Merkmale
NFC-Chipmaterial: PET + Ätzantenne
Chip: NTAG216 (kompatibel mit allen NFC-Telefonen)
Frequenz: 13,56 MHz (Hochfrequenz)
Lesezeit: 1 - 2 ms
Speicherkapazität: 888 Byte
Lese- und Schreibvorgänge: > 100.000 Mal
Leseabstand: 0 - 5 mm
Datenaufbewahrung: > 10 Jahre
NFC-Chipgröße: Durchmesser 30 mm
Berührungslos, keine Reibung, geringe Ausfallrate, geringe Wartungskosten
Leserate, Verifizierungsgeschwindigkeit, die effektiv Zeit sparen und die Effizienz verbessern kann
Wasserdicht, staubdicht, vibrationshemmend
Keine Stromversorgung mit Antenne, eingebetteter Verschlüsselungssteuerungslogik und Kommunikationslogikschaltung
Inbegriffen
1x NFC-Sticker (6-Farben-Set)
Challenger RP2040 NFC ist ein kleiner Embedded-Computer, der mit einem fortschrittlichen integrierten NFC-Controller (NXP PN7150) im beliebten Adafruit Feather-Formfaktor ausgestattet ist. Es basiert auf einem RP2040-Mikrocontroller-Chip der Raspberry Pi Foundation, einem Dual-Core-Cortex-M0, der mit einer Taktrate von bis zu 133 MHz betrieben werden kann. NFC Der PN7150 ist eine voll ausgestattete NFC-Controllerlösung mit integrierter Firmware und NCI-Schnittstelle, die für kontaktlose Kommunikation bei 13,56 MHz konzipiert ist. Es ist vollständig mit den Anforderungen des NFC-Forums kompatibel und basiert weitgehend auf Erkenntnissen aus früheren NXP-NFC-Gerätegenerationen. Es ist die ideale Lösung für die schnelle Integration der NFC-Technologie in jede Anwendung, insbesondere in kleine eingebettete Systeme, wodurch die Stückliste (BOM) reduziert wird. Das integrierte Design mit vollständiger NFC-Forum-Konformität bietet dem Benutzer alle folgenden Funktionen: Eingebettete NFC-Firmware, die alle NFC-Protokolle als vorintegrierte Funktion bereitstellt. Direkte Verbindung zum Haupthost oder Mikrocontroller über den physischen I²C-Bus und das NCI-Protokoll. Extrem geringer Stromverbrauch im Polling-Loop-Modus. Hocheffiziente integrierte Power-Management-Einheit (PMU), die eine direkte Versorgung über eine Batterie ermöglicht. Technische Daten Mikrocontroller RP2040 von Raspberry Pi (133 MHz Dual-Core Cortex-M0) SPI Ein SPI-Kanal konfiguriert I²C Zwei I²C-Kanäle konfiguriert (dedizierter I²C für den PN7150) UART Ein UART-Kanal konfiguriert Analogeingänge 4 analoge Eingangskanäle NFC-Modul PN7150 von NXP Flash-Speicher 8 MB, 133 MHz SRAM-Speicher 264 KB (aufgeteilt in 6 Bänke) USB 2.0-Controller Bis zu 12 MBit/s Full Speed (integriertes USB 1.1 PHY) JST-Batterieanschluss 2,0 mm Teilung LiPo-Ladegerät an Bord 450 mA Standard-Ladestrom Abmessungen 51 x 23 x 3,2 mm Gewicht 9 g Hinweis: Antenne ist nicht im Lieferumfang enthalten. Downloads Datasheet Quick start example
TapNLink-Module bieten drahtlose Schnittstellen zur Verknüpfung elektronischer Systeme mit mobilen Geräten und der Cloud. TapNLink stellt eine direkte Verbindung zum Mikrocontroller des Zielsystems her. Es integriert sich in das Zielsystem und wird von diesem mit Strom versorgt. Alle TapNLink-Produkte lassen sich einfach konfigurieren, um den Zugriff verschiedener Benutzertypen auf Daten im Zielsystem zu steuern. TapNLink ermöglicht die schnelle Erstellung von Human Machine Interfaces (HMI), die auf Android-, iOS- und Windows-Mobilgeräten laufen. HMI-Apps lassen sich leicht an verschiedene Benutzer anpassen und können bereitgestellt und aktualisiert werden, um mit den sich ändernden Systemanforderungen und Benutzerbedürfnissen Schritt zu halten.
TapNLink-WLAN-Module können auch so konfiguriert werden, dass sie das Zielsystem dauerhaft mit einem drahtlosen Netzwerk und der Cloud verbinden. Dies ermöglicht eine permanente Protokollierung von Zielsystemdaten und Alarmen.
