Nach dem Einschalten beginnt der YDLIDAR G4 sich zu drehen und die Umgebung um sich herum zu scannen. Die Scandistanz beträgt 16 m und das Gerät bietet eine Scanrate von 9.000 Mal pro Sekunde.
Es macht detaillierte Untersuchungen seiner Umgebung und kann die kleinsten Objekte um sich herum lokalisieren. Mit einem hochpräzisen bürstenlosen Motor und einem Encoder-Disc, der auf Lagern montiert ist, dreht es sich reibungslos und hat eine Betriebsdauer von bis zu 500.000 Stunden.
Der G4 ist eine kostengünstige Lösung für Projekte, die Hinderniserkennung, Hindernisvermeidung und/oder simultane Lokalisierung und Kartierung (SLAM) erfordern. Alle YDLIDAR-Produkte sind ROS-ready.
Features
360 Grad 2D-Reichweiten-Scanning
Stabile Leistung, hohe Präzision
16 m Reichweite
Starke Widerstandsfähigkeit gegenüber Umgebungslichtinterferenzen
Bürstenloser Motorantrieb, stabile Leistung
FDA-Lasersicherheitsstandard Klasse I
360 Grad omnidirektionales Scanning, 5-12 Hz adaptive Scanning-Frequenz
OptoMagnetic-Technologie
Drahtlose Datenkommunikation
Scanrate von 9000 Hz
Dokumentation
ROS-Treiber
Ydlidar-Download-Seite
Unten im Abschnitt "Downloads" finden Sie das Datenblatt sowie die Benutzer- und Entwicklungsanleitungen.
YDLIDAR X4PRO ist ein zweidimensionaler 360-Grad-Entfernungsmesser. Basierend auf dem Triangulationsprinzip ist es mit entsprechender Optik, Elektrizität und Algorithmendesign ausgestattet, um eine hochfrequente und hochgenaue Entfernungsmessung zu erreichen. Die mechanische Struktur dreht sich um 360 Grad, um während der Entfernungsmessung kontinuierlich die Winkelinformationen sowie die Punktwolkendaten der Scanumgebung auszugeben.
Features
360-Grad-Omnidirektional-Scanning-Entfernungsmessung
Kleiner Distanzfehler, stabile Leistung und hohe Genauigkeit
Große Reichweite
Starke Beständigkeit gegen Umgebungslichtstörungen
Geringer Stromverbrauch, geringe Größe und lange Lebensdauer
Laserleistung entspricht den Sicherheitsstandards für Laser der Klasse I
Einstellbare Motorgeschwindigkeit, Scanfrequenz beträgt 6-12 Hz
Hochgeschwindigkeits-Bereichswahl, Bereichsfrequenz bis zu 5 kHz
Applikationen
Roboternavigation und Hindernisvermeidung
Roboter-ROS-Lehre und Forschung
Regionale Sicherheit
Umweltscan und 3D-Rekonstruktion
Navigation und Hindernisvermeidung des Roboterstaubsaugers/ROS-Lernroboters
Technische Daten
Frequenzbereich
5000 Hz
Scanfrequenz
6-12 Hz
Reichweite
0,12 10 m
Scanwinkel
360°
Winkelauflösung
0,43-0,85°
Abmessungen
110,6 x 71,1 x 52,3 mm
Downloads
Datasheet
User Manual
Development Manual
SDK
Tool
ROS
Dieses Bundle enthält die beliebte Elektor Sanduhr für Raspberry Pi Pico und das neue Elektor Laserkopf-Upgrade und bietet damit noch mehr Möglichkeiten zur Zeitanzeige. Sie können die aktuelle Uhrzeit nicht nur in Sand "gravieren", sondern sie jetzt auch alternativ auf eine im Dunkeln leuchtende Folie schreiben oder grüne Zeichnungen erstellen.
Inhalt des Bundles
Elektor Sanduhr für Raspberry Pi Pico (Einzelpreis: 50 €)
NEU: Elektor Laserkopf-Upgrade für Sanduhr (Einzelpreis: 35 €)
Elektor Sanduhr für Raspberry Pi Pico (Raspberry Pi-basierter Eyecatcher)
Eine handelsübliche Sanduhr zeigt nur, wie die Zeit verrinnt. Dagegen zeigt diese Raspberry Pi Pico-gesteuerte Sanduhr die genaue Uhrzeit an, indem die vier Ziffern für Stunde und Minute in die Sandschicht "eingraviert" werden. Nach einer einstellbaren Verzögerung wird der Sand durch zwei Vibrationsmotoren flachgedrückt und der Zyklus beginnt von vorne.
