Waveshare RP2040-PiZero ist eine leistungsstarke und kostengünstige Mikrocontrollerkarte mit integrierter DVI-Schnittstelle, TF-Kartensteckplatz und PIO-USB-Anschluss, kompatibel mit dem 40-poligen GPIO-Header von Raspberry Pi, einfach zu entwickeln und in die Produkte zu integrieren.
Merkmale
RP2040-Mikrocontrollerchip, entwickelt von Raspberry Pi
Dual-Core ARM Cortex M0+ Prozessor, flexible Taktung bis zu 133 MHz
264 KB SRAM und 16 MB integrierter Flash-Speicher
Die integrierte DVI-Schnittstelle kann die meisten HDMI-Bildschirme ansteuern (DVI-Kompatibilität erforderlich)
Unterstützt die Verwendung als USB-Host oder -Slave über den integrierten PIO-USB-Anschluss
Integrierter TF-Kartensteckplatz zum Lesen und Schreiben der TF-Karte
Integrierter Anschluss zum Aufladen/Entladen der Lithiumbatterie, geeignet für mobile Szenarien
USB 1.1 mit Geräte- und Host-Unterstützung
Drag-and-Drop-Programmierung mit Massenspeicher über USB
Energiesparender Ruhe- und Ruhemodus
2x SPI, 2x I²C, 2x UART, 4x 12-Bit-ADC, 16x steuerbare PWM-Kanäle
Präzise Uhr und Timer auf dem Chip
Temperatursensor
Beschleunigte Gleitkommabibliotheken auf dem Chip
Downloads
Wiki
PÚCA DSP ist ein Arduino-kompatibles Open-Source-ESP32-Entwicklungsboard für Audio- und digitale Signalverarbeitungsanwendungen (DSP) mit umfangreichen Audioverarbeitungsfunktionen. Es bietet Audioeingänge, -ausgänge, ein rauscharmes Mikrofonarray, eine integrierte Testlautsprecheroption, zusätzlichen Speicher, Batterielademanagement und ESD-Schutz – alles auf einer kleinen, Breadboard-freundlichen Platine.
Synthesizer, Installationen, Voice UI und mehr
PÚCA DSP kann für eine breite Palette von DSP-Anwendungen eingesetzt werden, unter anderem in den Bereichen Musik, Kunst, Kreativtechnik und adaptive Technologie. Beispiele aus dem Musikbereich sind digitale Musiksynthese, mobile Aufnahmen, Bluetooth-Lautsprecher, drahtlose Richtmikrofone und die Entwicklung intelligenter Musikinstrumente. Beispiele aus dem Bereich Kunst sind akustische Sensornetzwerke, Klangkunstinstallationen und Internet-Radioanwendungen. Beispiele aus dem Bereich der kreativen und adaptiven Technologie sind das Design von Sprachbenutzerschnittstellen (VUI) und Web-Audio für das Internet der Klänge.
Kompaktes, integriertes Design
PÚCA DSP wurde für den mobilen Einsatz konzipiert. In Verbindung mit einem externen 3,7-V-Akku kann er fast überall eingesetzt oder in nahezu jedes Gerät, Instrument oder jede Installation integriert werden. Sein Design entstand aus monatelangen Experimenten mit verschiedenen ESP32-Entwicklungsboards, DAC-Breakout-Boards, ADC-Breakout-Boards, Mikrofon-Breakout-Boards und Audio-Anschluss-Breakout-Boards, und – trotz seiner geringen Größe – schafft er es, all diese Funktionen in einem einzigen Board zu vereinen. Und das ohne Kompromisse bei der Signalqualität.