Merkmale
Drahtlose Kanäle
WLAN 802.11b/g/n
Bluetooth Low Energy (BLE 4.2)
Near Field Communication (NFC) Typ5-Tag (ISO/IEC 15693)
Unterstützte Zielverbindungen: Verbindet sich mit 2 GPIOs des Ziel-Mikrocontrollers und unterstützt:
Serielle Schnittstelle mit Software Secure Serial Port (S3P)-Protokoll
Serielle Schnittstelle mit ARM SWD-Debug-Protokoll.
UART mit Modbus-Protokoll
Unterstützung für mobile Plattformen
HTML5-Web-Apps (Android, iOS)
API für Cordova (Android, iOS, Windows 10)
Java (Android, iOS nativ)
Auto-App-Generator für Android- und iOS-Handys
Sicherheit
Konfigurierbare Zugangsprofile
Konfigurierbare, verschlüsselte Passwörter
AES-128/256 Datenverschlüsselung auf Modulebene
Konfigurierbare sichere Kopplung mit NFC
Abmessungen: 38 mm x 28 mm x 3 mm
Elektrische Eigenschaften
Eingangsspannung: 2,3 V bis 3,6 V
Energieeffizient:
Standby: 100 µA
NFC Tx/Rx: 7 mA
WLAN-Empfang: 110 mA
Wi-Fi-Sende: 280 mA (802.11b)
Temperaturbereich: -20 °C bis +55 °C
Einhaltung
CE (Europa), FCC (USA), IC (Kanada)
ERREICHEN
RoHS
WEEE
Bestellinformationen
Basisteilenummer: TnL-FIW103
Mindestbestellmenge: 20 Module
TapNLink-Module vorqualifiziert, vorprogrammiert und konfigurierbar.
Konfigurations- und Testsoftware IoTize Studio
Software für HMI auf mobilen Geräten (iOS, Android, Windows 10)
IoTize Cloud MQTT-Infrastruktur (Open Source)
Weitere Informationen finden Sie im Datenblatt hier .
Grundlagen und Selbstbau
Weshalb nicht damit beginnen, Mikrocontroller-Module selbst zu entwickeln, zumindest aber sich in Gedanken mit solchen Aufgaben zu beschäftigen? Wie Mikrocontroller-Module aufgebaut sind und wozu sie verwendet werden, soll in 'Mikrocontroller-Module – Grundlagen und Selbstbau' dargestellt werden.
Das vorliegende Buch beleuchtet Mikrocontroller-Module, die vor allem zum Experimentieren, zum Lernen und zum Einarbeiten in die Entwicklung und Programmierung von Embedded Systems gedacht sind.
Die Entwurfsgrundsätze, Lösungsvorschläge und Projekte, die in diesem Buch beschrieben werden, sind aus zwei Ideen hervorgegangen: Erstens können neue Entwicklungen zwischen den weit verbreiteten kostengünstigen Mikrocontroller-Modulen und der industriellen Computer- und Steuerungstechnik ihren Platz finden und zweitens ist es eine Herausforderung an sich, solche Module zu entwickeln und einzusetzen.
In den ersten sieben Kapiteln dieses Buches werden die technischen Grundlagen diskutiert und anhand eigener Entwicklungen veranschaulicht. Das achte Kapitel gibt einen Überblick über diesen Modulbaukasten.
Alle Fotos aus dem Buch können hier vierfarbig heruntergeladen werden.
Grundlagen und Selbstbau
Weshalb nicht damit beginnen, Mikrocontroller-Module selbst zu entwickeln, zumindest aber sich in Gedanken mit solchen Aufgaben zu beschäftigen? Wie Mikrocontroller-Module aufgebaut sind und wozu sie verwendet werden, soll in 'Mikrocontroller-Module – Grundlagen und Selbstbau' dargestellt werden.
Das vorliegende Buch beleuchtet Mikrocontroller-Module, die vor allem zum Experimentieren, zum Lernen und zum Einarbeiten in die Entwicklung und Programmierung von Embedded Systems gedacht sind.
Die Entwurfsgrundsätze, Lösungsvorschläge und Projekte, die in diesem Buch beschrieben werden, sind aus zwei Ideen hervorgegangen: Erstens können neue Entwicklungen zwischen den weit verbreiteten kostengünstigen Mikrocontroller-Modulen und der industriellen Computer- und Steuerungstechnik ihren Platz finden und zweitens ist es eine Herausforderung an sich, solche Module zu entwickeln und einzusetzen.
In den ersten sieben Kapiteln dieses Buches werden die technischen Grundlagen diskutiert und anhand eigener Entwicklungen veranschaulicht. Das achte Kapitel gibt einen Überblick über diesen Modulbaukasten.
Alle Fotos aus dem Buch können hier vierfarbig heruntergeladen werden.
