The CubeCell series is designed primarily for LoRa/LoRaWAN node applications.
Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels.
The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions.
Features
Arduino compatible
Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262
LoRaWAN 1.0.2 support
Ultra low power design, 21 uA in deep sleep
Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching)
Good impendence matching and long communication distance
Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel
Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures
Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing
Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information
Using Air530 GPS module with GPS/Beidou Dual-mode position system support
Specifications
Main Chip
ASR6502 (48 MHz ARM Cortex-M0+ MCU)
LoRa Chipset
SX1262
Frequency
863~870 MHz
Max. TX Power
22 ±1 dBm
Max. Receiving Sensitivity
−135 dBm
Hardware Resource
2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO
Memory
128 Kb FLASH16 Kb SRAM
Power consumption
Deep sleep 21 uA
Interfaces
1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header)
Battery
3.7 V lithium battery (power supply and charging)
Solar Energy
VS pin can be connected to 5.5~7 V solar panel
USB to Serial Chip
CP2102
Display
0.96" OLED (128 x 64)
Operating temperature
−20~70°C
Dimensions
55.9 x 27.9 x 9.5 mm
Included
1x CubeCell HTCC-AB02S Development Board
1x Antenna
1x 2x SH1.25 battery connector
Downloads
Datasheet
Schematic
GPS module (Manual)
Quick start
GitHub
Lo-Fi (ESP32 + LoRa-Kombination) ist die perfekte Lösung für alle, die eine drahtlose Kommunikation über große Entfernungen in einer Vielzahl von Anwendungen mit WiFi-Funktionen aufbauen möchten. LoRa bietet eine außergewöhnliche Reichweite und einfache Konnektivität und ermöglicht Ihnen die nahtlose Kommunikation mit Geräten in einer Entfernung von bis zu 5 m.
Geräte bieten neben dem WLAN-Zugang eine effiziente und vertrauenswürdige Wahl für die drahtlose Kommunikation über große Entfernungen, um Internet-Clouds zu verbinden, die sich am besten für Internet-of-Things-Anwendungen eignen und Konnektivität in abgelegenen und anspruchsvollen Umgebungen ermöglichen.
Funktionen
Gerät mit leistungsstarkem ESP32 S3 WROOM-1, das über einen Xtensa Dual-Core-32-Bit-LX7-Mikroprozessor mit bis zu 240 MHz verfügt
Integriertes WLAN & Bluetooth LE für drahtlose Konnektivität
Typ-C-Schnittstelle für Programmierung/Stromversorgung
1,14-Zoll-TFT-Display für visuelle Interaktionen
GPIO-Breakouts für den Anschluss zusätzlicher Peripheriegeräte
Breadboard-kompatibel für einfache DIY-Breadboarding-Projekte
2 separate, vom Benutzer programmierbare Tasten sowie Reset- und Boot-Tasten
3,7-V-Lithiumbatterieanschluss für einen tragbaren Anwendungsfall mit integrierter Ladeoption
Verwenden Sie das LoRa-Spreizspektrum der neuen Generation, um eine stabile Kommunikation sicherzustellen
Für LoRa höhere Geschwindigkeit und eine größere Datenübertragungsreichweite von bis zu 5 km
Anwendungen
Internet der Dinge (IoT)
Smart Home-Automatisierung
Landwirtschaftliche Automatisierung
Notfalldienste
Umweltüberwachung
Industrielle Automatisierung
Technische Daten
Mikrocontroller: ESP32 S3 WROOM-1
Drahtlose Schnittstelle: WiFi, BLE, LoRa
Protokoll: 802.11b/g/n, Bluetooth 5.0
Speichergröße: 16 MB Flash, 384 kB ROM, 8 MB SRAM
Versorgungsspannung: 5 V
Betriebsspannung: 3,3 V
Displaygröße: 1,14 Zoll
Anzeigetyp: TFT
Anzeigeauflösung: 135 x 240 Pixel
Anzeigetreiber: ST7789V
Anzeigedarstellung: RGB
Anzeigefarbe: 4k/65k/252k
Display-Leuchtdichte: 400 Cd/m²
Betriebstemperatur: -20 bis 70°C
Lagertemperatur: -30 bis 80°C
LoRa-Modulspezifikationen:
Trägerfrequenz (lizenzfreies ISM): 868 MHz
Chip: Basierend auf dem SX1262 RF-Chip
Reichweite: 5 km
Sendeleistung: 22 dBm
Empfangsempfindlichkeit: -147 dBm
Datenrate: Bis zu 62,5 kbps
Kommunikationsport: UART seriell
Downloads
Getting started guide
Hardware design files
Lieferumfang
1x Lo-Fi Board
1x Antenne (868 MHz)
Das LILYGO T-Display-S3 Long ist ein vielseitiges Entwicklungsboard mit dem ESP32-S3R8 Dual-Core-LX7-Mikroprozessor. Es verfügt über ein kapazitives 3,4" Touch-TFT-LCD mit einer Auflösung von 180 x 640 Pixeln und bietet eine reaktionsschnelle Schnittstelle für verschiedene Anwendungen.
