Die Pico Breakout Garden Base befindet sich unter Ihrem Pico und ermöglicht den Anschluss von bis zu sechs unserer umfangreichen Auswahl an Pimoroni-Breakouts. Sei es Umgebungssensoren, mit denen Sie die Temperatur und Luftfeuchtigkeit in Ihrem Büro im Auge behalten, eine ganze Reihe kleiner Bildschirme für wichtige Benachrichtigungen und Anzeigen und natürlich LEDs. Scrollen Sie nach unten für eine Liste der Breakouts, die derzeit mit unseren C++/MicroPython-Bibliotheken kompatibel sind! Neben einem beschrifteten Landebereich für Ihren Pico gibt es auch einen vollständigen Satz herausgebrochener Pico-Anschlüsse für den Fall, dass Sie noch mehr Sensoren, Kabel und Schaltkreise anschließen müssen. Wir haben einige Gummifüße eingebaut, um die Basis schön stabil zu halten und zu verhindern, dass sie Ihren Schreibtisch zerkratzt, oder es gibt M2,5-Befestigungslöcher an den Ecken, damit Sie sie bei Bedarf auf einer festen Oberfläche festschrauben können.
Bei den sechs stabilen schwarzen Steckplätzen handelt es sich um Kantenverbinder, die die Breakouts mit den Pins Ihres Pico verbinden. Es gibt zwei Steckplätze für SPI-Breakouts und vier Steckplätze für I²C-Breakouts. Da es sich bei I²C um einen Bus handelt, können Sie mehrere I²C-Geräte gleichzeitig verwenden, vorausgesetzt, sie haben nicht die gleiche I²C-Adresse (wir haben dafür gesorgt, dass alle unsere Breakouts unterschiedliche Adressen haben, und wir drucken sie auf der Rückseite auf). die Ausbrüche, damit sie leicht zu finden sind). Breakout Garden ist nicht nur eine praktische Möglichkeit, Ihrem Pico Funktionalität hinzuzufügen, sondern ist auch sehr nützlich für Prototyping-Projekte, ohne dass komplizierte Verkabelungen, Lötarbeiten oder Steckbretter erforderlich sind, und Sie können Ihr Setup jederzeit erweitern oder ändern.
Merkmale
Sechs stabile Kantensteckplätze für Breakouts
4x I²C-Steckplätze (5 Pins)
2x SPI-Steckplatz (7 Pins)
Landebereich mit Buchsenleisten für Raspberry Pi Pico
0,1-Zoll-Raster, 5- oder 7-polige Steckverbinder
Ausgebrochene Stifte
Verpolungsschutz (in Breakouts integriert)
Zu 99 % montiert – nur noch die Füße aufkleben!
Kompatibel mit Raspberry Pi Pico
Dank seiner sechs stabilen Steckplätze ermöglicht Breakout Garden den Benutzern das einfache Plug-and-Play mit verschiedenen kleinen Breakout-Boards.
Stecken Sie einfach ein oder mehrere Boards in die Steckplätze im Breakout Garden HAT und schon kann es losgehen. Die Mini-Breakouts fühlen sich in den Edge-Connector-Steckplätzen sicher genug an und es ist sehr unwahrscheinlich, dass sie herausfallen.
An der Oberseite des Breakout Garden befinden sich eine Reihe nützlicher Pins, mit denen Sie andere Geräte anschließen und in Ihr Projekt integrieren können.
Dank des Verpolungsschutzes müssen Sie sich keine Sorgen machen, wenn Sie eine Platine falsch herum einsetzen. Es spielt auch keine Rolle, welchen Steckplatz Sie für jeden Breakout verwenden, da die I²C-Adresse des Breakouts von der Software erkannt wird und diese korrekt erkennt, falls Sie sie verschieben.
Merkmale
Sechs stabile Kantensteckplätze für Pimoroni-Breakouts
0,1-Zoll-Raster, 5-polige Anschlüsse
Ausgebrochene Stifte (1 × 10 Streifen- oder Stiftleiste im Lieferumfang enthalten)
Im Lieferumfang sind Abstandshalter (M2,5, 10 mm Höhe) enthalten, um Ihren Breakout Garden sicher zu halten
Verpolungsschutz (in Breakouts integriert)
Platine im HAT-Format
Kompatibel mit Raspberry Pi 3 B+, 3, 2, B+, A+, Zero und Zero W
Es wird empfohlen, die mitgelieferten Abstandshalter zu verwenden, um Breakout Garden an Ihrem Raspberry Pi zu befestigen.