Technische Daten
Prozessor und Speicher
Espressif ESP32 Pico D4 Prozessor
32-bit Dual-Core 80 MHz/160 MHz/240 MHz
4 MB SPI Flash mit 8 MB zusätzlichem PSRAM (Original Edition)
Drahtloses 2,4-GHz-WLAN 802.11b/g/n
Bluetooth BLE 4.2
3D-Antenne
Audio
Wolfson WM8978 Stereo-Audio-Codec
Audio-Line-In am 3,5-mm-Stereoanschluss
Audio-Kopfhörer-/Line-Ausgang am 3,5-mm-Stereoanschluss
Stereo-Aux-Line-In, Audio-Mono-Out zum GPIO-Header geleitet
2x Knowles SPM0687LR5H-1 MEMS-Mikrofone
ESD-Schutz an allen Audioeingängen und -ausgängen
Unterstützung für Abtastraten von 8, 11,025, 12, 16, 22,05, 24, 32, 44,1 und 48 kHz
1-W-Lautsprechertreiber, auf GPIO-Header geroutet
DAC SNR 98 dB, THD -84 dB ('A'-gewichtet bei 48 kHz)
ADC SNR 95 dB, THD -84 dB (‘A’-gewichtet bei 48 kHz)
Line-Eingangsimpedanz: 1 MOhm
Line-Ausgangsimpedanz: 33 Ohm
Formfaktor und Konnektivität
Breadboard-freundlich
70 x 24 mm
11x GPIO-Pins mit 2,54 mm Rastermaß, mit Zugriff auf beide ESP32-ADC-Kanäle, JTAG und kapazitive Touch-Pins
USB 2.0 über USB-Typ-C-Anschluss
Stromversorgung
3,7/4,2 V Lithium-Polymer-Akku, USB oder externe 5 V DC-Stromquelle
ESP32 und Audio-Codec können softwaregesteuert in Energiesparmodi versetzt werden
Erkennung des Batteriespannungspegels
ESD-Schutz am USB-Datenbus
Downloads
GitHub
Datasheet
Links
Crowd Supply Campaign (includes FAQs)
Hardware Overview
Programming the Board
The Audio Codec
ESP32-S2-Saola-1R ist ein kleines ESP32-S2-basiertes Entwicklungsboard. Die meisten I/O-Pins sind zur einfachen Anbindung auf beiden Seiten bis zu den Stiftleisten herausgebrochen. Entwickler können Peripheriegeräte entweder mit Überbrückungskabeln verbinden oder ESP32-S2-Saola-1R auf einem Steckbrett montieren.
ESP32-S2-Saola-1R ist mit dem ESP32-S2-WROVER-Modul ausgestattet, einem leistungsstarken, generischen Wi-Fi-MCU-Modul, das über eine umfangreiche Auswahl an Peripheriegeräten verfügt. Es ist eine ideale Wahl für vielfältige Anwendungsszenarien rund um das Internet der Dinge (IoT), tragbare Elektronik und Smart Home. Die Platine verfügt über eine PCB-Antenne und verfügt über einen 4 MB externen SPI-Flash und einen zusätzlichen 2 MB pseudostatischen SPI-RAM (PSRAM).
Merkmale
MCU
ESP32-S2 eingebetteter Xtensa®-Single-Core-32-Bit-LX7-Mikroprozessor, bis zu 240 MHz
128 KB ROM
320 KB SRAM
16 KB SRAM im RTC
W-lan
802.11 b/g/n
Bitrate: 802.11n bis zu 150 Mbit/s
A-MPDU- und A-MSDU-Aggregation
Unterstützung für 0,4 µs Schutzintervall
Mittenfrequenzbereich des Betriebskanals: 2412 ~ 2484 MHz
Hardware
Schnittstellen: GPIO, SPI, LCD, UART, I²C, I²S, Kameraschnittstelle, IR, Impulszähler, LED-PWM, TWAI (kompatibel mit ISO 11898-1), USB OTG 1.1, ADC, DAC, Berührungssensor, Temperatursensor
40-MHz-Quarzoszillator
4 MB SPI-Flash
Betriebsspannung/Stromversorgung: 3,0 ~ 3,6 V
Betriebstemperaturbereich: –40 ~ 85 °C
Abmessungen: 18 × 31 × 3,3 mm
Anwendungen
Allgemeiner IoT-Sensor-Hub mit geringem Stromverbrauch
Generische IoT-Datenlogger mit geringem Stromverbrauch
Kameras für Video-Streaming
Over-the-Top-Geräte (OTT).
