Dieses Board ermöglicht es dem Raspberry Pi Pico (angeschlossen über die Stiftleiste), zwei Motoren gleichzeitig mit voller Vorwärts-, Rückwärts- und Stoppsteuerung anzutreiben, was es ideal für Pico-gesteuerte Buggy-Projekte macht. Alternativ kann die Platine auch zum Betrieb eines Schrittmotors verwendet werden. Die Platine ist mit dem Motortreiber-IC DRV8833 ausgestattet, der über einen integrierten Kurzschluss-, Überstrom- und Wärmeschutz verfügt.
Die Platine hat 4 externe Anschlüsse für GPIO-Pins und eine 3-V- und GND-Versorgung vom Pico. Dies ermöglicht zusätzliche IO-Optionen für Ihre Buggy-Bauten, die vom Pico gelesen oder gesteuert werden können. Außerdem gibt es einen Ein/Aus-Schalter und eine Power-Status-LED, so dass Sie auf einen Blick sehen können, ob das Board eingeschaltet ist, und Ihre Batterien schonen können, wenn Ihr Projekt nicht in Gebrauch ist.
Um die Motortreiberplatine verwenden zu können, muss der Pico über eine verlötete Stiftleiste verfügen und fest in den Stecker eingesteckt werden. Die Platine erzeugt eine geregelte Stromversorgung, die in den 40-poligen Stecker eingespeist wird, um den Pico mit Strom zu versorgen, so dass dieser nicht direkt mit Strom versorgt werden muss. Die Motortreiberplatine wird entweder über Schraubklemmen oder einen Servostecker versorgt.
Kitronik hat ein Micro-Python Modul und Beispielcode entwickelt, um die Verwendung des Motor Driver Boards mit dem Pico zu unterstützen. Dieser Code ist im GitHub Repo verfügbar.
Merkmale
Ein kompaktes und dennoch funktionsreiches Board, das als Herzstück Ihrer Raspberry Pi Pico Roboter-Buggy-Projekte entwickelt wurde.
Die Platine kann 2 Motoren gleichzeitig mit voller Vorwärts-, Rückwärts- und Stoppsteuerung antreiben.
Sie enthält den Motortreiber-IC DRV8833, der über einen integrierten Kurzschluss-, Überstrom- und Überhitzungsschutz verfügt.
Darüber hinaus verfügt die Platine über einen Ein/Aus-Schalter und eine Power-Status-LED.
Die Stromversorgung der Platine erfolgt über einen Klemmenleistenanschluss.
Die 3V- und GND-Pins sind ebenfalls herausgebrochen, so dass externe Geräte mit Strom versorgt werden können.
Programmieren Sie es mit MicroPython über einen Editor wie den Thonny-Editor.
Abmessungen: 63 mm (L) x 35 mm (B) x 11,6 mm (H)
Download
Datenblatt
Gleichstrommotoren mit Bürsten sind die am häufigsten verwendeten und am weitesten verbreiteten Motoren auf dem Markt. Mit dem Cytron 10 Amp 5-30 V Gleichstrommotortreiber können Sie Ihrem Gleichstrommotor zusätzliche Funktionalität verleihen.
Es unterstützt sowohl PWM-Signale mit Vorzeichen und Betrag als auch gesperrte Gegenphase. Es ist mit Vollfestkörperkomponenten kompatibel, was zu einer schnelleren Reaktionszeit führt und den Verschleiß des mechanischen Relais verhindert.
