Der Raspberry Pi Pico 2 W ist ein Mikrocontroller-Board auf Basis des RP2350 mit 2,4 GHz 802.11n Wireless LAN und Bluetooth 5.2. Es gibt Ihnen noch mehr Flexibilität bei Ihren IoT- oder Smart-Produktdesigns und erweitert die Möglichkeiten für Ihre Projekte.
Der RP2350 bietet eine umfassende Sicherheitsarchitektur rund um Arm TrustZone für Cortex-M. Es umfasst signiertes Booten, 8 KB Antifuse-OTP für die Schlüsselspeicherung, SHA-256-Beschleunigung, einen Hardware-TRNG und schnelle Glitch-Detektoren.
Die einzigartige Dual-Core- und Dual-Architektur-Fähigkeit des RP2350 ermöglicht Benutzern die Wahl zwischen einem Paar ARM Cortex-M33-Kernen nach Industriestandard und einem Paar Hazard3 RISC-V-Kernen mit offener Hardware. Der Raspberry Pi Pico 2 W ist in C/C++ und Python programmierbar und wird durch eine ausführliche Dokumentation unterstützt. Er ist das ideale Mikrocontroller-Board sowohl für Enthusiasten als auch für professionelle Entwickler.
Technische Daten
CPU
Dual Arm Cortex-M33 oder Dual RISC-V Hazard3 Prozessoren bei 150 MHz
Wireless
On-Board Infineon CYW43439 Single-Band 2,4 GHz 802.11n Wireless Lan und Bluetooth 5.2
Speicher
520 KB On-Chip-SRAM; 4 MB integrierter QSPI-Flash
Schnittstellen
26 Mehrzweck-GPIO-Pins, darunter 4, die für AD verwendet werden können
Peripherie
2x UART
2x SPI-Controller
2x I²C-Controller
24x PWM-Kanäle
1x USB 1.1-Controller und PHY, mit Host- und Geräteunterstützung
12x PIO-Zustandsmaschinen
Eingangsspannung
1,8-5,5 V DC
Abmessungen
21 x 51 mm
Downloads
Datasheet
Pinout
Schematic
Inhalt
Projekte
Pico-VoiceSprachverfremdung und Soundeffekte mit dem Raspberry Pi Pico
Navi mit Vibrations-Feedback
POV-Anzeige
Impulsbreitenmodulation (PWM) mit dem Raspberry Pi Pico
Verwendung von Wi-Fi mit dem Raspberry Pi Pico
„Hello World“ vom Raspberry Pi Pico und RP2040Ein Blick auf den ersten Mikrocontroller der Raspberry Pi Foundation
Einfacher Ein-Aus-Temperaturregler mit Raspberry-Pi-HAT
Multitasking mit dem Raspberry PiBeispiel: Ampelsteuerung
Das Raspberry-Pi-LinealSpaß mit einem Laufzeitsensor
Puffer-Board für Raspberry Pi (Mk. 1)Nie wieder defekte I/O-Ports
FM-Radio mit RDSEin HAT für den Raspberry Pi
LoRa mit dem Raspberry Pi PicoViel Spaß mit MicroPython!
Tutorials
Qt für Raspberry Pi
Raspberry Pi Pico Programmierungmit MicroPython und Thonny
Raspberry Pi Full StackRPi und RF24 als Herzstück eines Sensornetzwerks
Raspberry Pi – Bash-Befehle in der Übersicht
Community
Java auf dem Raspberry PiEin Interview mit Buch-Autor Frank Delporte
Reviews
Buchvorstellung: Raspberry Pi for Radio Amateurs
Secure-Boot-Lösung für Raspberry PiViel Sicherheit zum vernünftigen Preis
Review: SmartPi – Smartmeter-Erweiterung für Raspberry Pi
Review: RPi-HAT Enviro+Umweltdaten messen mit Raspberry Pi und der HAT Enviro+
Review: Raspberry Pi 4Alles neu und doch gut?
