Wide Range Stromversorgung für Raspberry Pi
Mit dem PiEnergy Mini können Sie Ihren Raspberry Pi mit einer Spannung von 6 bis 36 V DC betreiben. Über den auf dem Board integrierten Knopf können Sie Ihren Raspberry Pi sowohl hoch- als auch herunterfahren.
Die Kommunikation mit dem Raspberry Pi läuft über GPIO4, diese Verbindung kann aber auch durch Entfernen eines Widerstands durchtrennt werden, um den Pin frei zu verwenden. Durch das ultraflache Design ist die Verwendung auch in Verbindung mit vielen Gehäusen möglich. Die Stiftleiste ist beiliegend und nicht angelötet, um den Aufbau noch flacher zuhalten.
Technische Daten
Eingangsspannung
6 bis 36 V DC
Ausgangsspannung
5,1 V
Ausgangsstrom
Bis zu 3 A (aktive Belüftung bei zusätzlich angeschlossenen Verbrauchern empfohlen)
Kabelquerschnitt am Spannungseingang
0,2-0,75 mm²
Schnittstelle zum Raspberry Pi
GPIO4
Mikrocontroller
ATtiny5
Weitere Anschlüsse
5 V Lüfteranschluss (2-Pin/2,54 mm)Lötpads für externen Ein-/Ausschalter
Kompatibel mit
Raspberry Pi 3, 4, 5
Abmessungen
23 x 56 x 11 mm
Lieferumfang
Board mit montiertem Kühlkörper
Stiftleiste (2x5)
Abstandshalter, Schraube, Mutter
Downloads
Datenblatt
Anleitung
Der 301T Fingerabdrucksensor ist durch den integrierten Chip in der Lage, Bilder zu sammeln und Algorithmen zu berechnen. Eine weitere bemerkenswerte Funktion des Sensors ist, dass er Fingerabdrücke unter verschiedenen Bedingungen, wie z. B. Feuchtigkeit, Lichtbeschaffenheit oder Veränderungen der Haut, erkennen kann. Dies bietet ein sehr breites Spektrum an Anwendungsmöglichkeiten, unter anderem zur Sicherung von Schlössern und Türen. Der Chip kann Daten über UART, TTL seriell und USB an den angeschlossenen Controller senden.
Technische Daten
Modell
JP2000 Sensor
Chip
32 Bit ARM Cortex-M3
Chip-Speicher
96 kB RAM, 1 MB Flash
Versorgungsspannung
4,2 - 6,0 V
Arbeitsstromverbrauch
Durchschnittlich: 40 mASpitze: 50 mA
Logiklevel
3,3 / 5 V TTL Logic
Fingerabdruckspeicherkapazität
3000 Abdrücke
Abgleichmethode
1:N Identifikation1:1 Verifizierung
Anpassbare Sicherheitsstufe
Stufe 1 - 5(Standardstufe: 3)
Falschakzeptanzrate
(auf Sicherheitsstufe 3)
Falschablehnungsrate
(auf Sicherheitsstufe 3)
Antwortzeit
Vorberechnung: Abgleich:
Baudratenunterstützung
9600 - 921600
UART-Übertragung
Keine Parität, Stopp-Bit: 1
Abmessungen
42 x 19 x 8 mm
Lieferumfang
1x Fingerabdrucksensor COM-FP-R301T
1x Kabel
Downloads
Datenblatt
Handbuch
Der Arduino Nano ist eine kleine, vollständige und Breadboard-freundliche Platine, die auf dem ATmega328 (Arduino Nano 3.x) basiert. Er hat mehr oder weniger die gleiche Funktionalität wie der Arduino Duemilanove, aber in einem anderen Gehäuse. Es fehlt nur eine DC-Strombuchse und arbeitet mit einem Mini-B-USB-Kabel anstelle eines Standardkabels.