Dieses Board ist ideal für Entwickler, die eine kompakte und dennoch leistungsstarke Lösung für Projekte suchen, die Touch-Eingabe und drahtlose Kommunikation erfordern. Die Kompatibilität mit gängigen Programmierumgebungen sorgt für ein reibungsloses Entwicklungserlebnis.
Technische Daten
MCU
ESP32-S3R8 Dual-Core LX7 Mikroprozessor
Drahtlose Konnektivität
Wi-Fi 802.11, BLE 5 + BT Mesh
Programmierplattform
Arduino IDE, VS-Code
Flash
16 MB
PSRAM
8 MB
Bat-Spannungserkennung
IO02
Onboard-Funktionen
Boot + Reset-Taste, Batterieschalter
Anzeige
3,4" kapazitives Touch-TFT-LCD
Farbtiefe
565, 666
Auflösung
180 x 640 (RGB)
Funktionierendes Netzteil
3,3 V
Schnittstelle
QSPI
Lieferumfang
1x T-Display S3 Long
1x Stromkabel
2x STEMMA QT/Qwiic-Schnittstellenkabel (P352)
1x Female Pin (zweireihig)
Downloads
GitHub
Challenger RP2040 LoRa ist ein Arduino/CircuitPython-kompatibles Mikrocontroller-Board im Adafruit Feather-Format, das auf dem Raspberry Pi Pico (RP2040)-Chip basiert.
Der Transceiver verfügt über ein LoRa-Langstreckenmodem, das Spread-Spectrum-Kommunikation über große Entfernungen und hohe Störfestigkeit bei minimalem Stromverbrauch ermöglicht.
LoRa
Das integrierte LoRa-Modul (RFM95W) kann mit einem kostengünstigen Kristall und einer kostengünstigen Stückliste eine Empfindlichkeit von über -148 dBm erreichen. Die hohe Empfindlichkeit in Kombination mit dem integrierten +20-dBm-Leistungsverstärker ergibt ein branchenführendes Link-Budget und ist somit optimal für jede Anwendung, die Reichweite oder Robustheit erfordert. LoRa bietet außerdem erhebliche Vorteile sowohl bei der Blockierung als auch bei der Selektivität gegenüber herkömmlichen Modulationstechniken und löst den traditionellen Design-Kompromiss zwischen Reichweite, Störfestigkeit und Energieverbrauch.
Der RFM95W ist über den SPI-Kanal 1 und einige GPIOs, die für die Signalisierung erforderlich sind, mit dem RP2040 verbunden. Ein U.FL-Anschluss dient zum Anschließen Ihrer LoRa-Antenne an die Platine.