Das Herzstück der Sanduhr sind zwei Servomotoren, die über einen Pantographenmechanismus einen Schreibstift antreiben. Ein dritter Servomotor hebt den Stift auf und ab. Der Sandbehälter ist mit zwei Vibrationsmotoren ausgestattet, um den Sand zu glätten. Der elektronische Teil der Sanduhr besteht aus einem Raspberry Pi Pico und einer RTC/Treiberplatine mit Echtzeituhr, plus Treiberschaltungen für die Servomotoren.
Eine ausführliche Bauanleitung steht zum Download bereit.
Features
Abmessungen: 135 x 110 x 80 mm
Bauzeit: ca. 1,5 bis 2 Stunden
Lieferumfang
3x vorgeschnittene Acrylplatten mit allen mechanischen Teilen
3x Mini-Servomotoren
2x Vibrationsmotoren
1x Raspberry Pi Pico
1x RTC/Treiberplatine mit montierten Teilen
Muttern, Bolzen, Abstandshalter und Drähte für die Baugruppe
Feinkörniger weißer Sand
Elektor Laserkopf-Upgrade für Sanduhr
Der neue Elektor-Laserkopf verwandelt die Elektor Sanduhr in eine Uhr, die die Zeit auf eine im Dunkeln leuchtende Folie statt auf Sand schreibt. Neben der Anzeige der Zeit können damit auch flüchtige Zeichnungen erstellt werden. Der 5-mW-Laserpointer mit einer Wellenlänge von 405 nm erzeugt leuchtend grüne Zeichnungen auf der im Dunkeln leuchtenden Folie. Um optimale Ergebnisse zu erzielen, verwenden Sie das Kit in einem schwach beleuchteten Raum. Achtung: Schauen Sie niemals direkt in den Laserstrahl!
Der Bausatz enthält alle notwendigen Komponenten, es ist jedoch das Anlöten von drei Drähten erforderlich.
Hinweis: Dieses Kit ist auch mit der originalen Arduino-basierten Sanduhr aus dem Jahr 2017 kompatibel. Weitere Einzelheiten finden Sie unter Elektor 1-2/2017 und Elektor 1-2/2018.
Der DiP-Pi PIoT ist ein fortschrittliches WiFi-Konnektivitätssystem mit integrierten Sensoren, das die meisten möglichen Anforderungen für IoT-Anwendungen auf Basis des Raspberry Pi Pico abdeckt. Es kann das System zusätzlich zum Original-Micro-USB des Raspberry Pi Pico mit bis zu 1,5 A bei 4,8 V versorgen, geliefert von 6–18 VDC für verschiedene Stromversorgungssysteme wie Autos, Industrieanlagen usw. Es unterstützt LiPo- oder Li-Ion-Akkus mit automatischem Ladegerät sowie die automatische Umschaltung von Kabelstrom auf Batteriestrom oder umgekehrt (USV-Funktionalität), wenn die Kabelstromversorgung unterbrochen wird. Die Extended Powering Source (EPR) ist mit einer rücksetzbaren PPTC-Sicherung, umgekehrter Polarität und auch ESD geschützt. Der DiP-Pi PIoT verfügt über eine in den Raspberry Pi Pico integrierte RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf alle Stromquellen (USB, EPR oder Batterie) wirkt. Der Benutzer kann (über die A/D-Pins des Raspberry Pi Pico) den Batteriestand und den EPR-Wert mit den A/D-Wandlern von PICO überwachen. Beide A/D-Eingänge sind mit 0402-Widerständen (0 Ohm) überbrückt. Wenn der Benutzer diese Pico-Pins aus irgendeinem Grund für seine eigene Anwendung verwenden muss, kann er daher problemlos entfernt werden. Das Ladegerät lädt den angeschlossenen Akku automatisch auf (sofern verwendet), aber der Benutzer kann das Ladegerät zusätzlich ein-/ausschalten, wenn seine Anwendung dies benötigt.