Technische Daten
Mikrocontroller
ATmega328
Betriebsspannung (Logikpegel)
5 V
Eingangsspannung (empfohlen)
7-12 V
Eingangsspannung (Grenzwerte)
6-20 V
Digitale E/A-Pins
14 (davon 6 mit PWM-Ausgang)
Analogeingangs-Pins
8
DC-Strom pro I/O-Pin
40 mA
Flash-Speicher
16 KB (ATmega168) oder 32 KB (ATmega328), davon 2 KB für den Bootloader
SRAM
1 KB (ATmega168) oder 2 KB (ATmega328)
EEPROM
512 bytes (ATmega168) oder 1 KB (ATmega328)
Taktfrequenz
16 MHz
Abmessungen
18 x 45 mm
Stromversorgung
Der Arduino Nano kann über den Mini-B-USB-Anschluss, eine ungeregelte externe 6-20-V-Stromversorgung (Pin 30) oder eine geregelte externe 5-V-Stromversorgung (Pin 27) mit Strom versorgt werden. Die Stromquelle wird automatisch auf die höchste Spannungsquelle eingestellt.
Speicher
Der ATmega168 verfügt über 16 KB Flash-Speicher zum Speichern von Code (davon 2 KB für den Bootloader), 1 KB SRAM und 512 Byte EEPROM
Der ATmega328 verfügt über 32 KB Flash-Speicher zum Speichern von Code (2 KB werden auch für den Bootloader verwendet), 2 KB SRAM und 1 KB EEPROM.
Input und Output
Jeder der 14 digitalen Pins des Nano kann mit den Funktionen pinMode(), digitalWrite(), und digitalRead() als Eingang oder Ausgang verwendet werden.
Jeder Pin kann maximal 40 mA liefern oder empfangen und hat einen internen Pull-up-Widerstand (standardmäßig ausgeschaltet) von 20-50 kOhm.
Kommunikation
Der Arduino Nano verfügt über eine Reihe von Möglichkeiten zur Kommunikation mit einem Computer, einem anderen Arduino oder anderen Mikrocontrollern.
Der ATmega168 und ATmega328 bieten eine serielle UART-TTL-Kommunikation (5 V), die an den digitalen Pins 0 (RX) und 1 (TX) verfügbar ist. Ein FTDI FT232RL auf dem Board leitet diese serielle Kommunikation über USB weiter, und die FTDI-Treiber (in der Arduino-Software enthalten) stellen der Software auf dem Computer einen virtuellen Com-Port zur Verfügung.
Die Arduino-Software enthält einen seriellen Monitor, mit dem einfache Textdaten zum und vom Arduino-Board gesendet werden können. Die RX- und TX-LEDs auf dem Board blinken, wenn Daten über den FTDI-Chip und die USB-Verbindung zum Computer übertragen werden (jedoch nicht bei serieller Kommunikation über die Pins 0 und 1).
Eine SoftwareSerial-Bibliothek ermöglicht die serielle Kommunikation über jeden der digitalen Pins des Nano.
Programmierung
Der Arduino Nano kann mit der Arduino-Software (Download) programmiert werden.
Der ATmega168 oder ATmega328 auf dem Arduino Nano verfügt über einen Bootloader, mit dem Sie neuen Code ohne ein externes Hardware-Programmiergerät hochladen können. Er kommuniziert mit dem ursprünglichen STK500-Protokoll (Referenz, C-Header-Dateien).
Sie können den Bootloader auch umgehen und den Mikrocontroller über den ICSP-Header (In-Circuit Serial Programming) programmieren, indem Sie Arduino ISP oder ein ähnliches Programm verwenden; Einzelheiten finden Sie in dieser Anleitung.
Automatischer (Software-)Reset
Anstatt den Reset-Knopf vor einem Upload physisch zu betätigen, ist der Arduino Nano so konzipiert, dass er durch eine auf einem angeschlossenen Computer laufende Software zurückgesetzt werden kann.
Eine der Hardware-Flusskontrollleitungen (DTR) desFT232RL ist über einen 100 nF-Kondensator mit der Reset-Leitung des ATmega168 oder ATmega328 verbunden. Wenn diese Leitung aktiviert wird (low), fällt die Reset-Leitung lange genug ab, um den Chip zurückzusetzen.