Merkmale
Unterstützt Motorspannungen von 5 V bis 30 V DC
Strom bis zu 13 A Dauerstrom und 30 A Spitzenstrom 3,3 V und 5 V Logikpegeleingang
Kompatibel mit Arduino und Raspberry Pi
Drehzahlregelung PWM-Frequenz bis 20 kHz
Vollständige NMOS-H-Brücke für bessere Effizienz
Es ist kein Kühlkörper erforderlich
Bidirektionale Steuerung für einen bürstenbehafteten Gleichstrommotor
Regeneratives Bremsen
Downloads
Benutzerhandbuch
Arduino-Bibliothek
Elektromotoren sind in zahllosen elektronischen Geräten und Anlagen in und um unsere Häuser zu finden. In diesen Geräten werden Motorsteuerungen verwendet, um eine effiziente, sichere und genaue Regelung der Geschwindigkeit oder der Stellgliedposition des/der verwendeten Motors/Motoren zu gewährleisten.
Elektromotoren können je nach der Art der Spannung, mit der sie betrieben werden, entweder als Gleichstrom- oder als Wechselstrommotoren klassifiziert werden. Gleichstrommotoren sind die älteste Art von Elektromotoren und werden von Elektronikentwicklern sowohl in Heimlabors als auch in Schulen und Labors weit verbreitet eingesetzt. Fast alle Drucker, Kameras, Roboter und CNC-Maschinen in privaten, gewerblichen und industriellen Anwendungen verwenden eine Art von Gleichstrommotor. Wechselstrommotoren hingegen werden in vielen Haushaltsgeräten und Werkzeugen verwendet, da sie direkt über eine Wechselstromsteckdose betrieben werden können.
Das Maker Pi RP2040 Development Board von Cytron ist ein fortschrittliches System, das auf dem RP2040-Prozessor basiert und speziell für Motorsteuerungsanwendungen entwickelt wurde. Das Board verfügt über eine Zweikanal-DC-Motorsteuerungshardware mit Bürstenantrieb, 4 Servomotoranschlüsse und 7 Grove-kompatible E/A-Anschlüsse, was es zu einer idealen Plattform für mobile Robotikanwendungen, für die Steuerung von Roboterarmen oder für jede andere Art von Anwendung macht, die eine präzise Steuerung von Motoren und Aktuatoren erfordert.
Das von dem bekannten Elektor-Autor Dogan Ibrahim geschriebene Projektbuch enthält über 50 Projekte mit LEDs, einem Summer, einem OLED-Display, einem ADC-Wandler, einem Ultraschallsensor, PWM sowie Temperatur- und Feuchtigkeitssteuerung. Die Hauptkapitel behandeln die Steuerung von Gleichstrommotoren, Servomotoren und Schrittmotoren unter Verwendung der Maker Pi RP2040 Development Boards auf kreative und lehrreiche Weise.
Lieferumfang
Cytron Maker Pi RP2040 Development Board
Bauteile
1-kOhm-Widerstände
10-kOhm-Widerstand
12-kOhm-Widerstand
470-Ohm-Widerstand
LED
Relais, 3 V/10 A
LDR, 10 kOhm
Überbrückungsdrähte (männlich-männlich)
Steckbrett
Sensoren
TMP36 (Temperatur)
DHT11 (Temperatur und Luftfeuchtigkeit)
Module
5-V-Schrittmotor mit ULN2003-Treiber
HC-SR04 (Ultraschall)
SSD1306 (I²C OLED)
KY-021 (Reed-Schalter)
Gleichstrommotor (Bürsten, Miniatur, 3 V, 12 krpm)
SG90 (Servomotor)
Projektbuch (Englisch, 191 Seiten)
52 Projekte im Buch
Einfache LED-Projekte
Blinkende LED
Blinkendes SOS-Signal
Alle LEDs EIN und AUS
Binäre Zähl-LEDs
Rotierende LEDs
Zufällig blinkende LEDs
Rotierende LEDs mit Druckknopfsteuerung
Reaktionstimer
Reaktionsspiel für zwei Spieler
Verwendung der integrierten NeoPixel-LEDs – mit unterschiedlichen Farben
Mit den integrierten NeoPixel-LEDs – beide NeoPixel blinken zufällig
Einfache Buzzer-Projekte
Spielen der mittleren C-Töne
Verwendung des Summers als akustischer Signalgeber
Eine Melodie spielen – Alles Gute zum Geburtstag
Frequenz-Sweep
Verwendung von OLED-Displays