DiP-Pi PIoT kann für kabelbetriebene IoT-Systeme, aber auch für rein batteriebetriebene Systeme mit EIN/AUS verwendet werden. Der Status jeder Stromquelle wird durch separate Informations-LEDs angezeigt (VBUS, VSYS, VEPR, CHGR, V3V3). Der Benutzer kann jede Kapazität vom Typ LiPo oder Li-Ion verwenden; Es muss jedoch darauf geachtet werden, PCB-geschützte Batterien mit einem maximal zulässigen Entladestrom von 2 A zu verwenden. Das integrierte Batterieladegerät ist so eingestellt, dass es die Batterie mit einem Strom von 240 mA lädt. Dieser Strom wird durch einen Widerstand eingestellt. Wenn der Benutzer also mehr oder weniger benötigt, kann er ihn selbst ändern. Der DiP-Pi PIoT ist außerdem mit einem WiFi ESP8266 Clone-Modul mit integrierter Antenne ausgestattet. Diese Funktion eröffnet eine Vielzahl darauf basierender IoT-Anwendungen.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi PIoT mit eingebetteten 1-Draht-DHT11/22-Sensoren und Micro-SD-Kartenschnittstellen ausgestattet. Durch die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen eignet sich der DiP-Pi PIoT ideal für IoT-Anwendungen wie Datenlogger, Pflanzenüberwachung, Kühlschränke usw.
DiP-Pi PIoT wird durch zahlreiche gebrauchsfertige Beispiele unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Raspberry Pi Pico-Pinbelegung kompatibel
Unabhängige informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter, der auf alle Stromquellen wirkt (USB, EPR, Batterie)
Externe Stromversorgung 6–18 VDC (Autos, Industrieanwendungen usw.)
Überwachung des externen Strompegels (6-18 VDC).
Überwachung des Batteriestands
Verpolungsschutz
PPTC-Sicherungsschutz
ESD-Schutz
Automatisches Batterieladegerät (für PCB-geschütztes LiPo, Li-Ion – 2 A max.) Automatisch/Benutzersteuerung
Automatische Umschaltung von Kabelbetrieb auf Batteriebetrieb und umgekehrt (USV-Funktionalität)
Mit der USB-Stromversorgung, der externen Stromversorgung und der Batterieversorgung können verschiedene Stromversorgungsschemata gleichzeitig verwendet werden
1,5 A bei 4,8 V Abwärtswandler auf EPR
Eingebetteter 3,3 V @ 600 mA LDO
ESP8266 WLAN-Konnektivität klonen
ESP8266 Firmware-Upload-Schalter
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Externe Stromversorgung 6–18 V (über spezielle Buchse – 3,4/1,3 mm)
Externe Batterie
Unterstützte Batterietypen
LiPo mit Schutzplatine, max. Strom 2A
Li-Ion mit Schutzplatine, max. Strom 2A
Eingebettete Peripheriegeräte und Schnittstellen
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Micro-SD-Kartensteckplatz
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexi-Cut-Gehäuse
Systemüberwachung
Batteriestand über Raspberry Pi Pico ADC0 (GP26)
EPR-Level über Raspberry Pi Pico ADC1 (GP27)
Informative LEDs
VB (VUSB)
USA (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
Systemschutz
Sofortiger Raspberry Pi Pico-Hardware-Reset-Knopf
ESD-Schutz auf EPR
Verpolungsschutz bei EPR
PPTC 500 mA @ 18 V-Sicherung am EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO Über den aktuellen Schutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2-Unzen-Kupfer-Leiterplatte, hergestellt für eine ordnungsgemäße Hochstromversorgung und Kühlung
6-mil-Spur-/6-mil-Lücken-Technologie, 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersionsgold
Mehrschichtige Kupfer-Thermorohre für eine erhöhte thermische Reaktion des Systems und eine bessere passive Kühlung
Downloads
Datenblatt
Handbuch
Der DiP-Pi WiFi Master ist ein fortschrittliches WiFi-Konnektivitätssystem mit eingebetteten Sensorschnittstellen, das die meisten möglichen Anforderungen für IoT-Anwendungen auf Basis von Raspberry Pi Pico abdeckt. Es wird direkt vom Raspberry Pi Pico VBUS mit Strom versorgt. Der DiP-Pi WiFi Master enthält eine in Raspberry Pi Pico eingebettete RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf die Stromquellen von Raspberry Pi Pico einwirkt.