Die Arduino-Software nutzt diese Fähigkeit, um das Hochladen von Code durch einfaches Drücken der Upload-Taste in der Arduino-Umgebung zu ermöglichen. Dies bedeutet, dass der Bootloader ein kürzeres Timeout haben kann, da das Absenken von DTR gut mit dem Beginn des Uploads koordiniert werden kann.
Die Motorino-Platine ist eine Erweiterungsplatine zur Ansteuerung und Verwendung von bis zu 16 PWM-gesteuerten 5-V-Servomotoren.
Der eigene Taktgeber auf dem Motorino sorgt für ein sehr genaues PWM-Signal und somit eine genaue Positionierung.
Die Platine verfügt über 2 Eingänge für Spannung von 4,8-6 V, über die zusammen bis zu 11 A eingespeist werden können, sodass eine optimale Versorgung der Motoren stets gewährleistet ist und somit auch größere Projekte mit ausreichend Strom beliefert werden können.
Die Versorgung läuft zentral über den Motorino, der für jeden Motor separat einen Anschluss für Spannung, Masse und die Steuerleitung zur Verfügung stellt.
Durch den eingebauten Kondensator wird der Strom zusätzlich gepuffert, hierdurch wird das Einbrechen der Spannung bei kurzzeitiger Mehrbelastung reduziert, die sonst zum Ruckeln führen könnte. Zusätzlich hat man noch die Möglichkeit, einen weiteren Kondensator anzuschließen.
Die Ansteuerung und Programmierung der Motoren kann (wie gewohnt) weiterhin bequem über den Arduino bedient werden. Anleitung und Codebeispiele erlauben auch Einsteigern, schnell Ergebnisse zu erzielen.
Besonderheiten
16 Kanäle, eigener Taktgeber für Servomotoren (PWM)
Eingang 1
Hohlstecker 5,5 / 2,1 mm , 4,8-6 V / 5 A max
Eingang 2
Schraubklemme, 4,8-6 V / 6 A max
Kommunikation
16 x PWM
Kompatibel mit
Arduino Uno, Mega und viele weitere Mikrovontroller mit Arduino-kompatiblem Pinout
Maß (BxHxT)
69 x 24 x 56 mm
Lieferumfang
Platine, Bedienungsanleitung, Retail-Verpackung
Die MotoPi-Platine ist eine Erweiterungsplatine zur Ansteuerung und Verwendung von bis zu 16 PWM-gesteuerten 5-V-Servomotoren.
Der eigene Taktgeber auf dem MotoPi sorgt für ein sehr genaues PWM-Signal und somit auch für eine genaue Positionierung.
Die Platine verfügt über 2 Eingänge für eine Spannung von 4,8-6 V, über die zusammen bis zu 11 A eingespeist werden können, so dass eine optimale Versorgung der Motoren stets gewährleistet ist und somit auch größere Projekte mit ausreichend Strom beliefert werden können.
Die Versorgung läuft zentral über den MotoPi, der für jeden Motor separat einen Anschluss für Spannung, Masse und die Steuerleitung zur Verfügung stellt.
Durch den eingebauten Kondensator wird der Strom zusätzlich gepuffert. Hierdurch wird das Einbrechen der Spannung bei kurzzeitiger Mehrbelastung abgemildert, die sonst zum Ruckeln führen könnte. Zusätzlich hat man noch die Möglichkeit, einen weiteren Kondensator anzuschließen.
Der integrierte Analog-Digital-Wandler bietet neue Möglichkeiten wie z. B. die Steuerung über einen Joystick.
Die Ansteuerung und Programmierung der Motoren kann (wie gewohnt) weiterhin bequem über den Raspberry Pi bedient werden. Anleitung und Codebeispiele erlauben auch Einsteigern, schnell Ergebnisse zu erzielen.
