Nach dem Einschalten beginnt der YDLIDAR G4 sich zu drehen und die Umgebung um sich herum zu scannen. Die Scandistanz beträgt 16 m und das Gerät bietet eine Scanrate von 9.000 Mal pro Sekunde.
Es macht detaillierte Untersuchungen seiner Umgebung und kann die kleinsten Objekte um sich herum lokalisieren. Mit einem hochpräzisen bürstenlosen Motor und einem Encoder-Disc, der auf Lagern montiert ist, dreht es sich reibungslos und hat eine Betriebsdauer von bis zu 500.000 Stunden.
Der G4 ist eine kostengünstige Lösung für Projekte, die Hinderniserkennung, Hindernisvermeidung und/oder simultane Lokalisierung und Kartierung (SLAM) erfordern. Alle YDLIDAR-Produkte sind ROS-ready.
Features
360 Grad 2D-Reichweiten-Scanning
Stabile Leistung, hohe Präzision
16 m Reichweite
Starke Widerstandsfähigkeit gegenüber Umgebungslichtinterferenzen
Bürstenloser Motorantrieb, stabile Leistung
FDA-Lasersicherheitsstandard Klasse I
360 Grad omnidirektionales Scanning, 5-12 Hz adaptive Scanning-Frequenz
OptoMagnetic-Technologie
Drahtlose Datenkommunikation
Scanrate von 9000 Hz
Dokumentation
ROS-Treiber
Ydlidar-Download-Seite
Unten im Abschnitt "Downloads" finden Sie das Datenblatt sowie die Benutzer- und Entwicklungsanleitungen.
YDLIDAR TG30 ist ein 360-Grad-2D-LiDAR. Basierend auf dem ToF-Prinzip ist es mit entsprechender Optik, Elektrizität und Algorithmusdesign ausgestattet, um eine hochfrequente und hochpräzise Entfernungsmessung zu erreichen. Die mechanische Struktur dreht sich um 360 Grad, um während der Entfernungsmessung kontinuierlich Winkelinformationen zu erhalten und die Punktwolkendaten der Scanumgebung auszugeben.
Merkmale
Schutzart IP65
360 Grad omnidirektionale Abtastung und 5-12 Hz Frequenz
Bereichsfrequenz bis 20 kHz
Hohe Genauigkeit, stabile Leistung
Starke Beständigkeit gegen Umgebungslichtstörungen
Augensicherheit der Klasse I
Spezifikationen
Bereichsfrequenz
20000Hz
Scanfrequenz
5-12Hz
Reichweite Entfernung
0,05–30 m
Scanwinkel
360°
Winkelauflösung
0,09°-0,22°
Größe Φ
75,8 x 34,7 mm
Anwendungen
Roboternavigation und Hindernisvermeidung
Industrielle Automatisierung
Regionale Sicherheit
Intelligenter Transport
Umgebungsscan und 3D-Rekonstruktion
Digitale Multimedia-Interaktion
Roboter-ROS-Lehre und Forschung
Downloads
Datenblatt
Benutzerhandbuch
Entwicklungshandbuch
YDLIDAR X4PRO ist ein zweidimensionaler 360-Grad-Entfernungsmesser. Basierend auf dem Triangulationsprinzip ist es mit entsprechender Optik, Elektrizität und Algorithmendesign ausgestattet, um eine hochfrequente und hochgenaue Entfernungsmessung zu erreichen. Die mechanische Struktur dreht sich um 360 Grad, um während der Entfernungsmessung kontinuierlich die Winkelinformationen sowie die Punktwolkendaten der Scanumgebung auszugeben.