Schnelles 3,5“-Touch-Display für RPiMehr Leistung ohne Aufpreis
Pfiffige Projekte zum Messen, Steuern und Regeln
Der Raspberry Pi dominiert seit vielen Jahren die Maker-Szene. Frei verfügbare I/O-Pins erfordern ihn aller Zeiten zu einem der beliebtesten Prozessorboards. Allerdings verfügt der klassische Raspberry Pi über keinerlei Analogeingänge. Eine direkte Messung analoger Werte ist damit nicht möglich. So können weder Photodioden noch NTCs oder Hallsensoren etc. unmittelbar ausgelesen werden. Zudem sind die Pins direkt, d. H. ohne Treiber oder Schutzschaltung, mit den freiliegenden Kontakten verbunden. Dadurch kann der zentrale Controller und damit der gesamte Raspberry Pi schnell zerstört werden.
Mit dem Pico können diese Probleme elegant gelöst werden. Er kann als sogenanntes „Frontend“ problemlos verschiedene Messaufgaben übernehmen. Zudem ist der Pico deutlich preisgünstiger als ein klassischer Raspberry Pi 4. Falls eine Fehlbeschaltung zur Zerstörung des Pico führt, ist dies vor allem für nicht-professionelle Anwender relativ leicht zu verkraften. Der klassische Raspberry Pi und der Pico werden so zum idealen Duo.
Das Buch führt entsprechend in das weite und hochaktuelle Gebiet der modernen Controllertechnik anhand der beiden Boards „Raspberry Pi 4“ und „Raspberry Pi Pico“ ein. Neben einer tiefergehenden Einführung in die Arbeits- und Funktionsweise des Controllerboards selbst wird insbesondere auch auf die Messwerterfassung und -verarbeitung mit digitalen Prozessoren eingegangen. Insbesondere die Kombination beider Systeme bietet vielfältige und hochinteressante Möglichkeiten.
Praktische Projekte aus dem Inhalt:
USB-Verbindung zwischen Raspberry Pi 4 und Pico
I²C-Kommunikation und Pico als I²C-Device
Voltmeter und Computerthermometer
Pico W als Web-Server und WLAN-Scanner
Frequenzmesser und -generatoren
OLED-Displays an Pico und Raspberry Pi 4
Energiesparmonitor
Welche Astronauten sind im Orbit?
Mini-Monitor für den aktuellen Bitcoin-Kurs
Program, build, and master 60+ projects with the Wireless RP2040
The Raspberry Pi Pico and Pico W are based on the fast, efficient, and low-cost dual-core ARM Cortex M0+ RP2040 microcontroller chip running at up to 133 MHz and sporting 264 KB of SRAM and 2 MB of Flash memory. Besides spacious memory, the Pico and Pico W offer many GPIO pins, and popular peripheral interface modules like ADC, SPI, I²C, UART, PWM, timing modules, a hardware debug interface, and an internal temperature sensor.
The Raspberry Pi Pico W additionally includes an on-board Infineon CYW43439 Bluetooth and Wi-Fi chipset. At the time of writing this book, the Bluetooth firmware was not yet available. Wi-Fi is however fully supported at 2.4 GHz using the 802.11b/g/n protocols.
This book is an introduction to using the Raspberry Pi Pico W in conjunction with the MicroPython programming language. The Thonny development environment (IDE) is used in all of the 60+ working and tested projects covering the following topics:
Installing the MicroPython on Raspberry Pi Pico using a Raspberry Pi or a PC
Timer interrupts and external interrupts
Analogue-to-digital converter (ADC) projects
Using the internal temperature sensor and external sensor chips
Using the internal temperature sensor and external temperature sensor chips
Datalogging projects
PWM, UART, I²C, and SPI projects
Using Bluetooth, WiFi, and apps to communicate with smartphones
Digital-to-analogue converter (DAC) projects
All projects are tried & tested. They can be implemented on both the Raspberry Pi Pico and Raspberry Pi Pico W, although the Wi-Fi-based subjects will run on the Pico W only. Basic programming and electronics experience are required to follow the projects. Brief descriptions, block diagrams, detailed circuit diagrams, and full MicroPython program listings are given for all projects.