PiKVM V3 ist ein auf Raspberry Pi-basiertes Open Source KVM over IP-Gerät. Es hilft Ihnen bei der Fernverwaltung von Servern oder Workstations, unabhängig vom Status des Betriebssystems oder davon, ob eines installiert ist.
Mit PiKVM V3 können Sie Ihren Computer ein-/ausschalten oder neu starten, das UEFI/BIOS konfigurieren und sogar das Betriebssystem mithilfe der virtuellen CD-ROM oder des Flash-Laufwerks neu installieren. Sie können Ihre Remote-Tastatur und -Maus verwenden oder PiKVM kann eine Tastatur, Maus und einen Monitor simulieren, die dann in einem Webbrowser angezeigt werden, als ob Sie direkt an einem Remote-System arbeiten würden.
Features
HDMI Full HD Aufnahme basierend auf dem TC358743-Chip (extra niedrige Latenz ~100 ms und viele Funktionen wie Kompressionskontrolle)
OTG Tastatur & Maus; Emulation von Massenspeicherlaufwerken
Fähigkeit zur Simulation von "Entfernen und Einstecken" für USB
Integrierte ATX-Stromsteuerung
Integrierte Lüftersteuerung
Echtzeituhr (RTC)
RJ-45 und serieller USB-Konsolenanschluss (zur Verwaltung des PiKVM OS oder zur Verbindung mit dem Server)
Optionales AVR-basiertes HID (für einige seltene und seltsame Motherboards, deren BIOS die OTG-emulierte Tastatur nicht versteht)
Optionaler OLED-Bildschirm zur Anzeige des Netzwerkstatus oder anderer gewünschter Informationen
Fertig aufgebautes Board, kein Löten oder Breadboarding erforderlich.
PiKVM OS – die Software ist vollständig quelloffen
Lieferumfang
PiKVM V3 HAT Karte für Raspberry Pi 4
USB-C Bridge Board, um den HAT mit dem RPi über USB-C zu verbinden
ATX-Controller-Adapterplatine und Verkabelung, um den HAT mit dem Motherboard zu verbinden (wenn Sie die Stromversorgung über die Hardware verwalten möchten)
2 flache CSI-Kabel
Schrauben und Messingabstandshalter
Erforderlich
Raspberry Pi 4
MicroSD-Karte
USB-C nach USB-A Kabel
HDMI-Kabel
Gerades Ethernet-Kabel (für den Anschluss der ATX-Erweiterungskarte)
Netzteil (5,1 V/3 A USB-C, offizielles Raspberry Pi-Netzteil wird empfohlen)
Downloads
User Guide
Images
GitHub
Links
Das PiKVM-Projekt und seine Lehren: Ein Interview mit Maxim Devaev (Entwickler von PiKVM)
Raspberry Pi als KVM-Fernsteuerung
Das ESP8266 ist ein beeindruckendes, kostengünstiges WiFi-Modul, das sich zum Hinzufügen von WiFi-Funktionalität zu einem bestehenden Mikrocontrollerprojekt über eine serielle UART-Verbindung eignet. Das Modul kann sogar so umprogrammiert werden, dass es als eigenständiges, WiFi-verbundenes Gerät fungiert – einfach mit Strom versorgen!
802.11 b/g/n-Protokoll
Wi-Fi Direct (P2P), Soft-AP
Integrierter TCP/IP-Protokollstapel
Dieses Modul ist ein in sich geschlossenes SOC (System On a Chip), das nicht unbedingt einen Mikrocontroller benötigt, um Ein- und Ausgänge zu manipulieren, wie Sie es normalerweise beispielsweise mit einem Arduino tun würden, da der ESP-01 als kleiner Computer fungiert. So können Sie einem Mikrocontroller Internetzugriff geben, wie es das Wi-Fi-Shield mit dem Arduino tut, oder Sie können den ESP8266 einfach so programmieren, dass er nicht nur Zugriff auf ein Wi-Fi-Netzwerk hat, sondern auch als Mikrocontroller fungiert, was den ESP8266 sehr vielseitig macht.
Lauftextanzeige mit acht 8 x 8 LED-Punktmatrixanzeigen (insgesamt 512 LEDs).
Basiert auf einem ESP-12F-WLAN-Modul (basierend auf ESP8266), das in der Arduino IDE programmiert wurde.
Der ESP8266-Webserver ermöglicht die Steuerung des angezeigten Textes, der Bildlaufverzögerung und der Helligkeit mit einem Mobiltelefon oder einem anderen über WLAN verbundenen (tragbaren) Gerät.