Der DiP-Pi WiFi Master ist mit einem WiFi ESP8266 Clone-Modul mit integrierter Antenne ausgestattet. Diese Funktion eröffnet eine breite Palette darauf basierender IoT-Anwendungen.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi WiFi Master mit eingebetteten 1-Wire-, DHT11/22-Sensoren und Micro-SD-Kartenschnittstellen ausgestattet. Die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen macht den DiP-Pi WiFi Master ideal für IoT-Anwendungen wie Datenlogger, Anlagenüberwachung, Kühlschranküberwachung usw. DiP-Pi WiFi Master wird mit zahlreichen gebrauchsfertigen Beispielen unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Kompatibel mit Raspberry Pi Pico-Pinbelegung
Unabhängige informative LEDs (VBUS, VSYS, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter mit Wirkung auf die Stromversorgung des Raspberry Pi Pico
Eingebetteter 3,3 V bei 600 mA LDO
ESP8266-Klon-WLAN-Konnektivität
ESP8266 Firmware-Upload-Schalter
Eingebettete 1-Wire-Schnittstelle
Integrierte DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Eingebettete Peripheriegeräte und Schnittstellen
Eingebettete 1-Wire-Schnittstelle
Integrierte DHT-11/22-Schnittstelle
Micro SD-Kartensteckplatz
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard-Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexiglasgehäuse
Informative LEDs
VB (VUSB)
VS (VSYS)
V3 (V3V3)
Systemschutz
Direkter Raspberry Pi Pico Hardware-Reset-Knopf
PPTC 500 mA @ 18 V Sicherung auf EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO-Überstromschutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2 ozKupfer-PCB für ordnungsgemäße Hochstromversorgung und Kühlung
6 mils Spur/6 mils Lückentechnologie 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersion Gold
Mehrschichtige Kupfer-Thermorohre für eine verbesserte thermische Reaktion des Systems und bessere passive Kühlung
Downloads
Datenblatt
Handbuch
Features
360 Grad omnidirektionale Scanmessung des Entfernungsbereichs
Kleine Entfernungsfehler, stabile Leistung und hohe Genauigkeit
Schutzklasse IP65
Starke Resistenz gegen Umgebungslichtinterferenzen
Industriequalität bürstenloser Motorantrieb für stabile Leistung
Laserleistung entspricht den Sicherheitsstandards der Laserklasse I
Anpassungsfähige Scan-Frequenz von 5-12 Hz (Anpassung unterstützt)
Fotomagnetische Fusionstechnologie zur drahtlosen Kommunikation und drahtlosen Stromversorgung
Entfernungsfrequenz von bis zu 20 kHz (Anpassung unterstützt)
Anwendungen
Roboter-Navigation und Hindernisvermeidung
Industrielle Automatisierung
Roboter-ROS-Unterricht und Forschung
Regionale Sicherheit
Intelligenter Transport
Umweltscanning und 3D-Rekonstruktion
Kommerzielle Roboter / Robotersauger
Downloads
Datenblatt
Benutzerhandbuch
Entwicklungsanleitung
SDK
TOOL
ROS
Bauen Sie robuste, intelligente Maschinen, die die Rechenleistung des Raspberry Pi mit LEGO-Komponenten kombinieren.
Der Raspberry Pi Build HAT bietet vier Anschlüsse für LEGO Technic Motoren und Sensoren aus dem SPIKE Portfolio. Zu den verfügbaren Sensoren gehören ein Abstandssensor, ein Farbsensor und ein vielseitiger Kraftsensor. Die Winkelmotoren sind in verschiedenen Größen erhältlich und verfügen über integrierte Encoder, die ihre Position abfragen können.
Der Build HAT passt auf alle Raspberry Pi-Computer mit einem 40-Pin-GPIO-Header, einschließlich – mit der Hinzufügung eines Flachbandkabels oder eines anderen Erweiterungsgeräts – Raspberry Pi 400. Angeschlossene LEGO Technic-Geräte können neben Standard-Raspberry-Pi-Zubehör problemlos in Python gesteuert werden wie zum Beispiel ein Kameramodul.