Features
360-Grad-Omnidirektional-Scanning-Entfernungsmessung
Kleiner Distanzfehler, stabile Leistung und hohe Genauigkeit
Große Reichweite
Starke Beständigkeit gegen Umgebungslichtstörungen
Geringer Stromverbrauch, geringe Größe und lange Lebensdauer
Laserleistung entspricht den Sicherheitsstandards für Laser der Klasse I
Einstellbare Motorgeschwindigkeit, Scanfrequenz beträgt 6-12 Hz
Hochgeschwindigkeits-Bereichswahl, Bereichsfrequenz bis zu 5 kHz
Applikationen
Roboternavigation und Hindernisvermeidung
Roboter-ROS-Lehre und Forschung
Regionale Sicherheit
Umweltscan und 3D-Rekonstruktion
Navigation und Hindernisvermeidung des Roboterstaubsaugers/ROS-Lernroboters
Technische Daten
Frequenzbereich
5000 Hz
Scanfrequenz
6-12 Hz
Reichweite
0,12 10 m
Scanwinkel
360°
Winkelauflösung
0,43-0,85°
Abmessungen
110,6 x 71,1 x 52,3 mm
Downloads
Datasheet
User Manual
Development Manual
SDK
Tool
ROS
Der Raspberry Pi DAC+ (früher bekannt als IQaudio DAC+) ist ein leistungsstarker Audio-HAT für jeden Raspberry Pi mit 40-poligem GPIO-Anschluss. Ausgestattet mit dem PCM5122 DAC von Texas Instruments liefert er kristallklaren analogen Stereo-Sound über zwei Cinch-Anschlüsse.
Es wird keine externe Stromversorgung benötigt – der DAC+ wird direkt an den GPIO-Anschluss des Raspberry Pi angeschlossen, ohne dass Lötarbeiten oder Kabel erforderlich sind.
Features
Betriebs-LED
Analoger Audioausgang (0-2 V RMS) über Stereo-Panel
Cinch-Buchsen mit MUTE-Signal (Kopfhörererkennung)
Dedizierter Kopfhörerverstärker, Ausgang über 3,5-mm-Panel-Hohlstecker
40-poliger GPIO-Anschluss mit Durchgang
Schreibschutz für HAT-EEPROM
Downloads
Datasheet
Multitasking und Multiprocessing sind zu einem sehr wichtigen Thema in mikrocontrollerbasierten Systemen geworden, insbesondere in komplexen kommerziellen, häuslichen und industriellen Automatisierungsanwendungen. Mit zunehmender Komplexität von Projekten werden immer mehr Funktionalitäten von den Projekten gefordert. Solche Projekte erfordern die Verwendung mehrerer miteinander verbundener Aufgaben, die auf demselben System ausgeführt werden und die verfügbaren Ressourcen wie CPU, Speicher und Eingabe-Ausgabe-Ports gemeinsam nutzen. Infolgedessen hat die Bedeutung von Multitasking-Operationen in Mikrocontroller-basierten Anwendungen in den letzten Jahren stetig zugenommen. Viele komplexe Automatisierungsprojekte nutzen mittlerweile eine Art Multitasking-Kernel. Dieses Buch ist projektbasiert und sein Hauptziel besteht darin, die grundlegenden Funktionen des Multitasking mit der Programmiersprache Python 3 auf dem Raspberry Pi zu vermitteln. Das Buch stellt viele vollständig getestete Projekte bereit, die die Multitasking-Module von Python verwenden. Jedes Projekt wird vollständig und detailliert beschrieben. Für jedes Projekt werden vollständige Programmlisten bereitgestellt. Der Leser soll die Möglichkeit haben, die Projekte so zu nutzen, wie sie sind, oder sie an ihre eigenen Bedürfnisse anzupassen.
Die folgenden Python-Multitasking-Module wurden beschrieben und in den Projekten verwendet:
Gabel
Faden
Einfädeln
Unterprozess
Mehrfachverarbeitung
Das Buch umfasst einfache Multitasking-Projekte wie die unabhängige Steuerung mehrerer LEDs bis hin zu komplexeren Multitasking-Projekten wie Ein-/Aus-Temperaturregelung, Ampelsteuerung, 2-stelliger und 4-stelliger 7-Segment-LED-Ereigniszähler, Reaktionstimer und Schrittmotor Steuerung, tastaturbasierte Projekte, Parkplatzsteuerung und vieles mehr. Die grundlegenden Multitasking-Konzepte wie Prozesssynchronisation, Prozesskommunikation und Speicherfreigabetechniken wurden in Projekten zu Ereignisflags, Warteschlangen, Semaphoren, Werten usw. beschrieben.
