. Furthermore, if you want to do something DIY by designing and expanding upon simple electronic systems, please continue reading. Some of the devices described are already published as projects in the Elektor magazine. Some are still ideas yet to be worked out.
Complexity is the main enemy of security, so we'll try to keep to simple systems. Every chapter will analyse real-life espionage events or at least several hypothetical scenarios that will hopefully spark your imagination. The final goal is to build a security-conscious mindset (or “to get into a head of a spy”) which is necessary to recognise possible threats beforehand, to design a truly secure system.
Don’t bother reading if:
you think you and your secrets are 100% safe and secure
you think somebody else can effectively handle your security
you think conspiracy theories only exist in theory – Telefunken’s masterpiece the “FS-5000 Harpoon” was built on one!
A Handbook on DIY
Nowadays, security problems are rarely properly solved or correctly addressed. Electronic security is only part of the chain in making a system secure. Electronic security is usually addressed as network or software security, neglecting other aspects, but the chain is only as strong as its weakest link.
This book is about electronic hardware security, with an emphasis on problems that you can solve on a shoestring DIY budget. It deals mostly with secure communications, cryptosystems, and espionage. You will quickly appreciate that you can’t simply buy a trustworthy and reliable cryptosystem off the shelf. You will then realise that this applies equally to individuals, corporations, and governments.
If you want to increase your electronic security awareness in a world already overcrowded with networks of microphones and cameras, this is a book for you. Furthermore, if you want to do something DIY by designing and expanding upon simple electronic systems, please continue reading. Some of the devices described are already published as projects in the Elektor magazine. Some are still ideas yet to be worked out.
Complexity is the main enemy of security, so we'll try to keep to simple systems. Every chapter will analyse real-life espionage events or at least several hypothetical scenarios that will hopefully spark your imagination. The final goal is to build a security-conscious mindset (or “to get into a head of a spy”) which is necessary to recognise possible threats beforehand, to design a truly secure system.
Don’t bother reading if:
you think you and your secrets are 100% safe and secure
you think somebody else can effectively handle your security
you think conspiracy theories only exist in theory – Telefunken’s masterpiece the “FS-5000 Harpoon” was built on one!
Space, the final frontier, will become more and more popular. The space industry is continually growing and new products and services will be required. Innovation is needed for the development of this industry. Today it is no longer possible to follow all the events in field of space. The space market is growing and activities are increasing, especially the market for small-satellites.
This book wants to help close the gap and encourage electronic engineers to enter into the fascinating field of space electronics. One of the main difficulties is finding people with knowledge of space electronics design. Nowadays companies have to invest a lot of time and resources to instruct electronic engineers with no experience of space. Only a brief and basic introduction of this topic is typically achieved at university in space engineering lectures. Professionals with practical experience and the necessary theoretical knowledge are scarce. Companies from the space sector are searching for staff with knowledge of space electronics.
This book will bring space closer aspiring to the space electronic hobbyists.
Specifications
A4 (210 x 297 mm) squared-grid spiral-bound notebook with watermark breadboards
158 pages, card covers.