Merkmale
Steuert bis zu 4 Motoren und Sensoren
Versorgt den Raspberry Pi mit Strom (bei Verwendung mit einem geeigneten externen Netzteil)
Einfache Verwendung von Python auf dem Raspberry Pi
Der Raspberry Pi Pico 2 ist ein neues Mikrocontroller-Board der Raspberry Pi Foundation, basierend auf dem RP2350. Es verfügt über eine höhere Kerntaktrate, doppelt so viel On-Chip-SRAM, doppelt so viel On-Board-Flash-Speicher, leistungsstärkere Arm-Kerne, optionale RISC-V-Kerne, neue Sicherheitsfunktionen und verbesserte Schnittstellenfunktionen. Der Raspberry Pi Pico 2 bietet eine deutliche Steigerung der Leistung und Funktionen und behält gleichzeitig die Hardware- und Softwarekompatibilität mit früheren Mitgliedern der Raspberry Pi Pico-Serie bei.
Der RP2350 bietet eine umfassende Sicherheitsarchitektur rund um Arm TrustZone für Cortex-M. Es umfasst signiertes Booten, 8 KB Antifuse-OTP für die Schlüsselspeicherung, SHA-256-Beschleunigung, einen Hardware-TRNG und schnelle Glitch-Detektoren.
Die einzigartige Dual-Core- und Dual-Architektur-Fähigkeit des RP2350 ermöglicht Benutzern die Wahl zwischen einem Paar ARM Cortex-M33-Kernen nach Industriestandard und einem Paar Hazard3 RISC-V-Kernen mit offener Hardware. Der Raspberry Pi Pico 2 ist in C/C++ und Python programmierbar und wird durch eine ausführliche Dokumentation unterstützt. Er ist das ideale Mikrocontroller-Board sowohl für Enthusiasten als auch für professionelle Entwickler.
Technische Daten
CPU
Dual Arm Cortex-M33 oder Dual RISC-V Hazard3 Prozessoren bei 150 MHz
Speicher
520 KB On-Chip-SRAM; 4 MB integrierter QSPI-Flash
Schnittstellen
26 Mehrzweck-GPIO-Pins, darunter 4, die für AD verwendet werden können
Peripheriegeräte
2x UART
2x SPI-Controller
2x I²C-Controller
24x PWM-Kanäle
1x USB 1.1-Controller und PHY, mit Host- und Geräteunterstützung
12x PIO-Zustandsmaschinen
Eingangsspannung
1,8-5,5 V DC
Abmessungen
21 x 51 mm
Downloads
Datasheet (Pico 2)
Datasheet (RP2350)
Der Raspberry Pi Zero W erweitert die Raspberry Pi Zero-Familie. Der Raspberry Pi Zero W hat alle Funktionen des ursprünglichen Raspberry Pi Zero, kommt aber mit zusätzlichen Anschlussmöglichkeiten bestehend aus:
802.11 b/g/n wireless LAN
Bluetooth 4.1
Bluetooth Low Energy (BLE)
Weitere Features
1 GHz, Single-Core-CPU
512 MB RAM
Mini HDMI und USB On-The-Go Anschlüsse
Micro-USB power
HAT-compatible 40-pin header
Composite-Video- und Reset-Anschlüsse
CSI-Kamera-Anschluss
Downloads
Mechanical Drawing
Schematics
Raspberry Pi Pico W ist ein Mikrocontroller-Board, das auf dem Mikrocontroller-Chip Raspberry Pi RP2040 basiert.
Der Mikrocontroller-Chip RP2040 ("Raspberry Silicon") bietet einen Dual-Core-ARM-Cortex-M0+-Prozessor (133 MHz), 256 KB RAM, 30 GPIO-Pins und viele andere Schnittstellenoptionen. Darüber hinaus gibt es 2 MB integrierten QSPI-Flash-Speicher für Code- und Datenspeicherung.
Raspberry Pi Pico W wurde als kostengünstige und dennoch flexible Plattform für RP2040 mit einer drahtlosen 2,4-GHz-Schnittstelle unter Verwendung eines Infineon CYW43439 entwickelt. Die Funkschnittstelle wird über SPI mit dem RP2040 verbunden.