Der DiP-Pi PIoT ist ein fortschrittliches WiFi-Konnektivitätssystem mit integrierten Sensoren, das die meisten möglichen Anforderungen für IoT-Anwendungen auf Basis des Raspberry Pi Pico abdeckt. Es kann das System zusätzlich zum Original-Micro-USB des Raspberry Pi Pico mit bis zu 1,5 A bei 4,8 V versorgen, geliefert von 6–18 VDC für verschiedene Stromversorgungssysteme wie Autos, Industrieanlagen usw. Es unterstützt LiPo- oder Li-Ion-Akkus mit automatischem Ladegerät sowie die automatische Umschaltung von Kabelstrom auf Batteriestrom oder umgekehrt (USV-Funktionalität), wenn die Kabelstromversorgung unterbrochen wird. Die Extended Powering Source (EPR) ist mit einer rücksetzbaren PPTC-Sicherung, umgekehrter Polarität und auch ESD geschützt. Der DiP-Pi PIoT verfügt über eine in den Raspberry Pi Pico integrierte RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf alle Stromquellen (USB, EPR oder Batterie) wirkt. Der Benutzer kann (über die A/D-Pins des Raspberry Pi Pico) den Batteriestand und den EPR-Wert mit den A/D-Wandlern von PICO überwachen. Beide A/D-Eingänge sind mit 0402-Widerständen (0 Ohm) überbrückt. Wenn der Benutzer diese Pico-Pins aus irgendeinem Grund für seine eigene Anwendung verwenden muss, kann er daher problemlos entfernt werden. Das Ladegerät lädt den angeschlossenen Akku automatisch auf (sofern verwendet), aber der Benutzer kann das Ladegerät zusätzlich ein-/ausschalten, wenn seine Anwendung dies benötigt.
DiP-Pi PIoT kann für kabelbetriebene IoT-Systeme, aber auch für rein batteriebetriebene Systeme mit EIN/AUS verwendet werden. Der Status jeder Stromquelle wird durch separate Informations-LEDs angezeigt (VBUS, VSYS, VEPR, CHGR, V3V3). Der Benutzer kann jede Kapazität vom Typ LiPo oder Li-Ion verwenden; Es muss jedoch darauf geachtet werden, PCB-geschützte Batterien mit einem maximal zulässigen Entladestrom von 2 A zu verwenden. Das integrierte Batterieladegerät ist so eingestellt, dass es die Batterie mit einem Strom von 240 mA lädt. Dieser Strom wird durch einen Widerstand eingestellt. Wenn der Benutzer also mehr oder weniger benötigt, kann er ihn selbst ändern. Der DiP-Pi PIoT ist außerdem mit einem WiFi ESP8266 Clone-Modul mit integrierter Antenne ausgestattet. Diese Funktion eröffnet eine Vielzahl darauf basierender IoT-Anwendungen.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi PIoT mit eingebetteten 1-Draht-DHT11/22-Sensoren und Micro-SD-Kartenschnittstellen ausgestattet. Durch die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen eignet sich der DiP-Pi PIoT ideal für IoT-Anwendungen wie Datenlogger, Pflanzenüberwachung, Kühlschränke usw.
DiP-Pi PIoT wird durch zahlreiche gebrauchsfertige Beispiele unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Raspberry Pi Pico-Pinbelegung kompatibel
Unabhängige informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter, der auf alle Stromquellen wirkt (USB, EPR, Batterie)
Externe Stromversorgung 6–18 VDC (Autos, Industrieanwendungen usw.)
Überwachung des externen Strompegels (6-18 VDC).