From basics to flows for sensors, automation, motors, MQTT, and cloud services
This book is a learning guide and a reference. Use it to learn Node-RED, Raspberry Pi Pico W, and MicroPython, and add these state-of-the-art tools to your technology toolkit. It will introduce you to virtual machines, Docker, and MySQL in support of IoT projects based on Node-RED and the Raspberry Pi Pico W.
This book combines several elements into a platform that powers the development of modern Internet of Things applications. These elements are a flow-based server, a WiFi-enabled microcontroller, a high-level programming language, and a deployment technology. Combining these elements gives you the tools you need to create automation systems at any scale. From home automation to industrial automation, this book will help you get started.
Node-RED is an open-source flow-based development tool that makes it easy to wire together devices, APIs, and online services. Drag and drop nodes to create a flowchart that turns on your lights at sunset or sends you an email when a sensor detects movement. Raspberry Pi Pico W is a version of the Raspberry Pi Pico with added 802.11n Wi-Fi capability. It is an ideal device for physical computing tasks and an excellent match to the Node-RED.
Quick book facts
Project-based learning approach.
Assumes no prior knowledge of flow-based programming tools.
Learn to use essential infrastructure tools in your projects, such as virtual machines, Docker, MySQL and useful web APIs such as Google Sheets and OpenWeatherMap.
Dozens of mini-projects supported by photographs, wiring schematics, and source code. Get these from the book GitHub repository.
Step-by-step instructions on everything.
All experiments are based on the Raspberry Pi Pico W. A Wi-Fi network is required for all projects.
Hardware (including the Raspberry Pi Pico W) is available as a kit.
Downloads
GitHub
Der DiP-Pi PIoT ist ein fortschrittliches WiFi-Konnektivitätssystem mit integrierten Sensoren, das die meisten möglichen Anforderungen für IoT-Anwendungen auf Basis des Raspberry Pi Pico abdeckt. Es kann das System zusätzlich zum Original-Micro-USB des Raspberry Pi Pico mit bis zu 1,5 A bei 4,8 V versorgen, geliefert von 6–18 VDC für verschiedene Stromversorgungssysteme wie Autos, Industrieanlagen usw. Es unterstützt LiPo- oder Li-Ion-Akkus mit automatischem Ladegerät sowie die automatische Umschaltung von Kabelstrom auf Batteriestrom oder umgekehrt (USV-Funktionalität), wenn die Kabelstromversorgung unterbrochen wird. Die Extended Powering Source (EPR) ist mit einer rücksetzbaren PPTC-Sicherung, umgekehrter Polarität und auch ESD geschützt. Der DiP-Pi PIoT verfügt über eine in den Raspberry Pi Pico integrierte RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf alle Stromquellen (USB, EPR oder Batterie) wirkt. Der Benutzer kann (über die A/D-Pins des Raspberry Pi Pico) den Batteriestand und den EPR-Wert mit den A/D-Wandlern von PICO überwachen. Beide A/D-Eingänge sind mit 0402-Widerständen (0 Ohm) überbrückt. Wenn der Benutzer diese Pico-Pins aus irgendeinem Grund für seine eigene Anwendung verwenden muss, kann er daher problemlos entfernt werden. Das Ladegerät lädt den angeschlossenen Akku automatisch auf (sofern verwendet), aber der Benutzer kann das Ladegerät zusätzlich ein-/ausschalten, wenn seine Anwendung dies benötigt.