Merkmale
10 MHz Serielle Schnittstelle
Individuelle LED-Segmentsteuerung
Dekodierung/Nicht-Dekodierung der Ziffernauswahl
150 µA Abschaltung bei niedrigem Stromverbrauch (Daten bleiben erhalten) Digitale und analoge Helligkeitsregelung
Anzeige beim Einschalten dunkel
LED-Anzeige mit gemeinsamer Kathode für Antrieb
Segmenttreiber mit begrenzter Anstiegsrate für geringere elektromagnetische Störungen (MAX7221)
SPI, QSPI, MICROWIRE Serielle Schnittstelle (MAX7221)
24-polige DIP- und SO-Gehäuse
Dies ist eine weitere großartige serielle IIC/I²C/TWI/SPI-Schnittstelle. Da die Pin-Ressourcen des Controllers begrenzt sind, kann Ihr Projekt möglicherweise nicht die normale LCD-Abschirmung verwenden, nachdem es mit einer bestimmten Anzahl von Sensoren oder einer SD-Karte verbunden ist. Mit diesem I²C-Schnittstellenmodul können Sie jedoch die Datenanzeige über nur 2 Drähte realisieren. Wenn Sie bereits I²C-Geräte in Ihrem Projekt haben, kostet dieses LCD-Modul tatsächlich überhaupt keine Ressourcen mehr. Es ist fantastisch für basierte Projekte.
I²C-Adresse: 0X20~0X27 (die ursprüngliche Adresse ist 0X20, Sie können sie selbst ändern)
Die Hintergrundbeleuchtung und der Kontrast werden per Potentiometer eingestellt
Kommt mit 2 IIC-Schnittstellen, die über Dupont Line oder ein IIC-dediziertes Kabel verbunden werden können I²C-Adresse: 0x27 (I²C-Adresse: 0X20~0X27 (die ursprüngliche Adresse ist 0X27, Sie können sie selbst ändern)
Spezifikationen
Kompatibel für 1602 LCD
Versorgungsspannung: 5V
Gewicht: 5g
Größe: 5,5 x 2,3 x 1,4 cm
NRF24L01 ist ein universeller monolithischer ISM-Band-Transceiver-Chip, der im 2,4-2,5-GHz-Bereich arbeitet.
Features
Drahtloser Transceiver einschließlich: Frequenzgenerator, erweiterter Typ, SchockBurstTM, Modusregler, Leistungsverstärker, Kristallverstärker, Modulator, Demodulator
Die Auswahl des Ausgangsleistungskanals und die Protokolleinstellungen können über die SPI-Schnittstelle auf einen extrem niedrigen Stromverbrauch eingestellt werden
Im Sendemodus beträgt die Sendeleistung 6 dBm, der Strom 9,0 mA, der akzeptierte Modusstrom 12,3 mA, der Stromverbrauch im Abschaltmodus und im Standby-Modus ist geringer
Eingebaute 2,4-GHz-Antenne, unterstützt bis zu sechs Kanäle für den Datenempfang
Abmessungen: 15 x 29 mm (inkl. Antenne)
Funktionsweise, Aufbau und Handling eines Power Moduls
Das „Abc der Power Module“ beinhaltet im ersten Schritt die wesentlichen Grundlagen, die bei der Auswahl und dem Einsatz eines Power Moduls notwendig sind. Das Buch beschreibt technische Zusammenhänge und Kenngrößen betreffend der Power Module sowie Berechnungsgrundlagen und Messtechniken.
Inhalt
Grundlagen
Dieses Kapitel beschreibt die Notwendigkeit eines Gleichspannungswandlers und dessen grundlegende Funktionsweise. Darüber hinaus werden verschiedene Möglichkeiten zur Realisierung eines Spannungsreglers dargestellt sowie die wesentlichen Vorteile eines Power Moduls benannt.
Schaltungstopologien
Hier werden dem Leser die bei Power Modulen sehr häufig verwendeten Schaltungskonzepte, Abwärts- und Aufwärtstopologien, näher erläutert sowie über weitere Schaltungstopologien informiert.
Technik, Aufbau und Regelungstechnik
Vorgestellt wird der mechanische Aufbau eines Power Moduls, der einen wesentlichen Einfluss auf die EMV sowie das Wärmemanagement hat. Ferner sind diesem Kapitel Regelungs- und Schaltungstipps zu entnehmen.
Messverfahren
Aussagefähige Messergebnisse sind zur Beurteilung eines Power Moduls zwingend notwendig. In diesem Kapitel werden die entsprechenden Messpunkte und Messmethoden beschrieben.
Handhabung
Es werden die Punkte der Lagerung und den Umgang mit Power Modulen erläutert, ebenso wie deren Fertigungs- und Lötprozess.
Auswahl eines Power Moduls
Wichtige Parameter und Kriterien für die optimale Auswahl eines Power Moduls sind in dieser Rubrik nachzulesen.
,
von Burkhard Kainka
RTL-SDR Blog V4 - Besser als V3? (Review)
RTL-SDR-Blogsticks gibt es schon seit einiger Zeit. Hiermit können HF-Signale bis zu 1 GHz oder höher empfangen werden. Der RTL-SDR Blog V4 ist nun schon...