Das DIY Mini Digital-Oszilloskop-Kit (mit Gehäuse) ist ein einfach zu bauender Bausatz für ein kleines digitales Oszilloskop. Neben dem Netzschalter verfügt es nur über eine weitere Steuerung, einen Drehgeber mit eingebautem Druckknopf. Der Mikrocontroller des Kits ist vorprogrammiert. Das 0,96" OLED-Display hat eine Auflösung von 128 x 64 Pixel. Das Oszilloskop verfügt über einen Kanal, der Signale bis zu 100 kHz messen kann. Die maximale Eingangsspannung beträgt 30 V, die minimale Spannung beträgt 0 V.
Das Kit besteht aus Durchgangslochkomponenten (THT) und oberflächenmontierten Bauteilen (SMD). Daher erfordert der Zusammenbau des Bausatzes das Löten von SMD-Teilen, was einige Erfahrung im Löten erfordert.
Technische Daten
Vertikaler Bereich: 0 bis 30 V
Horizontaler Bereich: 100 µs bis 500 ms
Triggertyp: Auto, Normal und Single
Triggerflanke: Steigend und fallend
Triggerpegel: 0 bis 30 V
Run/Stop-Modus
Automatische Frequenzmessung
Stromversorgung: 5 V Micro-USB
10 Hz, 5 V Sinuswellenausgang
9 kHz, 0 bis 4,8 V Rechteckwellenausgang
Display: 0,96" OLED-Bildschirm
Abmessungen: 57 x 38 x 26 mm
Downloads
Documentation
Eine illustrierte Chronik der Teknologie für Sammler und Restauratoren
Oszilloskope haben einen wichtigen Beitrag zum Fortschritt des menschlichen Wissens geleistet, nicht nur in der Elektronik, sondern in allen Wissenschaften, wann immer eine physikalische Größe in ein zeitbezogenes elektrisches Signal umgewandelt werden kann.
Dieses Buch zeichnet die Geschichte eines wichtigen Instruments anhand vieler Tektronix-Produkte nach. Dieses Unternehmen hat die meisten der Funktionen, die heute in allen Oszilloskopen zu finden sind, erfunden und patentiert. Tek ist und wird immer ein Synonym für das Oszilloskop sein.
Auf fast 600 Seiten, mit Hunderten von prächtigen Fotos, Diagrammen, Anekdoten und technischen Daten, reisen Sie durch die Geschichte von Tektronix in einer hervorragenden Sammlerausgabe mit einem technischen Blickwinkel. Der Autor scheut sich nicht, sich die Hände schmutzig zu machen und seine eigenen Tek-Geräte zu restaurieren. Die Reise beginnt in den frühen 1950er Jahren. Sie endet in den 90er Jahren, nachdem er die interessantesten Modelle der 300er-, 400er-, 500er-, 5000er-, 7000er- und 11000er-Serie, von Röhren bis hin zu fortschrittlichen Hybridtechnologien, in allen Einzelheiten vorgestellt hat.
Downloads
NEU: Gratis Supplement (136 Seiten, 401 MB)
Understanding and Using Them Effectively
What happens in electronics is invisible to the naked eye. The instrument that allows to accurately visualize electrical signals, the one through which the effects of electronics become apparent to us, is the oscilloscope.
Alas, when one first ventures into electronics, it is often without an oscilloscope. And one is left fumbling, both physically and mentally. Observing an electrical signal on a screen for the first time is a revelation. Nobody wishes to forgo that marvel again. There is no turning back.
In electronics, if one wishes to progress with both enjoyment and understanding, an oscilloscope is essential. This marks the beginning of a period of questioning: how to choose one? And no sooner is that question answered than a whole string of others arises, which can be summed up in just one: how does one use the oscilloscope in such a way that what it displays truly reflects the reality of the signals?
Rémy Mallard is a passionate communicator with a gift for making complex technical subjects understandable and engaging. In this book, he provides clear answers to essential questions about using an oscilloscope and offers a wealth of guidance to help readers explore and understand the electrical signals behind electronic systems. With his accessible style and practical insights, this book is a valuable tool for anyone eager to deepen their understanding of electronics.
An Illustrated Handbook of Vintage ‘Scopes Repair and Preservation
Tektronix oscilloscopes are true masterpieces of electronics and have helped mankind advance in every field of science, wherever a physical phenomenon needed to be observed and studied. They helped man reach the moon, find the cause of plane crashes, and paved the way for thousands of other discoveries.