Besonderheiten
16 Kanäle, eigener Taktgeber für Servomotoren (PWM), inkl. Analog-Digital-Wandler
Eingang 1
Hohlstecker 5,5 / 2,1 mm, 4,8-6 V, 5 A max.
Eingang 2
Schraubklemme, 4,8-6 V, 6 A max.
Kompatibel mit
Raspberry Pi A+, B+, 2B, 3B
Maße (BxHxT)
65 x 24 x 56 mm
Lieferumfang
Platine, Bedienungsanleitung, Befestigungsmaterial, Retail-Verpackung
Dieses Multimedia-Gehäuse für alle Raspberry Pi 4-Modelle besticht durch hohe Funktionalität, modernes Design und einer üppigen Ausstattung:
Integrierter IR-Empfänger, steuerbar mit fast allen IR-Fernbedienungen
Steuerbare LED-Beleuchtung
Ein/Aus schalten, Zusatzfunktionen des Raspberry Pi ansteuern
Aktive, leise Kühlung
Werkzeugloser, magnetischer Zusammenbau
Alle Anschlüsse des Raspberry Pi liegen auf der Rückseite
GPIO-Port über separate Klappe erreichbar
Ideal als Multimediaplattform im Wohnzimmer, Desktop-Gerät oder den Einsatz im Digital Signage.
Technische Daten
Material
Acryl
Farbe
Schwarz
Kompatibel
Raspberry Pi 4
Stromversorgung
5 VDC (USB-C)
Mikrocontroller
STM32F030F4P
Infrarotempfänger
TSOP4838
LEDs
4x WS2812Mini
Herausgeführte Anschlüsse
1x USB-C, 1x Aux, 2x microHDMIVom Raspberry Pi: 2x USB-A 3.0, 2x USB-A 2.0, 1x RJ45
Gewicht
280 g
Abmessungen
113 x 100 x 38 mm
Lieferumfang
Multimedia-Gehäuse, Adapter-Board, Steuerungsboard, Aux-Adapterkabel
Downloads
Datenblatt (179,1 KB)
Handbuch (3,6 MB)
Expertenanleitung (6,1 MB)
Firmware v1.0.9-beta (11,2 KB)
Addons for LibreElec 9 (2,6 MB)
Code Examples
Addon - Multimedia Case Configuration
Addon - LED Configuration
Addon - IR Control Configuration
Prepared LibreElec Image
Prepared LibreElec Image 10.BETA
GitHub
Das JOY-iT Armor Case BLOCK ist ein robustes Aluminiumgehäuse, das speziell für den Raspberry Pi 5 entwickelt wurde. Es bietet hervorragenden Schutz vor Hitze und Stößen und eignet sich daher für anspruchsvolle Umgebungen. Durch sein kompaktes Design benötigt es keinen zusätzlichen Platz und ermöglicht eine nahtlose Integration in bestehende Projekte.
Das Gehäuse verfügt über einen großen Kühlkörper, um die Kühleffizienz zu verbessern. Die Installation ist unkompliziert, da das Gehäuse mit vier Schrauben (im Lieferumfang enthalten) am Raspberry Pi befestigt wird.
Technische Daten
Material
CNC-gefräste Aluminiumlegierung
Kühlleistung
Leerlauf: ~39°CVolllast: ~75°C
Besonderheiten
Großer Kühlkörper, Schutz vor Stößen und Hitze bei gleichem Volumen wie ohne Gehäuse
Abmessungen (Oberseite)
69 x 56 x 15,5 mm
Abmessungen (Unterseite)
87 x 56 x 7,5 mm
Dieser Programmer wurde speziell zum Brennen von Bootloadern (ohne Computer) auf Arduino-kompatiblen ATmega328-Entwicklungsboards entwickelt.
Schließen Sie den Programmierer einfach an die ICSP-Schnittstelle an, um den Bootloader neu zu brennen. Es ist auch mit neuen Chips kompatibel, sofern der IC funktionsfähig ist.
Hinweis: Durch das Brennen eines Bootloaders werden alle vorherigen Chipdaten gelöscht.