Maximales Link-Budget von 168 dB
+20 dBm – 100 mW konstanter HF-Ausgang vs. V-Versorgung
+14 dBm Hochleistungs-PA
Programmierbare Bitrate bis zu 300 kbps
Hohe Empfindlichkeit: bis zu -148 dBm
Kugelsicheres Frontend: IIP3 = -12,5 dBm
Ausgezeichnete Blockierimmunität
Niedriger RX-Strom von 10,3 mA, 200 nA Registererhaltung
Vollständig integrierter Synthesizer mit einer Auflösung von 61 Hz
FSK-, GFSK-, MSK-, GMSK-, LoRaTM- und OOK-Modulation
Eingebauter Bitsynchronisator zur Taktwiederherstellung
Präambelerkennung
127 dB Dynamikbereich RSSI
Automatische HF-Erkennung und CAD mit ultraschnellem AFC
Paket-Engine bis zu 256 Bytes mit CRC
Technische Daten
Mikrocontroller
RP2040 von Raspberry Pi (133 MHz Dual-Core Cortex-M0)
SPI
Zwei SPI-Kanäle konfiguriert (zweiter SPI mit RFM95W verbunden)
I²C
Ein I²C-Kanal konfiguriert
UART
Ein UART-Kanal konfiguriert
Analogeingänge
4 analoge Eingangskanäle
Funkmodul
RFM95W von Hope RF
Flash-Speicher
8 MB, 133 MHz
SRAM-Speicher
264 KB (aufgeteilt in 6 Bänke)
USB 2.0-Controller
Bis zu 12 MBit/s volle Geschwindigkeit (integriertes USB 1.1 PHY)
JST-Batterieanschluss
2,0 mm Teilung
LiPo-Ladegerät an Bord
450 mA Standard-Ladestrom
Abmessungen
51 x 23 x 3,2 mm
Gewicht
9 g
Downloads
Datasheet
Design files
Dieses Entwicklungsboard (auch bekannt als "Cheap Yellow Display") wird vom ESP-WROOM-32 angetrieben, einem Dual-Core-MCU mit integrierten Wi-Fi- und Bluetooth-Funktionen. Es arbeitet mit einer Hauptfrequenz von bis zu 240 MHz, mit 520 KB SRAM, 448 KB ROM und einem 4 MB Flash-Speicher. Das Board verfügt über ein 2,8" Display mit einer Auflösung von 240x320 und Resistive Touch.
Darüber hinaus enthält die Platine einen Steuerkreis für die Hintergrundbeleuchtung, einen Schaltkreis für die Berührungssteuerung, einen Schaltkreis für die Lautsprecheransteuerung, einen lichtempfindlichen Schaltkreis und einen RGB-LED-Steuerschaltkreis. Es bietet außerdem einen TF-Kartensteckplatz, eine serielle Schnittstelle, eine DHT11-Schnittstelle für Temperatur- und Feuchtigkeitssensoren und zusätzliche E/A-Anschlüsse.
Das Modul unterstützt die Entwicklung in Arduino IDE, ESP-IDE, MicroPython und Mixly.
Anwendungen
Bildübertragung für Smart Home-Gerät
Drahtlose Überwachung
Intelligente Landwirtschaft
QR-Funkerkennung
Signal des drahtlosen Positionierungssystems
Und andere IoT-Anwendungen
Technische Daten
Mikrocontroller
ESP-WROOM-32 (Dual-Core-MCU mit integriertem WLAN und Bluetooth)
Frequenz
Bis zu 240 MHz (Rechenleistung bis zu 600 DMIPS)
SRAM
520 KB
ROM
448 KB
Flash
4 MB
Betriebsspannung
5 V
Stromverbrauch
ca. 115 mA
Display
2,8" TFT-Farbbildschirm (240 x 320)
Touch
Resistive Touch
Treiberchip
ILI9341
Abmessungen
50 x 86 mm
Gewicht
50 g
Lieferumfang
1x ESP32 Dev-Board mit 2,8" Display und Acrylgehäuse
1x Touch-Stift
1x Verbindungskabel
1x USB-Kabel
Downloads
GitHub
Das HT-M00 ist ein Dual-Channel-Gateway, das speziell für LoRa-Anwendungen der Smart-Familie entwickelt wurde, die mit weniger als 30 LoRa-Knoten arbeiten. Das Gateway basiert auf zwei SX1276-Chips, die von ESP32 gesteuert werden. Um die Überwachung des 125-kHz-Spreizfaktors SF7~SF12 zu ermöglichen, wurde ein Software-Mixer entwickelt, der allgemein als Basisband-Simulationsprogramm bezeichnet wird.
Der Software-Mixer ist eine entscheidende Komponente, die es dem HT-M00-Gateway ermöglicht, mit hoher Effizienz zu arbeiten. Es dient zur Simulation von Basisbandsignalen, die dann mit den Hochfrequenzsignalen gemischt werden, um die gewünschte Ausgabe zu erzeugen. Der Software-Mixer wurde mit großer Sorgfalt und Präzision entwickelt und strengen Tests unterzogen, um sicherzustellen, dass er genaue und zuverlässige Ergebnisse liefert.