Restoring and collecting these oscilloscopes is an exciting activity; it is really worthwhile to save them from the effects of time and restore them to their original condition. Many parts are quite easy to find, and there are many Internet sites, groups, and videos that can help you. Much of the original documentation is still available, but it is not always sufficient. This book contains a lot of information, descriptions, suggestions, technical notes, photos and schematics that can be of great help to those who want to restore or simply repair these wonderful witnesses of one of the most beautiful eras in the history of technology.
Component layouts included!
This book includes a nearly complete component layout plan of the original 545 oscilloscope, with relative reference designators. Not found in the original Tektronix manuals, this layout should prove invaluable to the repair technician.
Understanding and Using Them Effectively
What happens in electronics is invisible to the naked eye. The instrument that allows to accurately visualize electrical signals, the one through which the effects of electronics become apparent to us, is the oscilloscope.
Alas, when one first ventures into electronics, it is often without an oscilloscope. And one is left fumbling, both physically and mentally. Observing an electrical signal on a screen for the first time is a revelation. Nobody wishes to forgo that marvel again. There is no turning back.
In electronics, if one wishes to progress with both enjoyment and understanding, an oscilloscope is essential. This marks the beginning of a period of questioning: how to choose one? And no sooner is that question answered than a whole string of others arises, which can be summed up in just one: how does one use the oscilloscope in such a way that what it displays truly reflects the reality of the signals?
Rémy Mallard is a passionate communicator with a gift for making complex technical subjects understandable and engaging. In this book, he provides clear answers to essential questions about using an oscilloscope and offers a wealth of guidance to help readers explore and understand the electrical signals behind electronic systems. With his accessible style and practical insights, this book is a valuable tool for anyone eager to deepen their understanding of electronics.
Das MicroMod DIY Carrier Kit enthält fünf M.2-Steckverbinder (4,2 mm Höhe), Schrauben und Abstandshalter, so dass Sie alle speziellen Teile erhalten, die Sie möglicherweise benötigen, um Ihr eigenes Carrier-Board zu bauen.
MicroMod verwendet den Standard-M.2-Stecker. Dies ist derselbe Anschluss, der auf modernen Motherboards und Laptops zu finden ist. Es gibt verschiedene Positionen für den Plastik-'Schlüssel' auf dem M.2-Stecker, um zu verhindern, dass ein Benutzer ein inkompatibles Gerät einsteckt. Der MicroMod-Standard verwendet den 'E'-Schlüssel und modifiziert den M.2-Standard weiter, indem er die Montageschraube 4 mm zur Seite verschiebt. Der 'E'-Schlüssel ist ziemlich verbreitet, so dass ein Benutzer ein M.2-kompatibles Wifi-Modul einsetzen könnte. Da die Befestigungsschraube jedoch nicht fluchtet, würde der Benutzer ein inkompatibles Gerät nicht in einer MicroMod-Trägerkarte befestigen.
Features
5x Maschinenschrauben
Phillips Kopf #0 (aber #00 bis #1 funktioniert)
Gewinde: M2,5
Länge: 3 mm
5x SMD Reflow-kompatible Standoffs
Gewinde: M2,5 x 0,4
Höhe: 2,5 mm
5x M.2 MicroMod-Steckverbinder
Taste: E
Höhe: 4,2 mm
Pin-Anzahl: 67
Rasterung: 0,5 mm
Das Solar-Tracking-Kit basiert auf Arduino. Es besteht aus 4 Umgebungslichtsensoren, 2 DOF-Servos, einem Solarpanel usw. mit dem Ziel, Lichtenergie in elektronische Energie umzuwandeln und Leistungsgeräte aufzuladen.
Es verfügt außerdem über ein Lademodul, einen Temperatur- und Feuchtigkeitssensor, einen BH1750-Lichtsensor, einen Summer, ein LCD1602-Display, ein Drucktastenmodul, ein LED-Modul und mehr, was das Tutorial erheblich bereichert und Projekte interessanter macht.
Dieses Kit kann Kindern nicht nur helfen, das Programmieren besser zu erlernen, sondern auch Kenntnisse über Elektronik, Maschinen, Steuerungslogik und Informatik zu erwerben.
Features
Mehrere Funktionen: Licht automatisch verfolgen, Temperatur, Luftfeuchtigkeit und Lichtintensität ablesen, Tastensteuerung, LCD1602-Display und Aufladung durch Solarenergie.
Einfach zu bauen: Zur Installation in die Lego-Buchse stecken, keine Notwendigkeit, es mit Schrauben und Muttern zu befestigen oder den Schaltkreis zu löten; leicht demontierbar.
Neuartiger Stil: Nehmen Sie Acrylplatten und Kupfersäulen an; Sensoren oder Module, die über Lego-Buchsen mit Acrylplatten verbunden sind; LCD1602-Module und Solarmodule ergänzen die Technologie.