Features
Arbeitsspannung: 3,1–5,3 V
Arbeitsstrom: 10 mA
Kompatibel mit Arduino Nano-basierten Boards (ATmega328)
Abmessungen: 39,6 x 15,5 x 7,8 mm
Das Elektor Arduino Nano MCCAB Trainingsboard enthält alle Bauteile (inkl. Arduino Nano), die für die Übungen des "Mikrocontroller-Praxiskurs für Arduino-Einsteiger" benötigt werden wie Leuchtdioden, Schalter, Taster, akustische Signalgeber usw. Auch externe Sensoren, Motoren oder Baugruppen können mit diesem Mikrocontroller-Übungssystem abgefragt oder gesteuert werden.
Technische Daten (Arduino Nano Trainingsboard MCCAB)
Stromversorgung
Über die USB-Verbindung des zur Erstellung der Programme sowieso angeschlossenen PCs oder ein externes Netzteil (nicht im Lieferumfang enthalten)
Betriebsspannung
+5 Vcc
Eingangsspannung
Alle Eingänge
0 V bis +5 V
VX1 und VX2
+8 V bis +12 V (nur bei Verwendung eines externen Netzteils)
Mikrocontrollermodul
Arduino Nano
Hardwareperipherie
LCD
2x16 Zeichen
Potenziometer P1 & P2
JP3: Auswahl der Betriebsspannung von P1 & P2
Verteiler
SV4: Verteiler für die BetriebsspannungenSV5, SV6: Verteiler für die Ein-/Ausgänge des Mikrocontrollers
Schalter und Taster
RESET-Taster auf dem Arduino Nano-Modul6x Tastschalter K1 … K66x Schiebeschalter S1 … S6JP2: Verbindung der Schalter mit den Eingängen des Mikrocontrollers
Summer
Piezo-Summer Buzzer1 mit Steckbrücke auf JP6
Leuchtanzeigen
LED L auf dem Arduino Nano-Modul, verbunden mit GPIO D1311x LED: Zustandsanzeige für die Ein-/AusgängeJP6: Verbindung der LEDs LD10 … LD20 mit den GPIOs D2 … D12
Serielle SchnittstellenSPI & I²C
JP4: Auswahl des Signals an Pin X der SPI-Steckerleiste SV12SV9 bis SV12: SPI-Interface (3,3 V/5 V) bzw. I²C-Interface
Schaltausgang für externe Geräte
SV1, SV7: Schaltausgang (maximal +24 V/160 mA, extern zugeführt)SV2: 2x13 Pins zum Anschluss externer Module
3x3 LED-Matrix (9 rote LEDs)
SV3: Spalten der 3x3 LED-Matrix (Ausgänge D6 … D8)JP1: Verbindung der Reihen mit den GPIOs D3 … D5
Software
Library MCCABLib
Steuerung der Hardware-Komponenten (Schalter, Taster, Leuchtdioden, 3x3 LED-Matrix, Summer) auf dem MCCAB Trainingsboard
Betriebstemperatur
bis +40 °C
Abmessungen
100 x 100 x 20 mm
Technische Daten (Arduino Nano)
Mikrocontroller
ATmega328P
Architektur
AVR
Betriebsspannung
5 V
Flashspeicher
32 KB, davon 2 KB vom Bootloader belegt
SRAM
2 KB
Taktfrequenz
16 MHz
Analoge IN-Pins
8
EEPROM
1 KB
DC-Strom pro I/O-Pin
40 mA an einem I/O-Pin, insgesamt maximal 200 mA an allen Pins gemeinsam
Eingangsspannung
7-12 V
Digitale I/O-Pins
22 (6 davon sind PWM-fähig)
PWM-Ausgänge
6
Stromverbrauch
19 mA
Abmessungen
18 x 45 mm
Gewicht
7 g
Lieferumfang
1x Elektor Arduino Nano Trainingsboard (MCCAB)
1x Arduino Nano
Der Arduino Nano 33 BLE Rev2 steht an der Spitze der Innovation und nutzt die erweiterten Funktionen des nRF52840-Mikrocontrollers. Diese 32-Bit-Arm Cortex-M4-CPU, die mit beeindruckenden 64 MHz arbeitet, ermöglicht Entwicklern eine Vielzahl von Projekten. Die zusätzliche Kompatibilität mit MicroPython erhöht die Flexibilität des Boards und macht es einer breiteren Entwicklergemeinschaft zugänglich.