Features
ESP32 + SX1276
Emuliert LoRa-Demodulatoren
Automatischer adaptiver Spread-Spectrum-Faktor, SF7 bis SF12 für jeden Kanal ist optional
Maximale Leistung: 18 ±1dBm
Kommunikationsschnittstelle: USB-C
Unterstützung für das LoRaWAN Class A-, Class C-Protokoll
Technische Daten
MCU
ESP32-D0WDQ6
LoRa-Chipsatz
SX1276
LoRa-Band
863~870 MHz
Versorgungsspannung
5 V
Empfangsempfindlichkeit
-110 dBm bei 300 bps
Schnittstelle
USB-C
Max. Sendeleistung
17dB ±1dB
Betriebstemperatur
−20~70°C
Abmessungen
30 x 76 x 14 mm
Lieferumfang
1x HT-M00 2-Kanal LoRa Gateway
1x Wandhalterung
1x USB-C Kabel
Downloads
Manual
Software
Documentation
PÚCA DSP ist ein Arduino-kompatibles Open-Source-ESP32-Entwicklungsboard für Audio- und digitale Signalverarbeitungsanwendungen (DSP) mit umfangreichen Audioverarbeitungsfunktionen. Es bietet Audioeingänge, -ausgänge, ein rauscharmes Mikrofonarray, eine integrierte Testlautsprecheroption, zusätzlichen Speicher, Batterielademanagement und ESD-Schutz – alles auf einer kleinen, Breadboard-freundlichen Platine.
Synthesizer, Installationen, Voice UI und mehr
PÚCA DSP kann für eine breite Palette von DSP-Anwendungen eingesetzt werden, unter anderem in den Bereichen Musik, Kunst, Kreativtechnik und adaptive Technologie. Beispiele aus dem Musikbereich sind digitale Musiksynthese, mobile Aufnahmen, Bluetooth-Lautsprecher, drahtlose Richtmikrofone und die Entwicklung intelligenter Musikinstrumente. Beispiele aus dem Bereich Kunst sind akustische Sensornetzwerke, Klangkunstinstallationen und Internet-Radioanwendungen. Beispiele aus dem Bereich der kreativen und adaptiven Technologie sind das Design von Sprachbenutzerschnittstellen (VUI) und Web-Audio für das Internet der Klänge.
Kompaktes, integriertes Design
PÚCA DSP wurde für den mobilen Einsatz konzipiert. In Verbindung mit einem externen 3,7-V-Akku kann er fast überall eingesetzt oder in nahezu jedes Gerät, Instrument oder jede Installation integriert werden. Sein Design entstand aus monatelangen Experimenten mit verschiedenen ESP32-Entwicklungsboards, DAC-Breakout-Boards, ADC-Breakout-Boards, Mikrofon-Breakout-Boards und Audio-Anschluss-Breakout-Boards, und – trotz seiner geringen Größe – schafft er es, all diese Funktionen in einem einzigen Board zu vereinen. Und das ohne Kompromisse bei der Signalqualität.
Technische Daten
Prozessor und Speicher
Espressif ESP32 Pico D4 Prozessor
32-bit Dual-Core 80 MHz/160 MHz/240 MHz
4 MB SPI Flash mit 8 MB zusätzlichem PSRAM (Original Edition)
Drahtloses 2,4-GHz-WLAN 802.11b/g/n
Bluetooth BLE 4.2
3D-Antenne
Audio
Wolfson WM8978 Stereo-Audio-Codec
Audio-Line-In am 3,5-mm-Stereoanschluss
Audio-Kopfhörer-/Line-Ausgang am 3,5-mm-Stereoanschluss
Stereo-Aux-Line-In, Audio-Mono-Out zum GPIO-Header geleitet
2x Knowles SPM0687LR5H-1 MEMS-Mikrofone
ESD-Schutz an allen Audioeingängen und -ausgängen
Unterstützung für Abtastraten von 8, 11,025, 12, 16, 22,05, 24, 32, 44,1 und 48 kHz
1-W-Lautsprechertreiber, auf GPIO-Header geroutet
DAC SNR 98 dB, THD -84 dB ('A'-gewichtet bei 48 kHz)
ADC SNR 95 dB, THD -84 dB (‘A’-gewichtet bei 48 kHz)
Line-Eingangsimpedanz: 1 MOhm
Line-Ausgangsimpedanz: 33 Ohm
Formfaktor und Konnektivität
Breadboard-freundlich
70 x 24 mm
11x GPIO-Pins mit 2,54 mm Rastermaß, mit Zugriff auf beide ESP32-ADC-Kanäle, JTAG und kapazitive Touch-Pins
USB 2.0 über USB-Typ-C-Anschluss
Stromversorgung
3,7/4,2 V Lithium-Polymer-Akku, USB oder externe 5 V DC-Stromquelle
ESP32 und Audio-Codec können softwaregesteuert in Energiesparmodi versetzt werden
Erkennung des Batteriespannungspegels
ESD-Schutz am USB-Datenbus
Downloads
GitHub
Datasheet
Links
Crowd Supply Campaign (includes FAQs)
Hardware Overview
Programming the Board
The Audio Codec
ESP32-S2-Saola-1R ist ein kleines ESP32-S2-basiertes Entwicklungsboard. Die meisten I/O-Pins sind zur einfachen Anbindung auf beiden Seiten bis zu den Stiftleisten herausgebrochen. Entwickler können Peripheriegeräte entweder mit Überbrückungskabeln verbinden oder ESP32-S2-Saola-1R auf einem Steckbrett montieren.