USB-Geräte
Spracherkennung
Bilderkennung
Mesh-Netzwerk
Heimautomatisierung
Smart-Home-Systemsteuerung
Intelligentes Gebäude
Industrielle Automatisierung
Intelligente Landwirtschaft
Audioanwendungen
Anwendungen im Gesundheitswesen
Wi-Fi-fähiges Spielzeug
Tragbare Elektronik
Einzelhandels- und Gastronomieanwendungen
Intelligente POS-Geräte
Das ESP32-S3-DevKitC-1 ist ein Entwicklungsboard der Einstiegsklasse, das mit dem ESP32-S3-WROOM-1U ausgestattet ist, einem universellen Wi-Fi + Bluetooth Low Energy MCU-Modul, das vollständige Wi-Fi- und Bluetooth Low Energy-Funktionen integriert.
Die meisten E/A-Pins des Moduls sind auf die Stiftleisten auf beiden Seiten des Boards verteilt, um eine einfache Anbindung zu ermöglichen. Entwickler können entweder Peripheriegeräte mit Jumper-Drähten anschließen oder ESP32-S3-DevKitC-1 auf einem Breadboard montieren.
Features
Integriertes Modul: ESP32-S3-WROOM-1U-N8R8
Flash: 8 MB QD
PSRAM: 8 MB OT
SPI-Spannung: 3,3 V
Technische Daten
ESP32-S3-WROOM-1U
ESP32-S3-WROOM-1U ist ein leistungsstarkes, generisches Wi-Fi + Bluetooth Low Energy MCU-Modul, das über eine umfangreiche Auswahl an Peripheriegeräten verfügt. Es bietet Beschleunigung für neuronale Netzwerk-Computing- und Signalverarbeitungs-Workloads. ESP32-S3-WROOM-1U wird mit einem externen Antennenanschluss geliefert.
5 V bis 3,3 V LDO
Leistungsregler, der eine 5-V-Versorgung in einen 3,3-V-Ausgang umwandelt.
Pin-Header
Alle verfügbaren GPIO-Pins (mit Ausnahme des SPI-Busses für Flash) sind zur einfachen Anbindung und Programmierung auf die Pin-Header auf der Platine verteilt.
USB-zu-UART-Anschluss
Ein Micro-USB-Anschluss, der für die Stromversorgung der Platine, für Flash-Anwendungen auf dem Chip sowie für die Kommunikation mit dem Chip über die integrierte USB-zu-UART-Brücke verwendet wird.
Boot-Schaltfläche
Herunterladen-Schaltfläche. Wenn Sie „Boot“ gedrückt halten und dann „Reset“ drücken, wird der Firmware-Download-Modus zum Herunterladen von Firmware über die serielle Schnittstelle gestartet.
Reset-Taste
Drücken Sie diese Taste, um das System neu zu starten.
USB-Anschluss
ESP32-S3 Full-Speed-USB-OTG-Schnittstelle, kompatibel mit der USB 1.1-Spezifikation. Die Schnittstelle wird zur Stromversorgung des Boards, zum Flashen von Anwendungen auf dem Chip, zur Kommunikation mit dem Chip über USB 1.1-Protokolle sowie zum JTAG-Debugging verwendet.
USB-zu-UART-Brücke
Ein einzelner USB-zu-UART-Bridge-Chip bietet Übertragungsraten von bis zu 3 Mbit/s.
RGB-LED
Adressierbare RGB-LED, gesteuert durch GPIO38.
3,3 V Power-On-LED
Schaltet sich ein, wenn die USB-Stromversorgung an die Platine angeschlossen ist.
Downloads
Pinout
Dieses Entwicklungsboard (auch bekannt als "Cheap Yellow Display") wird vom ESP-WROOM-32 angetrieben, einem Dual-Core-MCU mit integrierten Wi-Fi- und Bluetooth-Funktionen. Es arbeitet mit einer Hauptfrequenz von bis zu 240 MHz, mit 520 KB SRAM, 448 KB ROM und einem 4 MB Flash-Speicher. Das Board verfügt über ein 2,8" Display mit einer Auflösung von 240x320 und Resistive Touch.
Darüber hinaus enthält die Platine einen Steuerkreis für die Hintergrundbeleuchtung, einen Schaltkreis für die Berührungssteuerung, einen Schaltkreis für die Lautsprecheransteuerung, einen lichtempfindlichen Schaltkreis und einen RGB-LED-Steuerschaltkreis. Es bietet außerdem einen TF-Kartensteckplatz, eine serielle Schnittstelle, eine DHT11-Schnittstelle für Temperatur- und Feuchtigkeitssensoren und zusätzliche E/A-Anschlüsse.