Software
Breakout Garden erfordert keine eigene Software, aber jeder von Ihnen verwendete Breakout benötigt eine Python-Bibliothek. Auf der Breakout Garden GitHub-Seite finden Sie ein automatisches Installationsprogramm, das die entsprechende Software für einen bestimmten Breakout installiert. Es gibt auch einige Beispiele, die Ihnen zeigen, was Sie sonst noch mit Breakout Garden machen können.
Bauen Sie robuste, intelligente Maschinen, die die Rechenleistung des Raspberry Pi mit LEGO-Komponenten kombinieren.
Der Raspberry Pi Build HAT bietet vier Anschlüsse für LEGO Technic Motoren und Sensoren aus dem SPIKE Portfolio. Zu den verfügbaren Sensoren gehören ein Abstandssensor, ein Farbsensor und ein vielseitiger Kraftsensor. Die Winkelmotoren sind in verschiedenen Größen erhältlich und verfügen über integrierte Encoder, die ihre Position abfragen können.
Der Build HAT passt auf alle Raspberry Pi-Computer mit einem 40-Pin-GPIO-Header, einschließlich – mit der Hinzufügung eines Flachbandkabels oder eines anderen Erweiterungsgeräts – Raspberry Pi 400. Angeschlossene LEGO Technic-Geräte können neben Standard-Raspberry-Pi-Zubehör problemlos in Python gesteuert werden wie zum Beispiel ein Kameramodul.
Merkmale
Steuert bis zu 4 Motoren und Sensoren
Versorgt den Raspberry Pi mit Strom (bei Verwendung mit einem geeigneten externen Netzteil)
Einfache Verwendung von Python auf dem Raspberry Pi
Ready to explore the world around you? By attaching the Sense HAT to your Raspberry Pi, you can quickly and easily develop a variety of creative applications, useful experiments, and exciting games.
The Sense HAT contains several helpful environmental sensors: temperature, humidity, pressure, accelerometer, magnetometer, and gyroscope. Additionally, an 8x8 LED matrix is provided with RGB LEDs, which can be used to display multi-color scrolling or fixed information, such as the sensor data. Use the small onboard joystick for games or applications that require user input. In Innovate with Sense HAT for Raspberry Pi, Dr. Dogan Ibrahim explains how to use the Sense HAT in Raspberry Pi Zero W-based projects. Using simple terms, he details how to incorporate the Sense HAT board in interesting visual and sensor-based projects. You can complete all the projects with other Raspberry Pi models without any modifications.
Exploring with Sense HAT for Raspberry Pi includes projects featuring external hardware components in addition to the Sense HAT board. You will learn to connect the Sense HAT board to the Raspberry Pi using jumper wires so that some of the GPIO ports are free to be interfaced to external components, such as to buzzers, relays, LEDs, LCDs, motors, and other sensors.
The book includes full program listings and detailed project descriptions. Complete circuit diagrams of the projects using external components are given where necessary. All the projects were developed using the latest version of the Python 3 programming language. You can easily download projects from the book’s web page. Let’s start exploring with Sense HAT.
Der Raspberry Pi Zero W erweitert die Raspberry Pi Zero-Familie. Der Raspberry Pi Zero W hat alle Funktionen des ursprünglichen Raspberry Pi Zero, kommt aber mit zusätzlichen Anschlussmöglichkeiten bestehend aus:
802.11 b/g/n wireless LAN
Bluetooth 4.1
Bluetooth Low Energy (BLE)
Weitere Features
1 GHz, Single-Core-CPU
512 MB RAM
Mini HDMI und USB On-The-Go Anschlüsse
Micro-USB power
HAT-compatible 40-pin header
Composite-Video- und Reset-Anschlüsse
CSI-Kamera-Anschluss
Downloads
Mechanical Drawing
Schematics
Ready to explore the world around you? By attaching the Sense HAT to your Raspberry Pi, you can quickly and easily develop a variety of creative applications, useful experiments, and exciting games.
The Sense HAT contains several helpful environmental sensors: temperature, humidity, pressure, accelerometer, magnetometer, and gyroscope. Additionally, an 8x8 LED matrix is provided with RGB LEDs, which can be used to display multi-color scrolling or fixed information, such as the sensor data. Use the small onboard joystick for games or applications that require user input. In Innovate with Sense HAT for Raspberry Pi, Dr. Dogan Ibrahim explains how to use the Sense HAT in Raspberry Pi Zero W-based projects. Using simple terms, he details how to incorporate the Sense HAT board in interesting visual and sensor-based projects. You can complete all the projects with other Raspberry Pi models without any modifications.