DiP-Pi PIoT kann für kabelbetriebene IoT-Systeme, aber auch für rein batteriebetriebene Systeme mit EIN/AUS verwendet werden. Der Status jeder Stromquelle wird durch separate Informations-LEDs angezeigt (VBUS, VSYS, VEPR, CHGR, V3V3). Der Benutzer kann jede Kapazität vom Typ LiPo oder Li-Ion verwenden; Es muss jedoch darauf geachtet werden, PCB-geschützte Batterien mit einem maximal zulässigen Entladestrom von 2 A zu verwenden. Das integrierte Batterieladegerät ist so eingestellt, dass es die Batterie mit einem Strom von 240 mA lädt. Dieser Strom wird durch einen Widerstand eingestellt. Wenn der Benutzer also mehr oder weniger benötigt, kann er ihn selbst ändern. Der DiP-Pi PIoT ist außerdem mit einem WiFi ESP8266 Clone-Modul mit integrierter Antenne ausgestattet. Diese Funktion eröffnet eine Vielzahl darauf basierender IoT-Anwendungen.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi PIoT mit eingebetteten 1-Draht-DHT11/22-Sensoren und Micro-SD-Kartenschnittstellen ausgestattet. Durch die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen eignet sich der DiP-Pi PIoT ideal für IoT-Anwendungen wie Datenlogger, Pflanzenüberwachung, Kühlschränke usw.
DiP-Pi PIoT wird durch zahlreiche gebrauchsfertige Beispiele unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Raspberry Pi Pico-Pinbelegung kompatibel
Unabhängige informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter, der auf alle Stromquellen wirkt (USB, EPR, Batterie)
Externe Stromversorgung 6–18 VDC (Autos, Industrieanwendungen usw.)
Überwachung des externen Strompegels (6-18 VDC).
Überwachung des Batteriestands
Verpolungsschutz
PPTC-Sicherungsschutz
ESD-Schutz
Automatisches Batterieladegerät (für PCB-geschütztes LiPo, Li-Ion – 2 A max.) Automatisch/Benutzersteuerung
Automatische Umschaltung von Kabelbetrieb auf Batteriebetrieb und umgekehrt (USV-Funktionalität)
Mit der USB-Stromversorgung, der externen Stromversorgung und der Batterieversorgung können verschiedene Stromversorgungsschemata gleichzeitig verwendet werden
1,5 A bei 4,8 V Abwärtswandler auf EPR
Eingebetteter 3,3 V @ 600 mA LDO
ESP8266 WLAN-Konnektivität klonen
ESP8266 Firmware-Upload-Schalter
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Externe Stromversorgung 6–18 V (über spezielle Buchse – 3,4/1,3 mm)
Externe Batterie
Unterstützte Batterietypen
LiPo mit Schutzplatine, max. Strom 2A
Li-Ion mit Schutzplatine, max. Strom 2A
Eingebettete Peripheriegeräte und Schnittstellen
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Micro-SD-Kartensteckplatz
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexi-Cut-Gehäuse
Systemüberwachung
Batteriestand über Raspberry Pi Pico ADC0 (GP26)
EPR-Level über Raspberry Pi Pico ADC1 (GP27)
Informative LEDs
VB (VUSB)
USA (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
Systemschutz
Sofortiger Raspberry Pi Pico-Hardware-Reset-Knopf
ESD-Schutz auf EPR
Verpolungsschutz bei EPR
PPTC 500 mA @ 18 V-Sicherung am EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO Über den aktuellen Schutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2-Unzen-Kupfer-Leiterplatte, hergestellt für eine ordnungsgemäße Hochstromversorgung und Kühlung
6-mil-Spur-/6-mil-Lücken-Technologie, 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersionsgold
Mehrschichtige Kupfer-Thermorohre für eine erhöhte thermische Reaktion des Systems und eine bessere passive Kühlung
Downloads
Datenblatt
Handbuch
Mehr als 50 Grundlagenprojekte mit MicroPython und dem RP2040-Mikrocontroller
Der Raspberry Pi Pico ist eine leistungsstarke Mikrocontroller-Platine, die speziell für das Physical Computing – also hardwarenahe Anwendungen – entwickelt wurde. Der Raspberry Pi Pico kann so programmiert werden, dass er eine einzelne Aufgabe sehr effizient ausführt und ermöglicht so schnelle Steuerungs- und Überwachungsanwendungen in Echtzeit. Der 'Pico', wie wir ihn nennen, basiert auf dem schnellen, effizienten und kostengünstigen Dual-Core ARM Cortex-M0+ RP2040 Mikrocontroller-Chip, der mit bis zu 133 MHz läuft und über 264 KB SRAM und 2 MB Flash-Speicher verfügt. Neben dem großen Speicher hat der Pico noch weitere attraktive Eigenschaften, darunter eine große Anzahl von GPIO-Pins sowie gängige Schnittstellen wie ADC, SPI, I²C, UART und PWM. Als Krönung bietet der Chip schnelle und genaue Timer, eine Hardware-Debug-Schnittstelle und einen internen Temperatursensor.