ESP32-S2-Saola-1R ist mit dem ESP32-S2-WROVER-Modul ausgestattet, einem leistungsstarken, generischen Wi-Fi-MCU-Modul, das über eine umfangreiche Auswahl an Peripheriegeräten verfügt. Es ist eine ideale Wahl für vielfältige Anwendungsszenarien rund um das Internet der Dinge (IoT), tragbare Elektronik und Smart Home. Die Platine verfügt über eine PCB-Antenne und verfügt über einen 4 MB externen SPI-Flash und einen zusätzlichen 2 MB pseudostatischen SPI-RAM (PSRAM).
Merkmale
MCU
ESP32-S2 eingebetteter Xtensa®-Single-Core-32-Bit-LX7-Mikroprozessor, bis zu 240 MHz
128 KB ROM
320 KB SRAM
16 KB SRAM im RTC
W-lan
802.11 b/g/n
Bitrate: 802.11n bis zu 150 Mbit/s
A-MPDU- und A-MSDU-Aggregation
Unterstützung für 0,4 µs Schutzintervall
Mittenfrequenzbereich des Betriebskanals: 2412 ~ 2484 MHz
Hardware
Schnittstellen: GPIO, SPI, LCD, UART, I²C, I²S, Kameraschnittstelle, IR, Impulszähler, LED-PWM, TWAI (kompatibel mit ISO 11898-1), USB OTG 1.1, ADC, DAC, Berührungssensor, Temperatursensor
40-MHz-Quarzoszillator
4 MB SPI-Flash
Betriebsspannung/Stromversorgung: 3,0 ~ 3,6 V
Betriebstemperaturbereich: –40 ~ 85 °C
Abmessungen: 18 × 31 × 3,3 mm
Anwendungen
Allgemeiner IoT-Sensor-Hub mit geringem Stromverbrauch
Generische IoT-Datenlogger mit geringem Stromverbrauch
Kameras für Video-Streaming
Over-the-Top-Geräte (OTT).
USB-Geräte
Spracherkennung
Bilderkennung
Mesh-Netzwerk
Heimautomatisierung
Smart-Home-Systemsteuerung
Intelligentes Gebäude
Industrielle Automatisierung
Intelligente Landwirtschaft
Audioanwendungen
Anwendungen im Gesundheitswesen
Wi-Fi-fähiges Spielzeug
Tragbare Elektronik
Einzelhandels- und Gastronomieanwendungen
Intelligente POS-Geräte
Über 40 vollständig getestete ESP32-Projekte mit Arduino IDE und der LVGL-Grafikbibliothek
Dieses Bundle enthält das ESP32 Cheap Yellow Display (CYD) – ein kompaktes Entwicklungsboard, das einen Standard-ESP32-Mikrocontroller mit einem 320 x 240 Pixel großen TFT-Farbdisplay kombiniert. Das Board verfügt außerdem über mehrere Anschlüsse für GPIO, serielle Kommunikation (TX/RX), Strom und Masse. Das integrierte Display ist ein großer Vorteil und ermöglicht die Erstellung komplexer, grafikbasierter Projekte ohne externe LCDs oder Displays.