Das Modul unterstützt die Entwicklung in Arduino IDE, ESP-IDE, MicroPython und Mixly.
Anwendungen
Bildübertragung für Smart Home-Gerät
Drahtlose Überwachung
Intelligente Landwirtschaft
QR-Funkerkennung
Signal des drahtlosen Positionierungssystems
Und andere IoT-Anwendungen
Technische Daten
Mikrocontroller
ESP-WROOM-32 (Dual-Core-MCU mit integriertem WLAN und Bluetooth)
Frequenz
Bis zu 240 MHz (Rechenleistung bis zu 600 DMIPS)
SRAM
520 KB
ROM
448 KB
Flash
4 MB
Betriebsspannung
5 V
Stromverbrauch
ca. 115 mA
Display
2,8" TFT-Farbbildschirm (240 x 320)
Touch
Resistive Touch
Treiberchip
ILI9341
Abmessungen
50 x 86 mm
Gewicht
50 g
Lieferumfang
1x ESP32 Dev-Board mit 2,8" Display und Acrylgehäuse
1x Touch-Stift
1x Verbindungskabel
1x USB-Kabel
Downloads
GitHub
Waveshare DVK600 ist eine FPGA CPLD-Hauptplatine mit Erweiterungsanschlüssen zum Anschluss der FPGA CPLD-Hauptplatine und Zubehörplatinen. DVK600 bietet eine einfache Möglichkeit, ein FPGA CPLD-Entwicklungssystem einzurichten.
Merkmale
FPGA CPLD-Core-Board-Anschluss: zum einfachen Verbinden von Core-Boards, die einen FPGA CPLD-Chip integriert haben
8I/Os_1 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
8I/Os_2-Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
16I/Os_1 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
16I/Os_2 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
32I/Os_1 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
32I/Os_2-Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
32I/Os_3 Schnittstelle , zum Anschluss von Zusatzplatinen/Modulen
SDRAM-Schnittstelle
zum Anschluss der SDRAM-Zubehörkarte
funktioniert auch als FPGA CPLD Pins Erweiterungsstecker
LCD-Interface , zum Anschluss von LCD22, LCD12864, LCD1602
ONE-WIRE-Schnittstelle: Einfache Verbindung mit ONE-WIRE-Geräten (TO-92-Gehäuse) wie Temperatursensor (DS18B20), elektronischer Registrierungsnummer (DS2401) usw.
5 V DC-Buchse
Joystick: fünf Positionen
Summer
Potentiometer: zur Einstellung der Hintergrundbeleuchtung von LCD22 oder zur Kontrasteinstellung von LCD12864 und LCD1602
Stromschalter
Summer-Jumper
ONE-WIRE-Jumper
Joystick-Jumper
Downloads
Schema
Open-Source-Code mit Arduino IDE und PlatformIO
Autonomes Fahren: GPS, Accelerometer, Gyroskop
PS3-Controller
Mikrocontroller wie der Arduino und Einplatinenrechner wie der Raspberry Pi haben sich zu beliebten Komponenten entwickelt. Dritter im Bunde ist der ESP32 der Firma Espressif. Mikrocontroller dieser Baureihe zeichnen sich durch eine Vielzahl implementierter Funktionen aus, die bei einem Arduino konventioneller Prägung mit einem Atmel-AVR-Mikrocontroller erst mit weiterer Hardware möglich sind. Prominentes Beispiel sind hier die WiFi- und Bluetooth-Funktionalitäten. Gegenüber einem Raspberry Pi zeichnen sie sich durch einen deutlich geringeren Preis aus.
Allgemeine Informationen für die Realisierung eines Roboterauto-Projekts mit dem ESP32 sind leicht zu finden. Dabei handelt es sich aber oft nur um Ausführungen zu einem Teilaspekt, ohne inhaltliche oder funktionale Abstimmung. So ist nicht nur die Beschaffung der benötigten Informationen mühselig und zeitaufwändig, sie kann auch außerordentlich fehlerträchtig sein.