The book also includes
Microcontroller programming cheat sheet
Common circuits and calculations
Pinouts
Resistor color codes
ASCII table
GUI mit Touch – für ESP32, Raspi und Co.Grafische Benutzerschnittstellen mit der Bibliothek LittlevGL „Kein Projekt für jedermann“Interview mit Gábor Kiss-Vámosi, dem Entwickler von LittlevGL Capaci-MeterMit zweistelliger LED-Anzeige im Dekatron-Stil Gewusst wie: Entprellen eines mechanischen Kontakts oder SchaltersEin Schalter ist entweder offen oder geschlossen, oder nicht? Von Entwicklern für EntwicklerTipps & Tricks, Best Practice und andere nützliche Infos Erweiterbares System zur UmweltüberwachungVeröffentlicht Umweltparameter auf IoT-Plattformen Praktisches ESP32-MultitaskingTask-Programmierung mit FreeRTOS und der Arduino-IDE InteraktivKorrekturen & Updates || Fragen & Antworten Autoscheinwerfer tunenLegal, illegal, nicht egal! Review: Digitale Lötstation von Toolcraft Arduino-Pro-IDEErste Eindrücke Zwei Wärmebildkameras im Vergleich Aus dem Leben gegriffenDie Planung eines Labors und eines Arbeitsbereichs 7-Segment-LED-Anzeige Monsanto MAN1Bemerkenswerte Bauteile TeeuhrFingerübung in Sachen Energy-Harvesting Einstellbarer 1-kW-AC-MotortreiberSteuerung in drei Modi: Schwingungspakete, Phasenabschnitt oder Phasenanschnitt Schnelles 3,5“-Touch-Display für RPiMehr Leistung ohne Aufpreis Zutritt für Unbefugte verboten!Ein Blick ins Allerheiligste aller Elektroniker Erste Schritte mit RISC-VLoFive-Board ausprobiert LoRa-Tracker als HerausforderungProbleme und Lösungen bei der Elektronik-Entwicklung Mit dem Fuchs ins IoT (2)Anmeldung im Sigfox-Netz Aller Anfang...muss nicht schwer sein! Entwicklung analoger ElektronikFall Nr. 1 — MEMS-Mikrofon, Test 1-2-3 ! Von der Pike auf gelerntNeues aus der Elektor-Ideenkiste Kurzgefasst: Texte für MikrocontrollerSpeicher sparen durch Kompression Im Fokus: Autonomes FahrenStand der Technik im Überblick Start-up-Leader und Innovatoren sprechen in München über „Innovation 4.0“ Lego Electronic anno 1968Elektronisches Spielzeug kann auch nach 50 Jahren noch faszinieren Jenseits der ElektronikDie MX3D-Brücke überwacht die Stadt HexadokuSudoku für Elektroniker
DIY LIPO SUPERCHARGER BUNDLELiPo-Lader, -Booster und -Schutz von GreatScott! und Elektor
MTHECAM – DIE MINI-THERMO-CAMEinfache Thermocam zur Lokalisierung von Hot- und Cold-Spots
REVIEW: LÖTSTATION WE 1010 VON WELLER
ELECTRONICA FAST FORWARD 2020: DIE GEWINNER
I²S-TESTSIGNALGENERATOR MIT AVR-MIKROCONTROLLERDigitales Sinus-Testsignal mit 32 Bit Auflösung, fs von 192 kHz und einstellbarem Pegel von 0 bis -110 dB
STEUERN SIE IHR ZUHAUSE MIT DEM RASPBERRY PIDer RPi und das ISM-Band 433,92 MHz
SCHALTUNGEN ONLINE SIMULIEREN
AUS DEM LEBEN GEGRIFFENDer schmale Grat zwischen Ordnung und Chaos