Text auf OLED anzeigen
Anzeige gängiger Formen
Sekundenzähler
Bitmaps zeichnen
Analog-Digital-Wandler verwenden
Voltmeter
Temperaturmessung
EIN/AUS-Temperaturregler
EIN/AUS-Temperaturregler mit OLED-Display
Messung der Umgebungslichtintensität
Ohmmeter
Pulsweitenmodulation (PWM)
Erzeugen Sie eine 1000-Hz-PWM-Wellenform mit 50 % Arbeitszyklus
Ändern der Helligkeit einer LED
Alarmton am Summer
Elektronische Orgel
Ultraschallsensorprojekte
Ultraschall-Abstandsmessung
Ultraschall-Abstandsmessung mit OLED-Anzeige
Messung des Wasserstands in einem Tank
Ultraschall-Rückwärtsparkhilfe mit Summer
Temperatur und relative Luftfeuchtigkeit
Temperatur- und relative Luftfeuchtigkeitsmessung
Temperatur- und relative Luftfeuchtigkeitsmessung mit OLED
DC-Motorsteuerungsprojekte
Ein/Aus-Steuerung des Gleichstrommotors
Drehzahlregelung des Gleichstrommotors mit zwei Geschwindigkeiten
Variieren der Motorgeschwindigkeit
Verwendung von zwei Gleichstrommotoren
Ändern der Motorrichtung
LDR-basierte Motorsteuerung
Magnetische Reedschalter-basierte Motorsteuerung
Anzeige der Drehzahl eines Gleichstrommotors – mit einem Drehgeber
Anzeige der Drehzahl eines Gleichstrommotors auf OLED – mithilfe eines Drehgebers
Zeitverhalten des Motors mit dem Encoder
Messung und Anzeige der Motorgeschwindigkeit mittels Interrupts
Proportional+Integral+Differential (PID) Motordrehzahlregelung
Servomotorsteuerungsprojekte
Servomotorsteuerung – in die Positionen 0, 90 und 180 Grad drehen
Mit zwei Servomotoren – in die Positionen 0, 90 und 180 Grad drehen
Ultraschallsonar
Schrittmotorsteuerungsprojekte
Grundlegende Schrittmotorsteuerung
Thermometer mit Zifferblatt
Hands-on in more than 50 projects
STM32 Nucleo family of processors are manufactured by STMicroelectronics. These are low-cost ARM microcontroller development boards. This book is about developing projects using the popular STM32CubeIDE software with the Nucleo-L476RG development board. In the early Chapters of the book the architecture of the Nucleo family is briefly described.
The book covers many projects using most features of the Nucleo-L476RG development board where the full software listings for the STM32CubeIDE are given for each project together with extensive descriptions. The projects range from simple flashing LEDs to more complex projects using modules, devices, and libraries such as GPIO, ADC, DAC, I²C, SPI, LCD, DMA, analogue inputs, power management, X-CUBE-MEMS1 library, DEBUGGING, and others. In addition, several projects are given using the popular Nucleo Expansion Boards. These Expansion Boards plug on top of the Nucleo development boards and provide sensors, relays, accelerometers, gyroscopes, Wi-Fi, and many others. Using an expansion board together with the X-CUBE-MEMS1 library simplifies the task of project development considerably.
All the projects in the book have been tested and are working. The following sub-headings are given for each project: Project Title, Description, Aim, Block Diagram, Circuit Diagram, and Program Listing for the STM32CubeIDE.
In this book you will learn about
STM32 microcontroller architecture;
the Nucleo-L476RG development board in projects using the STM32CubeIDE integrated software development tool;
external and internal interrupts and DMA;
DEBUG, a program developed using the STM32CubeIDE;
the MCU in Sleep, Stop, and in Standby modes;
Nucleo Expansion Boards with the Nucleo development boards.