Ansatzpunkt dieses Buches ist, diese Lücke zu schließen. Es geht auf verschiedene Möglichkeiten eines Chassis ein, vermittelt nötige Kenntnisse und führt schrittweise von einer einfachen Motorsteuerung zu einem komplexen sensor- und sprachgesteuerten Roboterauto. Hacks rund um GPS und eine PlayStation 3 runden die Sache ab.
Inhalt
Bei der Reihenfolge der Kapitel wurde versucht – beginnend bei der Darstellung von grundlegenden Informationen – über die Lösung einfacher Aufgaben zu etwas anspruchsvolleren Techniken zu führen.
Der Mikrocontroller ESP32
Die Software erstellen
Die Stromversorgung
Rund um die Hardware
Das Chassis
Der Gleichstrommotor
Kabellose Steuerung über WiFi
Mit Sensoren Hindernisse erkennen
Eine eigene Roboterauto-App
Servo und Lichtsensor
GPS
Accelerometer / Gyroskop
PS3-Controller
Roboterauto-App
Hinweis zur Software
Die Dateien haben das Suffix (.cpp). Grund ist die Entwicklung mit PlatformIO. Mit Copy & Paste sollten sie auch in der Arduino-IDE verwendet werden können.
Der ESP32-WROOM-32 misst nur 25,2 x 18 mm und enthält den ESP32-SoC, den Flash-Speicher, präzise diskrete Komponenten und eine PCB-Antenne, um eine hervorragende HF-Leistung in Anwendungen mit begrenztem Platzangebot zu bieten.
ESP32-WROOM-32 ist ein leistungsstarkes, generisches Wi-Fi + BT + BLE-MCU-Modul, das auf eine Vielzahl von Anwendungen abzielt, von Sensornetzwerken mit geringem Stromverbrauch bis hin zu anspruchsvollsten Aufgaben wie Sprachkodierung, Musik-Streaming und MP3-Dekodierung.
Das Herzstück dieses Moduls ist der ESP32-D0WDQ6-Chip. Der eingebettete Chip ist skalierbar und anpassungsfähig. Es gibt zwei CPU-Kerne, die einzeln angesteuert werden können, und die Taktfrequenz ist von 80 MHz bis 240 MHz einstellbar. Der Benutzer kann die CPU auch ausschalten und den stromsparenden Coprozessor nutzen, um die Peripheriegeräte ständig auf Änderungen oder Überschreitungen von Schwellenwerten zu überwachen. ESP32 integriert eine Vielzahl von Peripheriegeräten, die von kapazitiven Berührungssensoren, Hall-Sensoren, SD-Kartenschnittstelle, Ethernet, Hochgeschwindigkeits-SPI, UART, I²S und I²C reichen.
Die Integration von Bluetooth, Bluetooth LE und Wi-Fi sorgt dafür, dass ein breites Anwendungsspektrum angesprochen werden kann und das Modul zukunftssicher ist. Die Verwendung von Wi-Fi ermöglicht eine große physische Reichweite und eine direkte Verbindung zum Internet über einen Wi-Fi-Router, während die Verwendung von Bluetooth es dem Benutzer ermöglicht, bequem eine Verbindung zum Telefon herzustellen oder Niedrigenergie-Beacons zur Erkennung auszusenden.
Der Ruhestrom des ESP32-Chips beträgt weniger als 5 µA und eignet sich daher für batteriebetriebene und tragbare Elektronikanwendungen. ESP32 unterstützt eine Datenrate von bis zu 150 Mbit/s und eine Ausgangsleistung von 20,5 dBm an der Antenne, um die größtmögliche physikalische Reichweite zu gewährleisten. Daher bietet der Chip branchenführende Spezifikationen und die beste Leistung für elektronische Integration, Reichweite, Stromverbrauch und Konnektivität.
Downloads
Datasheet
ATOM U ist ein kompaktes IoT-Entwicklungskit für Spracherkennung mit geringem Stromverbrauch. Es verwendet einen ESP32-Chipsatz, ausgestattet mit 2 stromsparenden Xtensa 32-Bit LX6 Mikroprozessoren mit einer Hauptfrequenz von bis zu 240 MHz. Eingebaute USB-A-Schnittstelle, IR-Sender, programmierbare RGB-LED. Plug-and-Play, einfaches Hoch- und Herunterladen von Programmen. Integriertes Wi-Fi und digitales Mikrofon SPM1423 (I2S) für die klare Tonaufzeichnung. geeignet für HMI, Speech-to-Text (STT).