Überwachung des Batteriestands
Verpolungsschutz
PPTC-Sicherungsschutz
ESD-Schutz
Automatisches Batterieladegerät (für PCB-geschütztes LiPo, Li-Ion – 2 A max.) Automatisch/Benutzersteuerung
Automatische Umschaltung von Kabelbetrieb auf Batteriebetrieb und umgekehrt (USV-Funktionalität)
Mit der USB-Stromversorgung, der externen Stromversorgung und der Batterieversorgung können verschiedene Stromversorgungsschemata gleichzeitig verwendet werden
1,5 A bei 4,8 V Abwärtswandler auf EPR
Eingebetteter 3,3 V @ 600 mA LDO
ESP8266 WLAN-Konnektivität klonen
ESP8266 Firmware-Upload-Schalter
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Externe Stromversorgung 6–18 V (über spezielle Buchse – 3,4/1,3 mm)
Externe Batterie
Unterstützte Batterietypen
LiPo mit Schutzplatine, max. Strom 2A
Li-Ion mit Schutzplatine, max. Strom 2A
Eingebettete Peripheriegeräte und Schnittstellen
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Micro-SD-Kartensteckplatz
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexi-Cut-Gehäuse
Systemüberwachung
Batteriestand über Raspberry Pi Pico ADC0 (GP26)
EPR-Level über Raspberry Pi Pico ADC1 (GP27)
Informative LEDs
VB (VUSB)
USA (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
Systemschutz
Sofortiger Raspberry Pi Pico-Hardware-Reset-Knopf
ESD-Schutz auf EPR
Verpolungsschutz bei EPR
PPTC 500 mA @ 18 V-Sicherung am EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO Über den aktuellen Schutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2-Unzen-Kupfer-Leiterplatte, hergestellt für eine ordnungsgemäße Hochstromversorgung und Kühlung
6-mil-Spur-/6-mil-Lücken-Technologie, 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersionsgold
Mehrschichtige Kupfer-Thermorohre für eine erhöhte thermische Reaktion des Systems und eine bessere passive Kühlung
Downloads
Datenblatt
Handbuch
Bauen Sie robuste, intelligente Maschinen, die die Rechenleistung des Raspberry Pi mit LEGO-Komponenten kombinieren.
Der Raspberry Pi Build HAT bietet vier Anschlüsse für LEGO Technic Motoren und Sensoren aus dem SPIKE Portfolio. Zu den verfügbaren Sensoren gehören ein Abstandssensor, ein Farbsensor und ein vielseitiger Kraftsensor. Die Winkelmotoren sind in verschiedenen Größen erhältlich und verfügen über integrierte Encoder, die ihre Position abfragen können.
Der Build HAT passt auf alle Raspberry Pi-Computer mit einem 40-Pin-GPIO-Header, einschließlich – mit der Hinzufügung eines Flachbandkabels oder eines anderen Erweiterungsgeräts – Raspberry Pi 400. Angeschlossene LEGO Technic-Geräte können neben Standard-Raspberry-Pi-Zubehör problemlos in Python gesteuert werden wie zum Beispiel ein Kameramodul.
Merkmale
Steuert bis zu 4 Motoren und Sensoren
Versorgt den Raspberry Pi mit Strom (bei Verwendung mit einem geeigneten externen Netzteil)
Einfache Verwendung von Python auf dem Raspberry Pi
Der Raspberry Pi Pico 2 ist ein neues Mikrocontroller-Board der Raspberry Pi Foundation, basierend auf dem RP2350. Es verfügt über eine höhere Kerntaktrate, doppelt so viel On-Chip-SRAM, doppelt so viel On-Board-Flash-Speicher, leistungsstärkere Arm-Kerne, optionale RISC-V-Kerne, neue Sicherheitsfunktionen und verbesserte Schnittstellenfunktionen. Der Raspberry Pi Pico 2 bietet eine deutliche Steigerung der Leistung und Funktionen und behält gleichzeitig die Hardware- und Softwarekompatibilität mit früheren Mitgliedern der Raspberry Pi Pico-Serie bei.
Der RP2350 bietet eine umfassende Sicherheitsarchitektur rund um Arm TrustZone für Cortex-M. Es umfasst signiertes Booten, 8 KB Antifuse-OTP für die Schlüsselspeicherung, SHA-256-Beschleunigung, einen Hardware-TRNG und schnelle Glitch-Detektoren.