What you need
a PC with Internet connection and a USB port;
STM32CubeIDE software (available at STMicroelectronics website free of charge)
the project source files, available from the book’s webpage hosted by Elektor;
Nucleo-L476RG development board;
simple electronic devices such as LEDs, temperature sensor, I²C and SPI chips, and a few more;
Nucleo Expansion Boards (optional).
Es ist möglich, den Cytron 25Amp 7-58 V High Voltage DC Motor Driver über PWM- und DIR-Eingänge zu steuern. Die Eingangslogikspannung reicht von 1,8 V bis 30 V und das Board ist mit einer Vielzahl von Host-Controllern (wie Arduino, Raspberry Pi, PLC) kompatibel.
Wenn Sie den Motor nicht programmieren möchten, um ihn zu steuern, besteht die Möglichkeit, den Motorcontroller über einen Potentiometer (Geschwindigkeit) und einen Schalter (Richtung) zu steuern.
Sie können den Motor auch schnell und bequem mit den onboard Testtasten und Motor Output-LEDs testen, ohne den Host-Controller anschließen zu müssen. Der Host-Controller kann mit dem Buck-Regler mit 5 V Ausgangsspannung betrieben werden. Dies ist insbesondere bei Hochspannungsanwendungen nützlich, bei denen keine zusätzliche Stromquelle oder Hochspannungsbuckregler benötigt werden.
Dieser Motorcontroller verfügt auch über verschiedene Schutzfunktionen. Wenn der Motor blockiert oder Sie einen zu großen Motor angeschlossen haben, wird der Überstromschutz die Platine schützen und vor Beschädigung schützen. Wenn der Motor versucht, einen Strom zu ziehen, der höher ist als der Motorcontroller unterstützen kann, wird der Motorstrom auf den maximalen Schwellenwert begrenzt. Unterstützt durch den Temperaturschutz, hängt der maximale Strombegrenzungsschwellenwert von der Boardtemperatur ab. Je höher die Boardtemperatur, desto niedriger der Strombegrenzungsschwellenwert.
Hinweis: Die Stromversorgung hat keinen Schutz gegen Rückwärtsspannung. Das Anschließen der Batterie in umgekehrter Polarität beschädigt den Motorcontroller unverzüglich.
Features
Bidirektionale Steuerung für einen gebürsteten Gleichstrommotor
Betriebsspannung: DC 7 V bis 58 V
Maximaler Motorstrom: 25 A Dauer, 60 A Spitze
5 V Ausgang für den Host-Controller (max. 250 mA)
Tasten für schnelle Tests
LEDs für den Zustand des Motorausgangs
Dualer Eingangsmodus: PWM/DIR oder Potentiometer/Schalter-Eingang
PWM/DIR-Eingänge kompatibel mit 1,8 V, 3,3 V, 5 V, 12 V und 24 V Logik (Arduino, Raspberry Pi, PLC, usw.)
PWM-Frequenz bis zu 40 kHz (Ausgangsfrequenz ist auf 16 kHz festgelegt)
Überstromschutz mit aktivem Strombegrenzung
Temperaturschutz
Unterspannungsabschaltung
Lieferumfang
1 × MD25HV (Motor-Treiber-Board)
1 × Potentiometer mit Steckverbinder
1 × Kippschalter mit Steckverbinder
4 × Nylon-PCB-Stützen/Abstandshalter
Downloads
Datenblatt
Beispielcode
Das iCEBreaker FPGA-Board ist ein Open-Source-FPGA-Entwicklungsboard für den Bildungsbereich.
Der iCEBreaker eignet sich hervorragend für Kurse und Workshops, in denen die Verwendung des Open-Source-FPGA-Designflows durch Yosys, nextpnr, IceStorm, Icarus Verilog, Amaranth HDL und andere vermittelt wird. Dies bedeutet, dass das Board kostengünstig ist und über eine Reihe nützlicher Funktionen verfügt, die die Gestaltung interessanter Kurse und Workshop-Übungen ermöglichen. Gleichzeitig ermöglicht es dem Benutzer, die proprietären Tools des Anbieters zu verwenden, wenn er dies wünscht.