Das herausragende Merkmal dieses Entwicklungsboards ist seine Bluetooth Low Energy (Bluetooth LE)-Fähigkeit, die eine mühelose Kommunikation mit anderen Bluetooth LE-fähigen Geräten ermöglicht. Dies eröffnet den Entwicklern eine Fülle von Möglichkeiten und ermöglicht ihnen den nahtlosen Datenaustausch und die Integration ihrer Projekte in eine Vielzahl vernetzter Technologien.
Der Nano 33 BLE Rev2 wurde im Hinblick auf Vielseitigkeit entwickelt und ist mit einer integrierten 9-Achsen-Trägheitsmesseinheit (IMU) ausgestattet. Diese IMU ist bahnbrechend und bietet präzise Messungen von Position, Richtung und Beschleunigung. Ganz gleich, ob Sie Wearables oder Geräte entwickeln, die Echtzeit-Bewegungsverfolgung erfordern, die integrierte IMU sorgt für beispiellose Genauigkeit und Zuverlässigkeit.
Im Wesentlichen bietet der Nano 33 BLE Rev2 die perfekte Balance zwischen Größe und Funktionen und ist damit die ultimative Wahl für die Herstellung tragbarer Geräte, die nahtlos mit Ihrem Smartphone verbunden sind. Egal, ob Sie ein erfahrener Entwickler oder ein Bastler sind, der sich auf ein neues Abenteuer in der vernetzten Technologie einlässt, dieses Entwicklungsboard eröffnet eine Welt voller Möglichkeiten für Innovation und Kreativität. Erweitern Sie Ihre Projekte mit der Leistung und Flexibilität des Nano 33 BLE Rev2.
Technische Daten
Mikrocontroller
nRF52840
USB-Anschluss
Micro-USB
Pins
Eingebaute LED-Pins
13
Digitale I/O-Pins
14
Analoge Eingangspins
8
PWM-Pins
Alle digitalen Pins (4 gleichzeitig)
Externe Interrupts
Alle digitalen Pins
Konnektivität
Bluetooth
u-blox NINA-B306
Sensoren
IMU
BMI270 (3-Achsen-Beschleunigungsmesser + 3-Achsen-Gyroskop) + BMM150 (3-Achsen-Magnetometer)
Kommunikation
UART
RX/TX
I²C
A4 (SDA), A5 (SCL)
SPI
D11 (COPI), D12 (CIPO), D13 (SCK). Verwenden Sie einen beliebigen GPIO für Chip Select (CS)
LStromversorgung
I/O-Spannung
3,3 V
Eingangsspannung (nominal)
5-18 V
Gleichstrom pro I/O-Pin
10 mA
Taktgeschwindigkeit
Prozessor
nRF52840 64 MHz
Speicher
nRF52840
256 KB SRAM, 1 MB Flash
Abmessungen
18 x 45 mm
Downloads
Datasheet
Schematics
,
von Burkhard Kainka
RTL-SDR Blog V4 - Besser als V3? (Review)
RTL-SDR-Blogsticks gibt es schon seit einiger Zeit. Hiermit können HF-Signale bis zu 1 GHz oder höher empfangen werden. Der RTL-SDR Blog V4 ist nun schon...
,
von Clemens Valens
Labortest des 1,5kW-JOY-iT Netzteils JT-PS1440-C
In Zeiten von E-Bikes, Elektrorollern und anderen Fahrzeugen sind leistungsstarke programmierbare Stromversorgungen für das Testen von Motoren und das Laden von Batterien unerlässlich. Ihr gutes...