Hohe Erweiterung: Behalten Sie I²C-, UART-, SPI-Ports und Lego-Buchsen bei und erweitern Sie andere Sensoren und Module.
Grundlegende Programmierung: Programmieren in C-Sprache mit Arduino IDE.
Technische Daten
Arbeitsspannung
5 V
Eingangsspannung
3,7 V
Max. Ausgangsstrom
1,5 A
Max. Verlustleistung
7,5 W
Downloads
Wiki
Das PeakTech 1240 ist ein 60 MHz 2-Kanal Digital-Speicheroszilloskop mit hochauflösendem TFT-Farbdisplay und umfassenden Zusatzfunktionen. Es verfügt über eine Abtastrate von bis zu 500 MS/s und überzeugt durch seine hohe Qualität und einfache Handhabung bei bestem Preis-/Leistungsverhältnis.
Features
Hochauflösendes TFT-Farbdisplay mit 800 x 600 Bildpunkten und 65536 Farben
USB-Anschluss zur Echtzeit-Datenübertragung oder zum Auslesen des internen Speichers
Speichern der Messwerte und Grafiken auch direkt auf den USB-Stick möglich
VGA-Ausgang zum Anschluss eines externen Monitors
Autoset- und Autoscale-Funktion zur benutzerfreundlichen Bedienung
LAN-Anschluss zur Fernabfrage über das Netzwerk
Interner Speicher von 10 Mio. Punkten pro Kanal oder 15 Wellenformen
20 automatische Messmodi und FFT-Funktion
PASS/FAIL Funktion
Sicherheit: EN 61010-1; CAT II
Zubehör: 2 St. BNC-Kabel, USB-Kabel, Software-CD für Windows 2000/XP/Vista/7/8/10, Netzkabel, 2 Tastköpfe, Tragetasche und Bedienungsanleitung
Zusätzliches Zubehör: Akkupack 7,4 V, Modell: AKKU 3
Technische Daten
Bandbreite
60 MHz
Anzeige
20 cm (8”) TFT mit 65536 Farben
Auflösung
800 x 600 Pixel
Kanäle
2 CH
Messmodus
Normal / Spitzenwerterkennung / Durchschnittswert
Abtastrate per Kanal
250 MSa/s
Eingangskopplung
AC/DC/GND
Eingangswiderstand
1 MΩ +/- 2 % in parallel mit 10 pF +/- 5 pF
Max. Eingangsspannung
400 V DC oder ACss
Vertikale Empfindlichkeit
2 mV - 10 V/Skt/div.
Anstiegszeit
< 5,8 ns
DC-Genauigkeit
+/- 3 %
Vertikale Auflösungen
8 Bits (2 CH gleichzeitig)
Horizontale Skala
5ns-100s/Skt./div
Messbereich
0,5 - 250 S/s
Triggerart
Edge/Video/Pulse/Slope
Triggermodus
Auto, Normal, Single
Triggerkopplung
DC, AC, LF, HF
20 automat. Messungen
peak-peak, cycle RMS, Vmax, Vmin, Vtop, Vbase, Vamp, overshoot, preshoot, rise time, fall time, +width, -width, +duty, -duty, delay A→B (rising), delay A→B (falling), frequency, period, min, max
Phasendifferenz
+/- 3°
Speicher
10.000.000 Punkte/Kanal
Schnittstellen
USB Device 2.0, USB Host 2.0, VGA, LAN
Betriebsspannung
100~240 V ACeff / 50/60 Hz
Abmessungen
340 x 155 x 70 mm
Gewicht
1,8 kg
Die digitalen Speicheroszilloskope der SDS2000X Plus-Serie von Siglent sind in Bandbreiten von 100 MHz, 200 MHz und 350 MHz erhältlich, haben eine maximale Abtastrate von 2 GSa/s, eine maximale Aufzeichnungslänge von 200 Mpts/Kanal und bis zu 4 analoge Kanäle + 16 digitale Kanäle, Mixed-Signal-Analysefähigkeit.