Die einzigartige Dual-Core- und Dual-Architektur-Fähigkeit des RP2350 ermöglicht Benutzern die Wahl zwischen einem Paar ARM Cortex-M33-Kernen nach Industriestandard und einem Paar Hazard3 RISC-V-Kernen mit offener Hardware. Der Raspberry Pi Pico 2 ist in C/C++ und Python programmierbar und wird durch eine ausführliche Dokumentation unterstützt. Er ist das ideale Mikrocontroller-Board sowohl für Enthusiasten als auch für professionelle Entwickler.
Technische Daten
CPU
Dual Arm Cortex-M33 oder Dual RISC-V Hazard3 Prozessoren bei 150 MHz
Speicher
520 KB On-Chip-SRAM; 4 MB integrierter QSPI-Flash
Schnittstellen
26 Mehrzweck-GPIO-Pins, darunter 4, die für AD verwendet werden können
Peripheriegeräte
2x UART
2x SPI-Controller
2x I²C-Controller
24x PWM-Kanäle
1x USB 1.1-Controller und PHY, mit Host- und Geräteunterstützung
12x PIO-Zustandsmaschinen
Eingangsspannung
1,8-5,5 V DC
Abmessungen
21 x 51 mm
Downloads
Datasheet (Pico 2)
Datasheet (RP2350)
Der DiP-Pi WiFi Master ist ein fortschrittliches WiFi-Konnektivitätssystem mit eingebetteten Sensorschnittstellen, das die meisten möglichen Anforderungen für IoT-Anwendungen auf Basis von Raspberry Pi Pico abdeckt. Es wird direkt vom Raspberry Pi Pico VBUS mit Strom versorgt. Der DiP-Pi WiFi Master enthält eine in Raspberry Pi Pico eingebettete RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf die Stromquellen von Raspberry Pi Pico einwirkt.
Der DiP-Pi WiFi Master ist mit einem WiFi ESP8266 Clone-Modul mit integrierter Antenne ausgestattet. Diese Funktion eröffnet eine breite Palette darauf basierender IoT-Anwendungen.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi WiFi Master mit eingebetteten 1-Wire-, DHT11/22-Sensoren und Micro-SD-Kartenschnittstellen ausgestattet. Die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen macht den DiP-Pi WiFi Master ideal für IoT-Anwendungen wie Datenlogger, Anlagenüberwachung, Kühlschranküberwachung usw. DiP-Pi WiFi Master wird mit zahlreichen gebrauchsfertigen Beispielen unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Kompatibel mit Raspberry Pi Pico-Pinbelegung
Unabhängige informative LEDs (VBUS, VSYS, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter mit Wirkung auf die Stromversorgung des Raspberry Pi Pico
Eingebetteter 3,3 V bei 600 mA LDO
ESP8266-Klon-WLAN-Konnektivität
ESP8266 Firmware-Upload-Schalter
Eingebettete 1-Wire-Schnittstelle
Integrierte DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Eingebettete Peripheriegeräte und Schnittstellen
Eingebettete 1-Wire-Schnittstelle
Integrierte DHT-11/22-Schnittstelle
Micro SD-Kartensteckplatz
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard-Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexiglasgehäuse
Informative LEDs
VB (VUSB)
VS (VSYS)
V3 (V3V3)
Systemschutz
Direkter Raspberry Pi Pico Hardware-Reset-Knopf
PPTC 500 mA @ 18 V Sicherung auf EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO-Überstromschutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2 ozKupfer-PCB für ordnungsgemäße Hochstromversorgung und Kühlung
6 mils Spur/6 mils Lückentechnologie 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersion Gold
Mehrschichtige Kupfer-Thermorohre für eine verbesserte thermische Reaktion des Systems und bessere passive Kühlung
Downloads
Datenblatt
Handbuch
Features
360 Grad omnidirektionale Scanmessung des Entfernungsbereichs
Kleine Entfernungsfehler, stabile Leistung und hohe Genauigkeit
Schutzklasse IP65
Starke Resistenz gegen Umgebungslichtinterferenzen
Industriequalität bürstenloser Motorantrieb für stabile Leistung
Laserleistung entspricht den Sicherheitsstandards der Laserklasse I