Features von Pico W
RP2040-Mikrocontroller mit 2 MB Flash-Speicher
Integrierte 2,4-GHz-Single-Band-Wireless-Schnittstellen (802.11n)
Micro-USB-B-Anschluss für Strom und Daten (und zur Neuprogrammierung des Flash)
40-polige 21 x 51 mm 'DIP'-Stil, 1 mm dicke PCB mit 0,1" Durchgangslochstiften, auch mit Randkerben
Bietet 26 multifunktionale 3,3-V-Universal-I/O (GPIO)
23 GPIO sind rein digital, wobei drei auch ADC-fähig sind
Kann als Modul auf der Oberfläche montiert werden
3-poliger ARM Serial Wire Debug (SWD) Port
Einfache, aber hochflexible Stromversorgungsarchitektur
Verschiedene Optionen zur einfachen Stromversorgung des Geräts über Micro-USB, externe Netzteile oder Batterien
Hohe Qualität, niedrige Kosten, hohe Verfügbarkeit
Umfassendes SDK, Softwarebeispiele und Dokumentation
Features von RP2040-Mikrocontroller
Dual-Core-Cortex M0+ mit bis zu 133 MHz
On-Chip-PLL ermöglicht eine variable Kernfrequenz
264 kByte Multibank-Hochleistungs-SRAM
Externer Quad-SPI-Flash mit eXecute In Place (XIP) und 16 KB On-Chip-Cache
Hochleistungs-Full-Crossbar-Busgewebe
On-Board USB1.1 (Gerät oder Host)
30 Multifunktions-Allzweck-I/O (vier können für ADC verwendet werden)
1,8-3,3 V I/O-Spannung
12-Bit 500 ksps Analog-Digital-Wandler (ADC)
Verschiedene digitale Peripheriegeräte
2x UART, 2x I²C, 2x SPI, 16x PWM-Kanäle
1 Timer mit 4 Alarmen, 1 Echtzeituhr
2x programmierbare I/O-Blöcke (PIO), insgesamt 8 Zustandsmaschinen
Flexible, benutzerprogrammierbare Hochgeschwindigkeits-I/O
Kann Schnittstellen wie SD-Karte und VGA emulieren
Hinweis: Raspberry Pi Pico W I/O-Spannung ist auf 3,3 V festgelegt.
Downloads
Datasheet
Specifications of 3-pin Debug Connector
Der DiP-Pi Power Master ist ein fortschrittliches Stromversorgungssystem mit integrierten Sensorschnittstellen, das die meisten möglichen Anforderungen für Anwendungen auf Basis des Raspberry Pi Pico abdeckt. Es kann das System zusätzlich zum Original-Micro-USB des Raspberry Pi Pico mit bis zu 1,5 A bei 4,8 V versorgen, geliefert von 6–18 VDC für verschiedene Stromversorgungssysteme wie Autos, Industrieanlagen usw. Es unterstützt LiPo- oder Li-Ion-Akkus mit automatischem Ladegerät sowie die automatische Umschaltung von Kabelstrom auf Batteriestrom oder umgekehrt (USV-Funktionalität), wenn die Kabelstromversorgung unterbrochen wird. Die Extended Powering Source (EPR) ist mit einer rücksetzbaren PPTC-Sicherung, umgekehrter Polarität und auch ESD geschützt. Der DiP-Pi Power Master verfügt über eine in den Raspberry Pi Pico integrierte RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf alle Stromquellen (USB, EPR oder Batterie) wirkt. Der Benutzer kann (über die A/D-Pins des Raspberry Pi Pico) den Batteriestand und den EPR-Wert mit den A/D-Wandlern von PICO überwachen. Beide A/D-Eingänge sind mit 0402-Widerständen (0 Ohm) überbrückt. Wenn der Benutzer diese Pico-Pins aus irgendeinem Grund für seine eigene Anwendung verwenden muss, kann er daher problemlos entfernt werden. Das Ladegerät lädt den angeschlossenen Akku automatisch auf (sofern verwendet), aber der Benutzer kann das Ladegerät zusätzlich ein-/ausschalten, wenn seine Anwendung dies benötigt. DiP-Pi Power Master kann für kabelbetriebene Systeme, aber auch für rein batteriebetriebene Systeme mit EIN/AUS verwendet werden. Der Status jeder Stromquelle wird durch separate Informations-LEDs angezeigt (VBUS, VSYS, VEPR, CHGR, V3V3). Der Benutzer kann jede Kapazität vom Typ LiPo oder Li-Ion verwenden; Es muss jedoch darauf geachtet werden, PCB-geschützte Batterien mit einem maximal zulässigen Entladestrom von 2 A zu verwenden. Das integrierte Batterieladegerät ist so eingestellt, dass es die Batterie mit einem Strom von 240 mA lädt. Dieser Strom wird durch einen Widerstand eingestellt. Wenn der Benutzer also mehr oder weniger benötigt, kann er ihn selbst ändern.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi Power Master mit integrierten 1-Draht- und DHT11/22-Sensorschnittstellen ausgestattet. Durch die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen eignet sich der DiP-Pi Power Master ideal für Anwendungen wie Datenlogger, Pflanzenüberwachung, Kühlschränke usw.