Die SDS2000X Plus-Serie nutzt die SPO-Technologie von Siglent mit einer maximalen Wellenformerfassungsrate von bis zu 120.000 wfm/s (Normalmodus, bis zu 500.000 wfm/s im Sequenzmodus), einer Anzeigefunktion mit 256 Intensitätsstufen sowie einer Farbtemperatur Anzeigemodus. Es verwendet außerdem ein innovatives digitales Triggersystem mit hoher Empfindlichkeit und geringem Jitter. Das Triggersystem unterstützt mehrere leistungsstarke Triggermodi, einschließlich serieller Bus-Triggerung. Verlaufsaufzeichnung von Wellenformen, Sequenzerfassung sowie Such- und Navigationsfunktionen ermöglichen die Erfassung, Speicherung und Analyse erweiterter Wellenformaufzeichnungen. Eine beeindruckende Auswahl an Mess- und Mathematikfunktionen, Optionen für einen 50-MHz-Wellenformgenerator sowie serielle Dekodierung, Maskentest, Bode-Plot und Leistungsanalyse sind weitere Merkmale des SDS2000X Plus. Ein 10-Bit-Erfassungsmodus hilft dabei, Anwendungen zu erfüllen, die eine Auflösung von mehr als 8 Bit erfordern.
Der große kapazitive 10,1"-Touchscreen unterstützt Multi-Touch-Gesten, während die Remote-Websteuerung sowie die Unterstützung für Maus und externe Tastatur die Bedieneffizienz des SDS2000X Plus erheblich verbessern.
Features
Erhältlich mit 100 MHz, 200 MHz, 350 MHz Bandbreite (aufrüstbar auf 500 MHz)
Echtzeit-Abtastrate bis zu 2 GSa/s
Aufzeichnungslänge bis zu 200 Mpts
Serieller Bus-Trigger und Decoder, unterstützt I²C, SPI, UART, CAN, LIN, CAN FD, FlexRay, I²S und MIL-STD-1553B
Bietet 10-Bit-Modus, vertikalen und horizontalen Zoom
Der kapazitive Touchscreen unterstützt Multi-Touch-Gesten
Siglent SDS2000X Plus Oszilloskope
SDS2102X Plus
SDS2104X Plus
SDS2204X Plus
SDS2354X Plus
Bandbreite
100 MHz
100 MHz
200 MHz
350 MHz
Kanäle
2
4
4
4
Echtzeit-Abtastrate
2 GSa/s
2 GSa/s
2 GSa/s
2 GSa/s
Erfassungsrate
120,000 wfm/s
120,000 wfm/s
120,000 wfm/s
120,000 wfm/s
Speichertiefe
200 Mpts/ch
200 Mpts/ch
200 Mpts/ch
200 Mpts/ch
Lieferumfang
Siglent SDS2354X Plus Oszilloskop
Passive Sonden
Netzkabel
USB-Kabel
Manual
Downloads
Datasheet
Manual
Quick guide
User manual
Firmware
FNIRSI DSO152 ist ein äußerst praktisches und kostengünstiges Handheld-Oszilloskop mit einer Echtzeit-Abtastrate von 2,5 MSa/s, einer Bandbreite von 200 kHz und vollständigen Triggerfunktionen (einzeln, normal und automatisch).
Es kann sowohl für periodische Analogsignale als auch für nichtperiodische Digitalsignale verwendet werden und kann Spannungen bis zu ±400 V messen. Ausgestattet mit einer effizienten Ein-Tasten-Automatik kann die gemessene Wellenform ohne umständliche Anpassungen angezeigt werden. Es ist mit einem hochauflösenden 2,8" LCD-Bildschirm mit einer Auflösung von 320 x 240 Pixeln und einem integrierten 1000 mAh hochwertigen Lithium-Akku für bis zu 4 Stunden Betrieb ausgestattet.
Technische Daten
Abtastrate
2,5 MSa/s
Bandbreite
200 kHz
Vertikale Empfindlichkeit
10 mV/DIV – 20 V/DIV (Fortschritt entsprechend der 1-2-5-Methode)
Zeitbasisbereich
10µS/DIV – 50s/DIV (Fortschritt entsprechend der 1-2-5-Methode)
Spannungsbereich
X1: ±40 V (Vpp: 80 V)X10: ±400 V (Vpp: 800 V)
Trigger-Methode
Auto/Normal/Single
Kopplungsmethode
AC/DC
Anzeige
2,8" (320x240 Pixel)
USB-Aufladung
5 V/1 A
Lithium-Batteriekapazität
1000 mAh
Rechteckwellenkalibrierung
Frequenz: 1K, Arbeitszyklus: 50%
Abmessungen
99 x 68,3 x 19,5 mm
Gewicht
100 g
LIeferumfang
FNIRSI DSO152 Oszilloskop
Krokodilklemmensonde
USB-Kabel
Trageschlaufe
Manual
Downloads
Manual
Firmware V0.1
,
von Clemens Valens
FNIRSI DPOX180H 2-in-1 digitales Phosphor-Oszilloskop (Review)
Das 2-Kanal-Handoszilloskop DPOX180H von Fnirsi mit 180 MHz passt in Ihre Westentasche, wiegt 285 g und kostet weniger als 150 €. Es bietet alle Funktionen,...