Exploring with Sense HAT for Raspberry Pi includes projects featuring external hardware components in addition to the Sense HAT board. You will learn to connect the Sense HAT board to the Raspberry Pi using jumper wires so that some of the GPIO ports are free to be interfaced to external components, such as to buzzers, relays, LEDs, LCDs, motors, and other sensors.
The book includes full program listings and detailed project descriptions. Complete circuit diagrams of the projects using external components are given where necessary. All the projects were developed using the latest version of the Python 3 programming language. You can easily download projects from the book’s web page. Let’s start exploring with Sense HAT.
Program, build, and master over 60 projects with Python
The Raspberry Pi 5 is the latest single-board computer from the Raspberry Pi Foundation. It can be used in many applications, such as in audio and video media centers, as a desktop computer, in industrial controllers, robotics, and in many domestic and commercial applications. In addition to the well-established features found in other Raspberry Pi computers, the Raspberry Pi 5 offers Wi-Fi and Bluetooth (classic and BLE), which makes it a perfect match for IoT as well as in remote and Internet-based control and monitoring applications. It is now possible to develop many real-time projects such as audio digital signal processing, real-time digital filtering, real-time digital control and monitoring, and many other real-time operations using this tiny powerhouse.
The book starts with an introduction to the Raspberry Pi 5 computer and covers the important topics of accessing the computer locally and remotely. Use of the console language commands as well as accessing and using the desktop GUI are described with working examples. The remaining parts of the book cover many Raspberry Pi 5-based hardware projects using components and devices such as
LEDs and buzzers
LCDs
Ultrasonic sensors
Temperature and atmospheric pressure sensors
The Sense HAT
Camera modules
Example projects are given using Wi-Fi and Bluetooth modules to send and receive data from smartphones and PCs, and sending real-time temperature and atmospheric pressure data to the cloud.
All projects given in the book have been fully tested for correct operation. Only basic programming and electronics experience are required to follow the projects. Brief descriptions, block diagrams, detailed circuit diagrams, and full Python program listings are given for all projects described.
Der Raspberry Pi Bumper ist eine aufsteckbare Silikonabdeckung, die die Unterseite und die Kanten des Raspberry Pi 5 schützt.
Features
Einteiliger flexibler Bumper aus Silikonkautschuk
Ermöglicht einfachen Zugriff auf den Power-Button
Montagelöcher bleiben unter dem Bumper zugänglich
Downloads
Datasheet
Der Raspberry Pi Pico 2 W ist ein Mikrocontroller-Board auf Basis des RP2350 mit 2,4 GHz 802.11n Wireless LAN und Bluetooth 5.2. Es gibt Ihnen noch mehr Flexibilität bei Ihren IoT- oder Smart-Produktdesigns und erweitert die Möglichkeiten für Ihre Projekte.
Der RP2350 bietet eine umfassende Sicherheitsarchitektur rund um Arm TrustZone für Cortex-M. Es umfasst signiertes Booten, 8 KB Antifuse-OTP für die Schlüsselspeicherung, SHA-256-Beschleunigung, einen Hardware-TRNG und schnelle Glitch-Detektoren.
Die einzigartige Dual-Core- und Dual-Architektur-Fähigkeit des RP2350 ermöglicht Benutzern die Wahl zwischen einem Paar ARM Cortex-M33-Kernen nach Industriestandard und einem Paar Hazard3 RISC-V-Kernen mit offener Hardware. Der Raspberry Pi Pico 2 W ist in C/C++ und Python programmierbar und wird durch eine ausführliche Dokumentation unterstützt. Er ist das ideale Mikrocontroller-Board sowohl für Enthusiasten als auch für professionelle Entwickler.
Technische Daten
CPU
Dual Arm Cortex-M33 oder Dual RISC-V Hazard3 Prozessoren bei 150 MHz
Wireless
On-Board Infineon CYW43439 Single-Band 2,4 GHz 802.11n Wireless Lan und Bluetooth 5.2
Speicher
520 KB On-Chip-SRAM; 4 MB integrierter QSPI-Flash
Schnittstellen
26 Mehrzweck-GPIO-Pins, darunter 4, die für AD verwendet werden können
Peripherie
2x UART
2x SPI-Controller
2x I²C-Controller
24x PWM-Kanäle
1x USB 1.1-Controller und PHY, mit Host- und Geräteunterstützung
12x PIO-Zustandsmaschinen
Eingangsspannung
1,8-5,5 V DC
Abmessungen
21 x 51 mm
Downloads
Datasheet
Pinout
Schematic
Dieser Lüfter wurde für Übertakter und andere Power-User entwickelt und hält Ihren Raspberry Pi 4 auch unter starker Last auf einer angenehmen Betriebstemperatur. Der temperaturgesteuerte Lüfter liefert einen Luftstrom von bis zu 1,4 CFM über den Prozessor, den Speicher und den Energieverwaltungs-IC. Der mitgelieferte Kühlkörper (18 x 8 x 10 mm) mit selbstklebendem Pad verbessert die Wärmeübertragung vom Prozessor.