Das Begleitbuch stellt die Hardware und die integrierten Anschlüsse des CYD-Boards detailliert vor. Es bietet eine Reihe von Projekten für Anfänger und Fortgeschrittene, die mit der beliebten Arduino IDE 2.0 entwickelt wurden. Sowohl grundlegende Grafikfunktionen als auch die leistungsstarke LVGL-Grafikbibliothek werden behandelt, und praktische Projekte veranschaulichen jeden Ansatz.
Alle enthaltenen Projekte wurden vollständig getestet und sind sofort einsatzbereit. Das Buch enthält Blockdiagramme, Schaltpläne, vollständige Codelisten und Schritt-für-Schritt-Erklärungen. Mit der LVGL-Bibliothek können Leser moderne, vollfarbige grafische Benutzeroberflächen mit Widgets wie Schaltflächen, Beschriftungen, Schiebereglern, Kalendern, Tastaturen, Diagrammen, Tabellen, Menüs, Animationen und mehr erstellen.
ESP32 Cheap Yellow Display Board
Dieses Entwicklungsboard (auch bekannt als "Cheap Yellow Display") wird vom ESP-WROOM-32 angetrieben, einem Dual-Core-MCU mit integrierten Wi-Fi- und Bluetooth-Funktionen. Es arbeitet mit einer Hauptfrequenz von bis zu 240 MHz, mit 520 KB SRAM, 448 KB ROM und einem 4 MB Flash-Speicher. Das Board verfügt über ein 2,8" Display mit einer Auflösung von 240x320 und Resistive Touch.
Darüber hinaus enthält die Platine einen Steuerkreis für die Hintergrundbeleuchtung, einen Schaltkreis für die Berührungssteuerung, einen Schaltkreis für die Lautsprecheransteuerung, einen lichtempfindlichen Schaltkreis und einen RGB-LED-Steuerschaltkreis. Es bietet außerdem einen TF-Kartensteckplatz, eine serielle Schnittstelle, eine DHT11-Schnittstelle für Temperatur- und Feuchtigkeitssensoren und zusätzliche E/A-Anschlüsse.
Das Modul unterstützt die Entwicklung in Arduino IDE, ESP-IDE, MicroPython und Mixly.
Anwendungen
Bildübertragung für Smart Home-Gerät
Drahtlose Überwachung
Intelligente Landwirtschaft
QR-Funkerkennung
Signal des drahtlosen Positionierungssystems
Und andere IoT-Anwendungen
Technische Daten
Mikrocontroller
ESP-WROOM-32 (Dual-Core-MCU mit integriertem WLAN und Bluetooth)
Frequenz
Bis zu 240 MHz (Rechenleistung bis zu 600 DMIPS)
SRAM
520 KB
ROM
448 KB
Flash
4 MB
Betriebsspannung
5 V
Stromverbrauch
ca. 115 mA
Display
2,8" TFT-Farbbildschirm (240 x 320)
Touch
Resistive Touch
Treiberchip
ILI9341
Abmessungen
50 x 86 mm
Gewicht
50 g
Downloads
GitHub
Inhalt des Bundles
The ESP32 Cheap Yellow Display Book (Einzelpreis: 35 €)
ESP32 Cheap Yellow Display Board (Einzelpreis: 25 €)
1x ESP32 Dev-Board mit 2,8" Display und Acrylgehäuse
1x Touch-Stift
1x Verbindungskabel
1x USB-Kabel
Dieses DIY-Farbdisplay-Kit ist ein unterhaltsames und lehrreiches Projekt für Maker jeden Alters. Es ist eine großartige Möglichkeit, etwas über Elektronik und Programmierung zu lernen und Ihre Lötfähigkeiten zu verbessern.
Mikrocontroller
Da dieses Kit mit dem ePulse Feather ESP32-Entwicklungsboard geliefert wird, übernimmt das Kit alle großartigen Funktionen dieses Entwicklungskits.
Display
Das große 3,5"-Farbdisplay mit 320 x 480 Pixeln verfügt außerdem über eine hochpräzise kapazitive Touch-Oberfläche. Im Gegensatz zu resistiven Touch-Oberflächen, die oft am besten funktionieren, wenn ein Stift verwendet wird, bietet dieses automatisch kalibrierte Modul ein Smartphone-ähnliches Benutzererlebnis.