Zur Programmierung lassen sich leicht die gängigen Hochsprachen wie MicroPython oder C/C++ verwenden. Dieses Buch ist eine Einführung in die Verwendung des Pico mit der Programmiersprache MicroPython. In allen Projekten wird die Thonny-Entwicklungsumgebung (IDE) eingesetzt. Über 50 Projekte decken folgende Themen ab:
Installation von MicroPython auf dem Raspberry Pi Pico
Timer-Interrupts und externe Interrupts
Projekte mit Analog-Digital-Wandler (ADC)
Verwendung des internen sowie externer Temperatursensoren
Datenlogger
Projekte zur PWM, UART, I²C-Bus und SPI-Bus
Wi-Fi und Bluetooth für die Kommunikation mit Smartphones
Projekte mit dem Digital-Analog-Wandler (DAC)
Alle in diesem Buch vorgestellten Projekte wurden vollständig getestet und sind funktionsfähig. Es werden keine Programmier- oder Elektronikkenntnisse vorausgesetzt, um sie nachzuvollziehen. Für alle beschriebenen Projekte gibt es kurze Beschreibungen, Blockdiagramme, detaillierte Schaltpläne und vollständige MicroPython-Programmlistings. Die Listings sind auch auf der zum Buch gehörenden Elektor-Webseite zu finden.
Program, build, and master 60+ projects with the Wireless RP2040
The Raspberry Pi Pico and Pico W are based on the fast, efficient, and low-cost dual-core ARM Cortex M0+ RP2040 microcontroller chip running at up to 133 MHz and sporting 264 KB of SRAM and 2 MB of Flash memory. Besides spacious memory, the Pico and Pico W offer many GPIO pins, and popular peripheral interface modules like ADC, SPI, I²C, UART, PWM, timing modules, a hardware debug interface, and an internal temperature sensor.
The Raspberry Pi Pico W additionally includes an on-board Infineon CYW43439 Bluetooth and Wi-Fi chipset. At the time of writing this book, the Bluetooth firmware was not yet available. Wi-Fi is however fully supported at 2.4 GHz using the 802.11b/g/n protocols.
This book is an introduction to using the Raspberry Pi Pico W in conjunction with the MicroPython programming language. The Thonny development environment (IDE) is used in all of the 60+ working and tested projects covering the following topics:
Installing the MicroPython on Raspberry Pi Pico using a Raspberry Pi or a PC
Timer interrupts and external interrupts
Analogue-to-digital converter (ADC) projects
Using the internal temperature sensor and external sensor chips
Using the internal temperature sensor and external temperature sensor chips
Datalogging projects
PWM, UART, I²C, and SPI projects
Using Bluetooth, WiFi, and apps to communicate with smartphones
Digital-to-analogue converter (DAC) projects
All projects are tried & tested. They can be implemented on both the Raspberry Pi Pico and Raspberry Pi Pico W, although the Wi-Fi-based subjects will run on the Pico W only. Basic programming and electronics experience are required to follow the projects. Brief descriptions, block diagrams, detailed circuit diagrams, and full MicroPython program listings are given for all projects.