Low-Code-Entwicklung
ATOM U unterstützt die grafische Programmierplattform UIFlow, skriptfrei, Cloud-Push; Vollständig kompatibel mit Arduino, MicroPython, ESP32-IDF und anderen Mainstream-Entwicklungsplattformen, um schnell verschiedene Anwendungen zu erstellen.
Hohe Integration
ATOM U verfügt über einen USB-A-Anschluss für die Programmierung/Stromversorgung, einen IR-Sender, eine programmierbare RGB-LED (1) und eine Taste (1). Der fein abgestimmte RF-Schaltkreis sorgt für eine stabile und zuverlässige drahtlose Kommunikation.
Starke Erweiterbarkeit
ATOM U ist ein einfacher Zugang zum Hardware- und Softwaresystem von M5Stack.
Merkmale
ESP32-PICO-D4 (2,4GHz Wi-Fi-Doppelmodus)
Integrierte programmierbare RGB-LED und Taste
Kompaktes Design
Eingebauter IR-Sender
Erweiterbare Pinbelegung und GROVE-Port
Entwicklungsplattform:
UIFlow
MicroPython
Arduino
Spezifikationen
ESP32-PICO-D4
240MHz Doppelkern, 600 DMIPS, 520KB SRAM, 2.4G Wi-Fi
Mikrofon
SPM1423
Empfindlichkeit des Mikrofons
94 dB SPL@1 KHz Typischer Wert: -22 dBFS
Signal-Rausch-Verhältnis des Mikrofons
94 dB SPL@1 KHz, A-gewichtet Typischer Wert: 61,4 dB
Standby-Arbeitsstrom
40.4 mA
Unterstützung der Eingangsschallfrequenz
100 Hz ~ 10 KHz
Unterstützung der PDM-Taktfrequenz
1.0 ~ 3.25 MHz
Gewicht
8.4 g
Dimensionen
52 x 20 x 10 mm
Downloads
Documentation
Der LuckFox Pico Ultra ist ein kompakter Single-Board-Computer (SBC) mit dem Rockchip RV1106G3-Chipsatz, der für KI-Verarbeitung, Multimedia und stromsparende Embedded-Anwendungen entwickelt wurde.
Er ist mit einer integrierten 1-TOPS-NPU ausgestattet und eignet sich daher ideal für Edge-KI-Workloads. Mit 256 MB RAM, 8 GB Onboard-eMMC-Speicher, integriertem WLAN und Unterstützung für das LuckFox PoE-Modul bietet das Board Leistung und Vielseitigkeit für eine Vielzahl von Anwendungsfällen.
Der LuckFox Pico Ultra läuft unter Linux und unterstützt eine Vielzahl von Schnittstellen – darunter MIPI CSI, RGB-LCD, GPIO, UART, SPI, I²C und USB – und bietet so eine einfache und effiziente Entwicklungsplattform für Anwendungen in den Bereichen Smart Home, Industriesteuerung und IoT.