DiP-Pi Power Master wird durch zahlreiche gebrauchsfertige Beispiele unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Raspberry Pi Pico-Pinbelegung kompatibel
Unabhängige informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter, der auf alle Stromquellen wirkt (USB, EPR, Batterie)
Externe Stromversorgung 6-18 V DC (Autos, Industrieanwendungen usw.)
Überwachung des externen Strompegels (6-18 VDC).
Überwachung des Batteriestands
Verpolungsschutz
PPTC-Sicherungsschutz
ESD-Schutz
Automatisches Batterieladegerät (für PCB-geschütztes LiPo, Li-Ion – 2 A max.) Automatisch/Benutzersteuerung
Automatische Umschaltung von Kabelbetrieb auf Batteriebetrieb und umgekehrt (USV-Funktionalität)
Mit der USB-Stromversorgung, der externen Stromversorgung und der Batterieversorgung können verschiedene Stromversorgungsschemata gleichzeitig verwendet werden
1,5 A bei 4,8 V Abwärtswandler auf EPR
Eingebetteter 3,3 V @ 600 mA LDO
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Externe Stromversorgung 6–18 V (über spezielle Buchse – 3,4/1,3 mm)
Externe Batterie
Unterstützte Batterietypen
LiPo mit Schutzplatine, max. Strom 2A
Li-Ion mit Schutzplatine, max. Strom 2A
Eingebettete Peripheriegeräte und Schnittstellen
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexi-Cut-Gehäuse
Systemüberwachung
Batteriestand über Raspberry Pi Pico ADC0 (GP26)
EPR-Level über Raspberry Pi Pico ADC1 (GP27)
Informative LEDs
VB (VUSB)
USA (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
Systemschutz
Sofortiger Raspberry Pi Pico-Hardware-Reset-Knopf
ESD-Schutz auf EPR
Verpolungsschutz bei EPR
PPTC 500 mA @ 18 V-Sicherung am EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO Über den aktuellen Schutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2-Unzen-Kupfer-Leiterplatte, hergestellt für eine ordnungsgemäße Hochstromversorgung und Kühlung
6-mil-Spur-/6-mil-Lücken-Technologie, 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersionsgold
Mehrschichtige Kupfer-Thermorohre für eine erhöhte thermische Reaktion des Systems und eine bessere passive Kühlung
Downloads
Datenblatt
Datenblatt
Weltweit beliebteste ROS-Plattform
TurtleBot ist der beliebteste Open-Source-Roboter für Bildung und Forschung. Die neue Generation TurtleBot3 ist ein kleiner, kostengünstiger, voll programmierbarer, ROS-basierter mobiler Roboter. Er ist für Bildung, Forschung, Hobby und Produktprototyping gedacht.
Erschwingliche Kosten
TurtleBot wurde entwickelt, um die kostenbewussten Bedürfnisse von Schulen, Laboren und Unternehmen zu erfüllen. TurtleBot3 ist der erschwinglichste Roboter unter den SLAM-fähigen mobilen Robotern, die mit einem 360°-Laser-Distanzsensor LDS-01 ausgestattet sind.
ROS Standard
Die Marke TurtleBot wird von Open Robotics verwaltet, das ROS entwickelt und pflegt. Heutzutage ist ROS die bevorzugte Plattform für alle Robotiker auf der ganzen Welt geworden. TurtleBot kann mit bestehenden ROS-basierten Roboterkomponenten integriert werden, aber TurtleBot3 kann eine erschwingliche Plattform für diejenigen sein, die mit dem Erlernen von ROS beginnen möchten.
Erweiterbarkeit
TurtleBot3 ermutigt Benutzer, seine mechanische Struktur mit einigen alternativen Optionen anzupassen: Open Source Embedded Board (als Steuerplatine), Computer und Sensoren. Der TurtleBot3 Waffle Pi ist eine zweirädrige Plattform mit Differentialantrieb, kann aber strukturell und mechanisch in vielerlei Hinsicht angepasst werden: Autos, Fahrräder, Anhänger und so weiter. Erweitern Sie Ihre Ideen jenseits der Vorstellungskraft mit verschiedenen SBC, Sensoren und Motoren auf einer skalierbaren Struktur.