Der Raspberry Pi Pico 2 WH (mit Header) ist ein Mikrocontroller-Board auf Basis des RP2350 mit 2,4 GHz 802.11n Wireless LAN und Bluetooth 5.2. Es gibt Ihnen noch mehr Flexibilität bei Ihren IoT- oder Smart-Produktdesigns und erweitert die Möglichkeiten für Ihre Projekte.
Der RP2350 bietet eine umfassende Sicherheitsarchitektur rund um Arm TrustZone für Cortex-M. Es umfasst signiertes Booten, 8 KB Antifuse-OTP für die Schlüsselspeicherung, SHA-256-Beschleunigung, einen Hardware-TRNG und schnelle Glitch-Detektoren.
Die einzigartige Dual-Core- und Dual-Architektur-Fähigkeit des RP2350 ermöglicht Benutzern die Wahl zwischen einem Paar ARM Cortex-M33-Kernen nach Industriestandard und einem Paar Hazard3 RISC-V-Kernen mit offener Hardware. Der Raspberry Pi Pico 2 WH ist in C/C++ und Python programmierbar und wird durch eine ausführliche Dokumentation unterstützt. Er ist das ideale Mikrocontroller-Board sowohl für Enthusiasten als auch für professionelle Entwickler.
Technische Daten
CPU
Dual Arm Cortex-M33 oder Dual RISC-V Hazard3 Prozessoren bei 150 MHz
Wireless
On-Board Infineon CYW43439 Single-Band 2,4 GHz 802.11n Wireless Lan und Bluetooth 5.2
Speicher
520 KB On-Chip-SRAM; 4 MB integrierter QSPI-Flash
Schnittstellen
26 Mehrzweck-GPIO-Pins, darunter 4, die für AD verwendet werden können
Peripherie
2x UART
2x SPI-Controller
2x I²C-Controller
24x PWM-Kanäle
1x USB 1.1-Controller und PHY, mit Host- und Geräteunterstützung
12x PIO-Zustandsmaschinen
Eingangsspannung
1,8-5,5 V DC
Abmessungen
21 x 51 mm
Downloads
Datasheet
Pinout
Schematic
Der DiP-Pi WiFi Master ist ein fortschrittliches WiFi-Konnektivitätssystem mit eingebetteten Sensorschnittstellen, das die meisten möglichen Anforderungen für IoT-Anwendungen auf Basis von Raspberry Pi Pico abdeckt. Es wird direkt vom Raspberry Pi Pico VBUS mit Strom versorgt. Der DiP-Pi WiFi Master enthält eine in Raspberry Pi Pico eingebettete RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf die Stromquellen von Raspberry Pi Pico einwirkt.