Nach dem Workshop können die Platinen problemlos als Entwicklungsplatine verwendet werden, da die meisten GPIOs freigelegt, herausgebrochen und über Jumper auf der Rückseite der Platine konfigurierbar sind. Es gibt nur eine minimale Anzahl an Tasten und LEDs, die nicht abgenommen und für eigene Zwecke verwendet werden können.
Dokumentation
Workshop
Auf jedem moto:bit befinden sich mehrere I/O-Pins sowie ein vertikaler Qwiic-Anschluss, an den Servos, Sensoren und andere Schaltungen angeschlossen werden können. Auf Knopfdruck können Sie Ihr moto:bit in Bewegung setzen!
Das moto:bit wird mit dem micro:bit über einen aktualisierten SMD-Steckverbinder an der Oberseite des Boards verbunden, was die Einrichtung erleichtert. Dies schafft eine praktische Möglichkeit, micro:bits für die Programmierung auszutauschen und bietet gleichzeitig zuverlässige Verbindungen zu allen verschiedenen Pins auf dem micro:bit.
Wir haben auch eine einfache Barrel-Buchse auf dem moto:bit integriert, die in der Lage ist, alles mit Strom zu versorgen, was Sie an das Carrier Board anschließen.
Features
Zuverlässigerer Edge-Anschluss für die einfache Verwendung mit dem micro:bit
Vollständige H-Brücke zur Steuerung von zwei Motoren
Steuerung von Servomotoren
Vertikaler Qwiic-Anschluss
I2C-Anschluss zur Erweiterung der Funktionalität
Strom- und Batteriemanagement onboard für den micro:bit
STM32 Nucleo family of processors are manufactured by STMicroelectronics. These are low-cost ARM microcontroller development boards. This book is about developing projects using the popular Nucleo development board. In the early chapters of the book, the architecture of the Nucleo family is briefly described.
Software development tools that can be used with the Nucleo boards such as the Mbed, Keil MDK, TrueSTUDIO, and the System Workbench are described briefly in later Chapters.
The book covers many projects using most features of the STM32 Nucleo development boards where the full software listings for Mbed and System Workbench are given for every project. The projects range from simple flashing LEDs to more complex projects using modules and devices such as GPIO, ADC, DAC, I²C, LCD, analog inputs and others.
In addition, several projects are given using the Nucleo Expansion Boards, including popular expansion boards such as solid-state relay, MEMS and environmental sensors, DC motor driver, Wi-Fi, and stepper motor driver.
These Expansion Boards plug on top of the Nucleo development boards and simplify the task of project development considerably.
Features of this book
Learn the architecture of the STM32 microcontrollers
Learn how to use the Nucleo development board in projects using Mbed and System Workbench Toolchains
Learn how to use the Nucleo Expansion Boards with the Nucleo development boards
Update
The Mbed compiler has been replaced with two software packages: The Mbed Studio and Keil Studio Cloud. Both of these software packages are free of charge and are available on the Internet. If you need assistance using the Keil Studio Cloud, please download the Guide below.
Der LuckFox Pico Ultra ist ein kompakter Single-Board-Computer (SBC) mit dem Rockchip RV1106G3-Chipsatz, der für KI-Verarbeitung, Multimedia und stromsparende Embedded-Anwendungen entwickelt wurde.
Er ist mit einer integrierten 1-TOPS-NPU ausgestattet und eignet sich daher ideal für Edge-KI-Workloads. Mit 256 MB RAM, 8 GB Onboard-eMMC-Speicher, integriertem WLAN und Unterstützung für das LuckFox PoE-Modul bietet das Board Leistung und Vielseitigkeit für eine Vielzahl von Anwendungsfällen.