Anschlussplatine
Die Anschlüsse für das Display sind bereits auf der Anschlussplatine vormontiert, da diese eine geübtere Hand am Lötkolben erfordern. Daher bietet es für den unerfahrenen Löter das Beste aus beiden Welten. Sie können sich auch dafür entscheiden, den Ein-Aus-Schalter oder den Grove-Anschluss nicht hinzuzufügen; beides ist optional.
Die Anschlussplatine bietet Erweiterbarkeit auf zwei Arten: über die herausgebrochenen Pins des Mikrocontrollers und über den Anschluss für das Grove-System.
Technische Daten
Mikrocontroller
ESP32
Modul
ePulse Feather
Anzeigeauflösung
320 x 480
Displaytreiber
ILI9488
Touch-Display
Kapazitiv
Lieferumfang
1x ePulse Feather, ESP32-Entwicklungsboard mit geringem Stromverbrauch
1x 3,5" 320x480 Farbdisplay (ILI9488, TFT) mit kapazitiver Touch-Schnittstelle (FT6236) Color Kit Grande Connector Board
1x benutzerdefinierte Anschlussplatine zum Verbinden des ESP32 und der Display-Header-Pins
1x Satz spezieller Stiftleisten (zum Anlöten an den Steckverbinder PCB Color Kit Power Switch)
1x Ein-Aus-Schalter (kann optional an den SMD-Grove-Stecker der Leiterplatte gelötet werden)
1x Grove-Anschluss (kann optional an den Anschluss PCB Color Kit Grande Foam Stickers gelötet werden)
4x Doppelseitiger Schaumstoffkleber zur Befestigung des Displays auf der Leiterplatte
Downloads
Schematics
Documentation
Projects Using Arduino IDE and the LVGL Graphics Library
The ESP32 is probably one of the most popular microcontrollers used by many people, including students, hobbyists, and professional engineers. Its low cost, coupled with rich features makes it a popular device to use in many projects. Recently, a board called the ESP32 Cheap Yellow Display (CYD for short) is available from its manufacturers. The board includes a standard ESP32 microcontroller together with a 320x240 pixel TFT display. Additionally, the board provides several connectors for interfaces such as GPIO, serial port (TX/RX), power and Ground. The inclusion of a TFT display is a real advantage as it enables users to design complex graphics-based projects without resorting to an external LCD or graphics displays.
The book describes the basic hardware of the ESP32 CYD board and provides details of its on-board connectors. Many basic, simple, and intermediate-level projects are given in the book based on the ESP32 CYD, using the highly popular Arduino IDE 2.0 integrated development environment. The use of both the basic graphics functions and the use of the popular LVGL graphics library are discussed in the book and projects are given that use both types of approaches.
All the projects given in the book have been tested and are working. The block diagram, circuit diagram, and the complete program listings and program descriptions of all the projects are given with explanations. Readers can use the LVGL graphics library to design highly popular eye-catching full-color graphics projects using widgets such as buttons, labels, calendars, keypads, keyboards, message boxes, spinboxes, sliders, charts, tables, menus, bars, switches, drop-down lists, animations, and many more widgets.
Projects Using Arduino IDE and the LVGL Graphics Library
The ESP32 is probably one of the most popular microcontrollers used by many people, including students, hobbyists, and professional engineers. Its low cost, coupled with rich features makes it a popular device to use in many projects. Recently, a board called the ESP32 Cheap Yellow Display (CYD for short) is available from its manufacturers. The board includes a standard ESP32 microcontroller together with a 320x240 pixel TFT display. Additionally, the board provides several connectors for interfaces such as GPIO, serial port (TX/RX), power and Ground. The inclusion of a TFT display is a real advantage as it enables users to design complex graphics-based projects without resorting to an external LCD or graphics displays.
The book describes the basic hardware of the ESP32 CYD board and provides details of its on-board connectors. Many basic, simple, and intermediate-level projects are given in the book based on the ESP32 CYD, using the highly popular Arduino IDE 2.0 integrated development environment. The use of both the basic graphics functions and the use of the popular LVGL graphics library are discussed in the book and projects are given that use both types of approaches.
All the projects given in the book have been tested and are working. The block diagram, circuit diagram, and the complete program listings and program descriptions of all the projects are given with explanations. Readers can use the LVGL graphics library to design highly popular eye-catching full-color graphics projects using widgets such as buttons, labels, calendars, keypads, keyboards, message boxes, spinboxes, sliders, charts, tables, menus, bars, switches, drop-down lists, animations, and many more widgets.