Der DiP-Pi WiFi Master ist mit einem WiFi ESP8266 Clone-Modul mit integrierter Antenne ausgestattet. Diese Funktion eröffnet eine breite Palette darauf basierender IoT-Anwendungen.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi WiFi Master mit eingebetteten 1-Wire-, DHT11/22-Sensoren und Micro-SD-Kartenschnittstellen ausgestattet. Die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen macht den DiP-Pi WiFi Master ideal für IoT-Anwendungen wie Datenlogger, Anlagenüberwachung, Kühlschranküberwachung usw. DiP-Pi WiFi Master wird mit zahlreichen gebrauchsfertigen Beispielen unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Kompatibel mit Raspberry Pi Pico-Pinbelegung
Unabhängige informative LEDs (VBUS, VSYS, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter mit Wirkung auf die Stromversorgung des Raspberry Pi Pico
Eingebetteter 3,3 V bei 600 mA LDO
ESP8266-Klon-WLAN-Konnektivität
ESP8266 Firmware-Upload-Schalter
Eingebettete 1-Wire-Schnittstelle
Integrierte DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Eingebettete Peripheriegeräte und Schnittstellen
Eingebettete 1-Wire-Schnittstelle
Integrierte DHT-11/22-Schnittstelle
Micro SD-Kartensteckplatz
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard-Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexiglasgehäuse
Informative LEDs
VB (VUSB)
VS (VSYS)
V3 (V3V3)
Systemschutz
Direkter Raspberry Pi Pico Hardware-Reset-Knopf
PPTC 500 mA @ 18 V Sicherung auf EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO-Überstromschutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2 ozKupfer-PCB für ordnungsgemäße Hochstromversorgung und Kühlung
6 mils Spur/6 mils Lückentechnologie 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersion Gold
Mehrschichtige Kupfer-Thermorohre für eine verbesserte thermische Reaktion des Systems und bessere passive Kühlung
Downloads
Datenblatt
Handbuch
Der DiP-Pi Power Master ist ein fortschrittliches Stromversorgungssystem mit integrierten Sensorschnittstellen, das die meisten möglichen Anforderungen für Anwendungen auf Basis des Raspberry Pi Pico abdeckt. Es kann das System zusätzlich zum Original-Micro-USB des Raspberry Pi Pico mit bis zu 1,5 A bei 4,8 V versorgen, geliefert von 6–18 VDC für verschiedene Stromversorgungssysteme wie Autos, Industrieanlagen usw. Es unterstützt LiPo- oder Li-Ion-Akkus mit automatischem Ladegerät sowie die automatische Umschaltung von Kabelstrom auf Batteriestrom oder umgekehrt (USV-Funktionalität), wenn die Kabelstromversorgung unterbrochen wird. Die Extended Powering Source (EPR) ist mit einer rücksetzbaren PPTC-Sicherung, umgekehrter Polarität und auch ESD geschützt. Der DiP-Pi Power Master verfügt über eine in den Raspberry Pi Pico integrierte RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf alle Stromquellen (USB, EPR oder Batterie) wirkt. Der Benutzer kann (über die A/D-Pins des Raspberry Pi Pico) den Batteriestand und den EPR-Wert mit den A/D-Wandlern von PICO überwachen. Beide A/D-Eingänge sind mit 0402-Widerständen (0 Ohm) überbrückt. Wenn der Benutzer diese Pico-Pins aus irgendeinem Grund für seine eigene Anwendung verwenden muss, kann er daher problemlos entfernt werden. Das Ladegerät lädt den angeschlossenen Akku automatisch auf (sofern verwendet), aber der Benutzer kann das Ladegerät zusätzlich ein-/ausschalten, wenn seine Anwendung dies benötigt. DiP-Pi Power Master kann für kabelbetriebene Systeme, aber auch für rein batteriebetriebene Systeme mit EIN/AUS verwendet werden. Der Status jeder Stromquelle wird durch separate Informations-LEDs angezeigt (VBUS, VSYS, VEPR, CHGR, V3V3). Der Benutzer kann jede Kapazität vom Typ LiPo oder Li-Ion verwenden; Es muss jedoch darauf geachtet werden, PCB-geschützte Batterien mit einem maximal zulässigen Entladestrom von 2 A zu verwenden. Das integrierte Batterieladegerät ist so eingestellt, dass es die Batterie mit einem Strom von 240 mA lädt. Dieser Strom wird durch einen Widerstand eingestellt. Wenn der Benutzer also mehr oder weniger benötigt, kann er ihn selbst ändern.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi Power Master mit integrierten 1-Draht- und DHT11/22-Sensorschnittstellen ausgestattet. Durch die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen eignet sich der DiP-Pi Power Master ideal für Anwendungen wie Datenlogger, Pflanzenüberwachung, Kühlschränke usw.