Modularer Aktuator für mobilen Roboter
TurtleBot3 ist in der Lage, durch den Einsatz von 2 DYNAMIXEL's in den Radgelenken präzise räumliche Daten zu erhalten. Die DYNAMIXEL der XM-Serie können in einem von 6 Betriebsmodi betrieben werden (XL-Serie: 4 Betriebsmodi): Geschwindigkeitsregelung für die Räder, Drehmomentregelung oder Positionsregelung für die Gelenke, usw. DYNAMIXEL kann auch für die Herstellung eines mobilen Manipulators verwendet werden, der leicht ist, aber mit Geschwindigkeits-, Drehmoment- und Positionssteuerung präzise gesteuert werden kann. DYNAMIXEL ist eine Kernkomponente, die den TurtleBot3 perfekt macht. Er ist einfach zu montieren, zu warten, zu ersetzen und neu zu konfigurieren.
Offene Steuerplatine für ROS
Die Steuerplatine ist sowohl hardware- als auch softwareseitig für die ROS-Kommunikation offengelegt. Die Open-Source-Steuerungsplatine OpenCR1.0 ist leistungsfähig genug, um nicht nur DYNAMIXELs, sondern auch ROBOTIS-Sensoren zu steuern, die häufig für grundlegende Erkennungsaufgaben auf kostengünstige Weise verwendet werden. Verschiedene Sensoren wie z. B. Berührungssensor, Infrarotsensor, Farbsensor und eine Handvoll weiterer sind verfügbar. Das OpenCR1.0 verfügt über einen IMU-Sensor im Inneren des Boards, so dass es die präzise Steuerung für unzählige Anwendungen verbessern kann. Das Board verfügt über 3,3 V, 5 V und 12 V Stromversorgungen, um die verfügbaren Computergeräte zu verstärken.
Open Source
Die Hardware, Firmware und Software von TurtleBot3 sind Open Source, was bedeutet, dass die Benutzer willkommen sind, die Quellcodes herunterzuladen, zu ändern und zu teilen. Alle Komponenten des TurtleBot3 werden aus kostengünstigem Kunststoff im Spritzgussverfahren hergestellt, die 3D-CAD-Daten sind jedoch auch für den 3D-Druck verfügbar.
Technische Daten
Maximale Translationsgeschwindigkeit
0,26 m/s
Maximale Rotationsgeschwindigkeit
1,82 rad/s (104.27 deg/s)
Maximale Nutzlast
30 kg
Abmessungen (L x B x H)
281 x 306 x 141 mm
Gewicht (+ SBC + Batterie + Sensoren)
1,8 kg
Schwelle des Kletterns
10 mm oder niedriger
Voraussichtliche Betriebsdauer
2h
Voraussichtliche Ladezeit
2h 30m
SBC (Single Board Computer)
Raspberry Pi 4 (2 GB RAM)
MCU
32-bit ARM Cortex-M7 mit FPU (216 MHz, 462 DMIPS)
Fernbedienung
RC-100B + BT-410 Set (Bluetooth 4, BLE)
Aktuator
XL430-W210
LDS (Laser-Abstandssensor)
360 Laser-Abstandssensor LDS-01 or LDS-02
Kamera
Raspberry Pi Camera Module v2.1
IMU
Gyroskop 3 AchsenBeschleunigungsmesser 3 Achsen
Stromanschlüsse
3,3 V/800 mA5 V/4 A12 V/1 A
Erweiterungspins
GPIO 18 PinsArduino 32 Pin
Peripherie
3x UART, 1x CAN, 1x SPI, 1x I²C, 5x ADC, 4x 5-pin OLLO
DYNAMIXEL Ports
3x RS485, 3x TTL
Audio
Several programmable beep sequences
Programmierbare LEDs
4x User LED
Status-LEDs
1x Board Status LED1x Arduino-LED1x Power-LED
Tasten und Schalter
2x Drucktasten, 1x Reset-Taste, 2x Dip-Schalter
Akku
Lithium Polymer 11,1 V 1800 mAh / 19,98 Wh 5C
PC-Verbindung
USB
Firmware-Upgrade
via USB / via JTAG
Netzadapter (SMPS)
Eingang: 100-240 VAC 50/60 Hz, 1,5 A @maxAusgang: 12 VDC, 5 A
Downloads
ROS Robot Programming
GitHub
E-Manual
Community