ALLER ANFANG ...muss nicht schwer sein!
ZUTRITT FÜR UNBEFUGTE VERBOTEN!Ein Blick ins Allerheiligste eines Elektronikers
EIN THERMOSTAT IM ESPHOMEHausautomatisierung weiter ausgebaut
VON ENTWICKLERN FÜR ENTWICKLERTipps & Tricks, Best Practices und andere nützliche Infos
DAS DEKATRONBemerkenswerte Bauteile
RASPBERRY PI FULL STACKRPi und RF24 als Herzstück eines Sensornetzwerks
PRAKTISCHES ESP32-MULTITASKING (6)Event Groups
MEHRKANAL-POWER-ANALYZERBis zu drei Kanäle, mit grafischer und alphanumerischer Anzeige
DESIGN ANALOGER FILTER (TEIL 3)Passive Filter
REVIEW: FUNK-MESSMODUL JOY-IT VAX-1030
PROJEKT 2.0Korrekturen, Updates und Leserbriefe
VON DER PIKE AUF GELERNTNeues aus der Elektor-Ideenkiste
NEUES LCR-MESSGERÄT 50 HZ BIS 2 MHZTeil 2: Betrieb, Kalibrierung und Firmware-Programmierung
FEHLERANALYSETipps zu Spannungsregler-Schaltungen, Platinendesign und mehr
DAS OPEN HARDWARE OBSERVATORYCommunity-basierte Bewertung von Open-Source-Hardware
JAVA AUF DEM RASPBERRY PIEin Interview mit Buch-Autor Frank Delporte
DATENANALYSE UND KÜNSTLICHE INTELLIGENZ IN PYTHONInterpretation realer Daten mit Numpy, Pandas und Scikit-Learn
PARALLAX PROPELLER 2Teil 1: Kurz vorgestellt
HEXADOKUSudoku für Elektroniker
MOTORSTEUERUNG MIT H-BRÜCKEN Für DC-, Schritt- und bürstenlose Motoren
DAS TEAM IM ELEKTOR-LABOR Unser Ansatz, unsere bevorzugten Werkzeuge und mehr
RASPBERRY PI ALS KVM-FERNSTEUERUNG Die Software Pi-KVM im Elektor-Labor-Test
Testbericht: IQAUDIO CODEC ZERO Eine Soundkarte für die Raspberry Pi Familie
DAS PIKVM-PROJEKT UND SEINE LEHREN Ein Interview mit Maxim Devaev* (Entwickler von PiKVM)
AUTONOMES FAHRZEUG MIT 2D-LIDAR ESP32 Pico interpretiert die Daten des Lidar-Moduls
RASPBERRY PI ZERO 2 W Ein erfreuliches und notwendiges Update
IMPRESSIONEN VOM WORLD ETHICAL ELECTRONICS FORUM 2021
MOTORSTEUERUNG Wie die Motorsteuerung weniger kompliziert wird
GRÖSSERE ELEKTROMOTORE Prinzipien und Wissenswertes
ESP32-C3: 32-BIT-RISC-EINKERNER Ein erstes Hands-on im Elektor-Labor
SCHÜTZEN SIE SICH SELBST UND ANDERE! Hauptnetzschalter für den Labortisch selbst gebaut
PROGRAMMIEREN IN PYTHON Nickname-Generator mit grafischer Benutzeroberfläche
PRODUCTRONICA FAST FORWARD AWARD 2021: DIE PREISTRÄGER
VIELSEITIGER SERVO-TESTER Servos ohne Datenblatt analysieren
MODBUS ÜBER WLAN Teil 2: Software für das Modbus-TCP-WLAN-Modul
NEURONEN IN NEURONALEN NETZEN VERSTEHEN Teil 3: Praktische Neuronen
IM INNEREN EINES OPEN-SOURCE-PROZESSOREN Ein Beispiel-Kapitel: Lattice- und Xilinx-FPGAs im Vergleich
ALLER ANFANG ... muss nicht schwer sein: Die Spule lässt uns nicht los!
PROJEKT 2.0 Korrekturen, Updates und Leserbriefe
FARBE ZU KLANG Wie man einen Farbsensor über I2C ausliest
BATTLAB EINS Betriebsdauer von batteriebetriebenen Geräten messen und optimieren!