Technische Daten
Chip
Rockchip RV1106G3
Prozessor
Cortex-A7 1,2 GHz
Neuronaler Netzwerkprozessor (NPU)
1 TOPS, unterstützt int4, int8, int16
Bildprozessor (ISP)
Max. Eingangsgeschwindigkeit 5 M @30fps
Speicher
256 MB DDR3L
WLAN + Bluetooth
2,4 GHz WiFi-6 Bluetooth 5.2/BLE
Kameraschnittstelle
MIPI CSI 2-Lane
DPI-Schnittstelle
RGB666
PoE-Schnittstelle
IEEE 802.3af PoE
Lautsprecherschnittstelle
MX1,25 mm
USB
USB 2.0 Host/Gerät
GPIO
30 GPIO Pins
Ethernet
10/100M Ethernet-Controller und eingebetteter PHY
Standardspeichermedium
eMMC (8 GB)
Lieferumfang
1x LuckFox Pico Ultra W
1x LuckFox PoE Modul
1x IPX 2,4G 2 dB Antenne
1x USB-A auf USB-C Kabel
1x Schraubensatz
Downloads
Wiki
Das Herzstück dieses Moduls ist ESP32-S2, eine Xtensa® 32-Bit-LX7-CPU, die mit bis zu 240 MHz arbeitet. Der Chip verfügt über einen Co-Prozessor mit geringem Stromverbrauch, der anstelle der CPU verwendet werden kann, um Strom zu sparen und gleichzeitig Aufgaben auszuführen, die nicht viel Rechenleistung erfordern, wie beispielsweise die Überwachung von Peripheriegeräten. ESP32-S2 integriert eine Vielzahl von Peripheriegeräten, darunter SPI, I²S, UART, I²C, LED-PWM, TWAITM, LCD, Kameraschnittstelle, ADC, DAC, Berührungssensor, Temperatursensor sowie bis zu 43 GPIOs. Es verfügt außerdem über eine Full-Speed-USB-On-The-Go-Schnittstelle (OTG), um die USB-Kommunikation zu ermöglichen.
Merkmale
MCU
ESP32-S2 eingebetteter Xtensa®-Single-Core-32-Bit-LX7-Mikroprozessor, bis zu 240 MHz
128 KB ROM
320 KB SRAM
16 KB SRAM im RTC
W-lan
802.11 b/g/n
Bitrate: 802.11n bis zu 150 Mbit/s
A-MPDU- und A-MSDU-Aggregation
Unterstützung für 0,4 µs Schutzintervall
Mittenfrequenzbereich des Betriebskanals: 2412 ~ 2484 MHz
Hardware
Schnittstellen: GPIO, SPI, LCD, UART, I²C, I²S, Kameraschnittstelle, IR, Impulszähler, LED-PWM, TWAI (kompatibel mit ISO 11898-1), USB OTG 1.1, ADC, DAC, Berührungssensor, Temperatursensor
40-MHz-Quarzoszillator
4 MB SPI-Flash
Betriebsspannung/Stromversorgung: 3,0 ~ 3,6 V
Betriebstemperaturbereich: –40 ~ 85 °C
Abmessungen: 18 × 31 × 3,3 mm
Anwendungen
Allgemeiner IoT-Sensor-Hub mit geringem Stromverbrauch
Generische IoT-Datenlogger mit geringem Stromverbrauch
Kameras für Video-Streaming
Over-the-Top-Geräte (OTT).
USB-Geräte
Spracherkennung
Bilderkennung
Mesh-Netzwerk
Heimautomatisierung
Smart-Home-Systemsteuerung
Intelligentes Gebäude
Industrielle Automatisierung
Intelligente Landwirtschaft
Audioanwendungen
Anwendungen im Gesundheitswesen
Wi-Fi-fähiges Spielzeug
Tragbare Elektronik
Einzelhandels- und Gastronomieanwendungen
Intelligente POS-Geräte
Das ATmega328 Uno Development Board (Arduino Uno kompatibel) ist ein Mikrocontroller-Board, das auf dem ATmega328 basiert.
Es verfügt über 14 digitale Ein-/Ausgangspins (von denen 6 als PWM-Ausgänge verwendet werden können), 6 analoge Eingänge, einen 16 MHz-Keramikresonator, einen USB-Anschluss, eine Strombuchse, einen ICSP-Header und eine Reset-Taste.
Es enthält alles, was zur Unterstützung des Mikrocontrollers erforderlich ist. Schließen Sie es über ein USB-Kabel an einen Computer an oder betreiben Sie es mit einem AC-DC-Adapter oder einer Batterie, um loszulegen.
Technische Daten
Mikrocontroller
ATmega328
Betriebsspannung
5 V DC
Eingangsspannung (empfohlen)
7-12 V DC
Eingangsspannung (Grenzwerte)
6-20 V DC
Digitale I/O-Pins
14 (davon 6 mit PWM-Ausgang)
Analoge Eingangspins
6
SRAM
2 kB (ATmega328)
EEPROM
1 kB (ATmega328)
Flash-Speicher
32 kB (ATmega328), davon 0,5 kB vom Bootloader verwendet
Taktgeschwindigkeit
16 MHz
Downloads
Manual