DiP-Pi Power Master wird durch zahlreiche gebrauchsfertige Beispiele unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Raspberry Pi Pico-Pinbelegung kompatibel
Unabhängige informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter, der auf alle Stromquellen wirkt (USB, EPR, Batterie)
Externe Stromversorgung 6-18 V DC (Autos, Industrieanwendungen usw.)
Überwachung des externen Strompegels (6-18 VDC).
Überwachung des Batteriestands
Verpolungsschutz
PPTC-Sicherungsschutz
ESD-Schutz
Automatisches Batterieladegerät (für PCB-geschütztes LiPo, Li-Ion – 2 A max.) Automatisch/Benutzersteuerung
Automatische Umschaltung von Kabelbetrieb auf Batteriebetrieb und umgekehrt (USV-Funktionalität)
Mit der USB-Stromversorgung, der externen Stromversorgung und der Batterieversorgung können verschiedene Stromversorgungsschemata gleichzeitig verwendet werden
1,5 A bei 4,8 V Abwärtswandler auf EPR
Eingebetteter 3,3 V @ 600 mA LDO
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Externe Stromversorgung 6–18 V (über spezielle Buchse – 3,4/1,3 mm)
Externe Batterie
Unterstützte Batterietypen
LiPo mit Schutzplatine, max. Strom 2A
Li-Ion mit Schutzplatine, max. Strom 2A
Eingebettete Peripheriegeräte und Schnittstellen
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexi-Cut-Gehäuse
Systemüberwachung
Batteriestand über Raspberry Pi Pico ADC0 (GP26)
EPR-Level über Raspberry Pi Pico ADC1 (GP27)
Informative LEDs
VB (VUSB)
USA (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
Systemschutz
Sofortiger Raspberry Pi Pico-Hardware-Reset-Knopf
ESD-Schutz auf EPR
Verpolungsschutz bei EPR
PPTC 500 mA @ 18 V-Sicherung am EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO Über den aktuellen Schutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2-Unzen-Kupfer-Leiterplatte, hergestellt für eine ordnungsgemäße Hochstromversorgung und Kühlung
6-mil-Spur-/6-mil-Lücken-Technologie, 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersionsgold
Mehrschichtige Kupfer-Thermorohre für eine erhöhte thermische Reaktion des Systems und eine bessere passive Kühlung
Downloads
Datenblatt
Datenblatt
From basics to flows for sensors, automation, motors, MQTT, and cloud services
This book is a learning guide and a reference. Use it to learn Node-RED, Raspberry Pi Pico W, and MicroPython, and add these state-of-the-art tools to your technology toolkit. It will introduce you to virtual machines, Docker, and MySQL in support of IoT projects based on Node-RED and the Raspberry Pi Pico W.
This book combines several elements into a platform that powers the development of modern Internet of Things applications. These elements are a flow-based server, a WiFi-enabled microcontroller, a high-level programming language, and a deployment technology. Combining these elements gives you the tools you need to create automation systems at any scale. From home automation to industrial automation, this book will help you get started.
Node-RED is an open-source flow-based development tool that makes it easy to wire together devices, APIs, and online services. Drag and drop nodes to create a flowchart that turns on your lights at sunset or sends you an email when a sensor detects movement. Raspberry Pi Pico W is a version of the Raspberry Pi Pico with added 802.11n Wi-Fi capability. It is an ideal device for physical computing tasks and an excellent match to the Node-RED.
Quick book facts
Project-based learning approach.
Assumes no prior knowledge of flow-based programming tools.
Learn to use essential infrastructure tools in your projects, such as virtual machines, Docker, MySQL and useful web APIs such as Google Sheets and OpenWeatherMap.
Dozens of mini-projects supported by photographs, wiring schematics, and source code. Get these from the book GitHub repository.
Step-by-step instructions on everything.
All experiments are based on the Raspberry Pi Pico W. A Wi-Fi network is required for all projects.
Hardware (including the Raspberry Pi Pico W) is available as a kit.
Downloads
GitHub