EINFACHER ERDSCHLUSSPRÜFER Isolationstester für Netzspannungsinstallationen
ARMUT UND ELEKTRONIK 1. Ziel für nachhaltige Entwicklung
HEXADOKUS Das Original von Elektorized Sudoku
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!Sie sind noch kein Mitglied? Hier klicken!Für Augen und OhrenVideoausgabe mit MikrocontrollernTeil 1: Composite Videoelectronica 2022Neues von der WeltleitmesseESP32-KameraSo einfach, dass sie nicht einmal WLAN brauchtATX-Netzteil für Raspberry Pi32-Ω-KopfhörerverstärkerEinfache, aber hochqualitative 3-Chip-LösungSDR-FunkuhrenFünf Zeitzeichen, sechs AnzeigenAller Anfang ...muss nicht schwer sein: Spezielle DiodenAus dem Leben gegriffenÜber die Qualität der DingeReverse-Engineering eines LED-Displays mit Bluetooth Low EnergyWie man ein BLE-Gerät mit einem Python-Skript steuertMakePython ESP32 Development KitAlles in einer BoxTHD-Messung mit Oszilloskop und FFTDen Klirrfaktor einfach berechnenAllsehende MaschinenDie Technologie hinter modernen industriellen BildverarbeitungssystemenInfografikDie Entwicklung der Sprach- und Audiosteuerung für elektronische GeräteWEEF 2022 im RückblickIm Rückblick: FFWD electronica 2022Innovatoren beeindrucken weiterhin!The TubeEin Röhrenverstärker der anderen ArtBiomaterialien in der Elektronik: Bereit oder nicht?Opera-Cake-Antennenumschalter für HackRF OneSchließen Sie bis zu acht Antennen an Ihr SDR anTechnik mit Arduino und mehrEin Interview mit Autor Ashwin PajankarLiDAR-PräzisionsmetermaßMisst bis zu zwölf MeterAudio mit dem ESP32Das Framework ESP-ADF in der PraxisElektor-Leistungsverstärker-Bausatz Fortissimo-100Licht für Klangeffekte nutzenLDR-basiertes spannungsgesteuertes 24 dB/Okt.-Synthesizer-FilterHochleistungsverstärker GigantDer Lauteste von allen!!Betreten für Unbefugte verboten!Ein volumetrisches Display Made in CanadaProjekt 2.0Korrekturen, Updates und LeserbriefeHexadoku
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!
Sind Sie noch kein Mitglied? Hier klicken!
Projekt-Update: Energiemessgerät mit ESP32 Nächste Schritte beim Prototyping
Balkonkraftwerke optimieren Überlegungen, Wissenswertes und Kalkulationen
Für Balkonkraftwerke: ESP32 mit OpenDTU Daten kleiner Wechselrichter per µC auslesen
Variables lineares Stromversorgungs-Ensemble 0...50 V / 0...2 A + Doppelsymmetrische Versorgung
Energiespeicherung heute und morgen Ein Interview mit Simon Engelke
2024: Eine Odyssee in die KI Weiter, immer weiter...
Bluetooth LE auf dem STM32 Auf dem Weg zum fernabgelesenen Messgerät
Intelligentes Kücheninventarsystem Mehr als eine Küchenwaage
MAUI: Programmieren für PC, Tablet und Smartphone Das neue Framework in Theorie und Praxis
ChatMagLev Der KI-Weg der Levitation
Einfacher PV-Energieregler für Inselanlagen Bauen Sie ein voll funktionsfähiges PV-Energiemanagement-System
Kaltkathodenröhre Bemerkenswerte Bauteile
Aus dem Leben gegriffen Nostalgie
Aller Anfang ... ... muss nicht schwer sein: Vom FET zum Opamp
CAN-Bus-Tutorial für den Arduino UNO R4 Zwei UNO R4 nehmen den Bus!
Infografik: Strom und Energie
Umfangreiche Unterstützung bei Design und Entwicklung Arrow Ingenieurdienstleistungen
Leistungsdichte vs. Wirkungsgrad
Aluminium-Elektrolytkondensatoren Störpotential in der Audiotechnik?
USB-Tester FNB58 von Fnirsi
Pixel Pump Das Pick-and-Place Tool Vereinfachung der manuellen SMD-Bestückung
HomeLab-Führungen Vor nicht allzu langer Zeit in einem weit entfernten Land...
„In der Welt der Ethik in der Elektronik können auch kleine Schritte eine große Wirkung haben.“
Ethik in der Elektronik Die OECD-Leitsätze und das deutsche Lieferkettengesetz
Intelligentes Ni-MH-Ladegerät/Entladegerät Das Leserprojekt „Chadèche“ in Kürze
Projekt 2.0 Korrekturen, Updates und Leserbriefe
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!
Sind Sie noch kein Mitglied? Hier klicken!
Projekt-Update: Energiemessgerät mit ESP32 Nächste Schritte beim Prototyping
Balkonkraftwerke optimieren Überlegungen, Wissenswertes und Kalkulationen
Für Balkonkraftwerke: ESP32 mit OpenDTU Daten kleiner Wechselrichter per µC auslesen
Variables lineares Stromversorgungs-Ensemble 0...50 V / 0...2 A + Doppelsymmetrische Versorgung
Energiespeicherung heute und morgen Ein Interview mit Simon Engelke
2024: Eine Odyssee in die KI Weiter, immer weiter...