Der LuckFox Pico Ultra läuft unter Linux und unterstützt eine Vielzahl von Schnittstellen – darunter MIPI CSI, RGB-LCD, GPIO, UART, SPI, I²C und USB – und bietet so eine einfache und effiziente Entwicklungsplattform für Anwendungen in den Bereichen Smart Home, Industriesteuerung und IoT.
Technische Daten
Chip
Rockchip RV1106G3
Prozessor
Cortex-A7 1,2 GHz
Neuronaler Netzwerkprozessor (NPU)
1 TOPS, unterstützt int4, int8, int16
Bildprozessor (ISP)
Max. Eingangsgeschwindigkeit 5 M @30fps
Speicher
256 MB DDR3L
WLAN + Bluetooth
2,4 GHz WiFi-6 Bluetooth 5.2/BLE
Kameraschnittstelle
MIPI CSI 2-Lane
DPI-Schnittstelle
RGB666
PoE-Schnittstelle
IEEE 802.3af PoE
Lautsprecherschnittstelle
MX1,25 mm
USB
USB 2.0 Host/Gerät
GPIO
30 GPIO Pins
Ethernet
10/100M Ethernet-Controller und eingebetteter PHY
Standardspeichermedium
eMMC (8 GB)
Lieferumfang
1x LuckFox Pico Ultra W
1x LuckFox PoE Modul
1x IPX 2,4G 2 dB Antenne
1x USB-A auf USB-C Kabel
1x Schraubensatz
Downloads
Wiki
This book is about DC electric motors and their use in Arduino and Raspberry Pi Zero W based projects. The book includes many tested and working projects where each project has the following sub-headings:
Title of the project
Description of the project
Block diagram
Circuit diagram
Project assembly
Complete program listing of the project
Full description of the program
The projects in the book cover the standard DC motors, stepper motors, servo motors, and mobile robots. The book is aimed at students, hobbyists, and anyone else interested in developing microcontroller based projects using the Arduino Uno or the Raspberry Pi Zero W.
One of the nice features of this book is that it gives complete projects for remote control of a mobile robot from a mobile phone, using the Arduino Uno as well as the Raspberry Pi Zero W development boards. These projects are developed using Wi-Fi as well as the Bluetooth connectivity with the mobile phone. Readers should be able to move a robot forward, reverse, turn left, or turn right by sending simple commands from a mobile phone. Full program listings of all the projects as well as the detailed program descriptions are given in the book. Users should be able to use the projects as they are presented, or modify them to suit to their own needs.
The FRDM-MCXN947 is a compact and versatile development board designed for rapid prototyping with MCX N94 and N54 microcontrollers. It features industry-standard headers for easy access to the MCU's I/Os, integrated open-standard serial interfaces, external flash memory, and an onboard MCU-Link debugger.
Technische Daten
Microcontroller
MCX-N947 Dual Arm Cortex-M33 cores @ 150 MHz each with optimized performance efficiency, up to 2 MB dual-bank flash with optional full ECC RAM, External flash
Accelerators: Neural Processing Unit, PowerQuad, Smart DMA, etc.
Memory Expansion
*DNP Micro SD card socket
Connectivity
Ethernet Phy and connector
HS USB-C connectors
SPI/I²C/UART connector (PMOD/mikroBUS, DNP)
WiFi connector (PMOD/mikroBUS, DNP)
CAN-FD transceiver
Debug
On-board MCU-Link debugger with CMSIS-DAP
JTAG/SWD connector
Sensor
P3T1755 I³C/I²C Temp Sensor, Touch Pad
Expansion Options
Arduino Header (with FRDM expansion rows)
FRDM Header
FlexIO/LCD Header
SmartDMA/Camera Header
Pmod *DNP
mikroBUS
User Interface
RGB user LED, plus Reset, ISP, Wakeup buttons
Lieferumfang
1x FRDM-MCXN947 Development Board
1x USB-C Cable
1x Quick Start Guide
Downloads
Datasheet
Block diagram