Der Raspberry Pi 4 Gehäuselüfter funktioniert mit Raspberry Pi 4 und dem offiziellen Raspberry Pi 4 Gehäuse.
Mehr als 50 Grundlagenprojekte mit MicroPython und dem RP2040-Mikrocontroller
Der Raspberry Pi Pico ist eine leistungsstarke Mikrocontroller-Platine, die speziell für das Physical Computing – also hardwarenahe Anwendungen – entwickelt wurde. Der Raspberry Pi Pico kann so programmiert werden, dass er eine einzelne Aufgabe sehr effizient ausführt und ermöglicht so schnelle Steuerungs- und Überwachungsanwendungen in Echtzeit. Der 'Pico', wie wir ihn nennen, basiert auf dem schnellen, effizienten und kostengünstigen Dual-Core ARM Cortex-M0+ RP2040 Mikrocontroller-Chip, der mit bis zu 133 MHz läuft und über 264 KB SRAM und 2 MB Flash-Speicher verfügt. Neben dem großen Speicher hat der Pico noch weitere attraktive Eigenschaften, darunter eine große Anzahl von GPIO-Pins sowie gängige Schnittstellen wie ADC, SPI, I²C, UART und PWM. Als Krönung bietet der Chip schnelle und genaue Timer, eine Hardware-Debug-Schnittstelle und einen internen Temperatursensor.
Zur Programmierung lassen sich leicht die gängigen Hochsprachen wie MicroPython oder C/C++ verwenden. Dieses Buch ist eine Einführung in die Verwendung des Pico mit der Programmiersprache MicroPython. In allen Projekten wird die Thonny-Entwicklungsumgebung (IDE) eingesetzt. Über 50 Projekte decken folgende Themen ab:
Installation von MicroPython auf dem Raspberry Pi Pico
Timer-Interrupts und externe Interrupts
Projekte mit Analog-Digital-Wandler (ADC)
Verwendung des internen sowie externer Temperatursensoren
Datenlogger
Projekte zur PWM, UART, I²C-Bus und SPI-Bus
Wi-Fi und Bluetooth für die Kommunikation mit Smartphones
Projekte mit dem Digital-Analog-Wandler (DAC)
Alle in diesem Buch vorgestellten Projekte wurden vollständig getestet und sind funktionsfähig. Es werden keine Programmier- oder Elektronikkenntnisse vorausgesetzt, um sie nachzuvollziehen. Für alle beschriebenen Projekte gibt es kurze Beschreibungen, Blockdiagramme, detaillierte Schaltpläne und vollständige MicroPython-Programmlistings. Die Listings sind auch auf der zum Buch gehörenden Elektor-Webseite zu finden.
Wenn Sie regelmäßig mit dem Raspberry Pi experimentieren und eine Vielzahl von externer Hardware über die Stiftleiste an den GPIO-Port anschließen, haben Sie in der Vergangenheit vielleicht schon einige Schäden verursacht. Das Elektor Raspberry Pi Buffer Board ist dazu da, dies zu verhindern! Das Board ist kompatibel mit Raspberry Pi Zero, Zero 2 (W), 3, 4, 5, 400 und 500.
Alle 26 GPIOs sind mit bidirektionalen Spannungswandlern gepuffert, um den Raspberry Pi beim Experimentieren mit neuen Schaltungen zu schützen. Die Platine ist dafür vorgesehen, auf der Rückseite des Raspberry Pi 400/500 eingesetzt zu werden. Der Stecker zum Anschluss an den Raspberry Pi ist eine rechtwinklige 40-polige Buchse (2x20). Die Platine ist nur ein wenig breiter. An die Pufferausgangsbuchse kann ein 40-poliges Flachbandkabel mit entsprechenden 2x20-Steckern angeschlossen werden, um z. B. mit einer Schaltung auf einem Breadboard oder einer Platine zu experimentieren.
Die Schaltung verwendet 4x TXS0108E ICs von Texas Instruments. Die Platine lässt sich auch auf einem Raspberry Pi aufstellen.
Downloads
Schematics
Layout