Bluetooth LE auf dem STM32 Auf dem Weg zum fernabgelesenen Messgerät
Intelligentes Kücheninventarsystem Mehr als eine Küchenwaage
MAUI: Programmieren für PC, Tablet und Smartphone Das neue Framework in Theorie und Praxis
ChatMagLev Der KI-Weg der Levitation
Einfacher PV-Energieregler für Inselanlagen Bauen Sie ein voll funktionsfähiges PV-Energiemanagement-System
Kaltkathodenröhre Bemerkenswerte Bauteile
Aus dem Leben gegriffen Nostalgie
Aller Anfang ... ... muss nicht schwer sein: Vom FET zum Opamp
CAN-Bus-Tutorial für den Arduino UNO R4 Zwei UNO R4 nehmen den Bus!
Infografik: Strom und Energie
Umfangreiche Unterstützung bei Design und Entwicklung Arrow Ingenieurdienstleistungen
Leistungsdichte vs. Wirkungsgrad
Aluminium-Elektrolytkondensatoren Störpotential in der Audiotechnik?
USB-Tester FNB58 von Fnirsi
Pixel Pump Das Pick-and-Place Tool Vereinfachung der manuellen SMD-Bestückung
HomeLab-Führungen Vor nicht allzu langer Zeit in einem weit entfernten Land...
„In der Welt der Ethik in der Elektronik können auch kleine Schritte eine große Wirkung haben.“
Ethik in der Elektronik Die OECD-Leitsätze und das deutsche Lieferkettengesetz
Intelligentes Ni-MH-Ladegerät/Entladegerät Das Leserprojekt „Chadèche“ in Kürze
Projekt 2.0 Korrekturen, Updates und Leserbriefe
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!
Sie sind noch kein Mitglied? Hier klicken!
DIY-SolarakkusÜber den Selbstbau von Energiespeichern für Solaranlagen
Solarmodul-SimulatorFür Test und Optimierung von MPP-Trackern und Invertern
Der STM32-Edge-KI-WettbewerbEntdecken Sie den neuen STM32N6 und nehmen Sie am Wettbewerb um 5.000 € teil!
Erweiterung der BandlückeWarum gibt es so viel Interesse an SiC und GaN?
Power-Bank für NotebooksVerlängern Sie das Leben Ihres alten Laptops!
Medizinische RoboterÜberwindung technischer und regulatorischer Hürden
Frostwächter für ObstpflanzenMit Temperatur-Datenlogger
Das analoge DingDer Arduino des Analog-Computings?
Sparsames NetzrelaisMit über 90% Leistungsreduzierung
Verbesserung der DC-Last ET5410A+Keep cool and be quiet!
electronica 2024 im Rückblick
Elektromagnetische VerträglichkeitEMV kurz und bündig!
Aller Anfang......muss nicht schwer sein: Aktive Filter
Verlustleistung reduzieren mit AbleitkondensatorenEin cleverer Einsatz von kapazitiver Reaktanz
Preiswerter 12-Bit-Digital-Analog-Wandler MCP4725Mit EEPROM-Feature für sicheres Einschaltverhalten
Fnirsi LCR-ST1, die intelligente LCR-SMD-Pinzette
Test- und Messlabor mit Raspberry PiDas Wichtigste zuerst: Der ADC
Elektronischer LastwiderstandEin Projekt aus der Kiste
2025: Eine Odyssee in die KIEinige Projekte für das neue Jahr
Projekt-Update: Modulares DC-Leistungsmessgerät AmpVolt v2.0100 Ampere und mehr!
Projekt 2.0
Ethische Transparenz sichtbar gemachtErgebnisse der Umfrage 2024 von Ethics in Electronics
Elektor Audio-DSP FX-Prozessor-BoardTeil 2: Anwendungen erstellen