Anpassungsfähige Scan-Frequenz von 5-12 Hz (Anpassung unterstützt)
Fotomagnetische Fusionstechnologie zur drahtlosen Kommunikation und drahtlosen Stromversorgung
Entfernungsfrequenz von bis zu 20 kHz (Anpassung unterstützt)
Anwendungen
Roboter-Navigation und Hindernisvermeidung
Industrielle Automatisierung
Roboter-ROS-Unterricht und Forschung
Regionale Sicherheit
Intelligenter Transport
Umweltscanning und 3D-Rekonstruktion
Kommerzielle Roboter / Robotersauger
Downloads
Datenblatt
Benutzerhandbuch
Entwicklungsanleitung
SDK
TOOL
ROS
Der DiP-Pi Power Master ist ein fortschrittliches Stromversorgungssystem mit integrierten Sensorschnittstellen, das die meisten möglichen Anforderungen für Anwendungen auf Basis des Raspberry Pi Pico abdeckt. Es kann das System zusätzlich zum Original-Micro-USB des Raspberry Pi Pico mit bis zu 1,5 A bei 4,8 V versorgen, geliefert von 6–18 VDC für verschiedene Stromversorgungssysteme wie Autos, Industrieanlagen usw. Es unterstützt LiPo- oder Li-Ion-Akkus mit automatischem Ladegerät sowie die automatische Umschaltung von Kabelstrom auf Batteriestrom oder umgekehrt (USV-Funktionalität), wenn die Kabelstromversorgung unterbrochen wird. Die Extended Powering Source (EPR) ist mit einer rücksetzbaren PPTC-Sicherung, umgekehrter Polarität und auch ESD geschützt. Der DiP-Pi Power Master verfügt über eine in den Raspberry Pi Pico integrierte RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf alle Stromquellen (USB, EPR oder Batterie) wirkt. Der Benutzer kann (über die A/D-Pins des Raspberry Pi Pico) den Batteriestand und den EPR-Wert mit den A/D-Wandlern von PICO überwachen. Beide A/D-Eingänge sind mit 0402-Widerständen (0 Ohm) überbrückt. Wenn der Benutzer diese Pico-Pins aus irgendeinem Grund für seine eigene Anwendung verwenden muss, kann er daher problemlos entfernt werden. Das Ladegerät lädt den angeschlossenen Akku automatisch auf (sofern verwendet), aber der Benutzer kann das Ladegerät zusätzlich ein-/ausschalten, wenn seine Anwendung dies benötigt. DiP-Pi Power Master kann für kabelbetriebene Systeme, aber auch für rein batteriebetriebene Systeme mit EIN/AUS verwendet werden. Der Status jeder Stromquelle wird durch separate Informations-LEDs angezeigt (VBUS, VSYS, VEPR, CHGR, V3V3). Der Benutzer kann jede Kapazität vom Typ LiPo oder Li-Ion verwenden; Es muss jedoch darauf geachtet werden, PCB-geschützte Batterien mit einem maximal zulässigen Entladestrom von 2 A zu verwenden. Das integrierte Batterieladegerät ist so eingestellt, dass es die Batterie mit einem Strom von 240 mA lädt. Dieser Strom wird durch einen Widerstand eingestellt. Wenn der Benutzer also mehr oder weniger benötigt, kann er ihn selbst ändern.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi Power Master mit integrierten 1-Draht- und DHT11/22-Sensorschnittstellen ausgestattet. Durch die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen eignet sich der DiP-Pi Power Master ideal für Anwendungen wie Datenlogger, Pflanzenüberwachung, Kühlschränke usw.
DiP-Pi Power Master wird durch zahlreiche gebrauchsfertige Beispiele unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Raspberry Pi Pico-Pinbelegung kompatibel
Unabhängige informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter, der auf alle Stromquellen wirkt (USB, EPR, Batterie)
Externe Stromversorgung 6-18 V DC (Autos, Industrieanwendungen usw.)
Überwachung des externen Strompegels (6-18 VDC).
Überwachung des Batteriestands
Verpolungsschutz
PPTC-Sicherungsschutz
ESD-Schutz
Automatisches Batterieladegerät (für PCB-geschütztes LiPo, Li-Ion – 2 A max.) Automatisch/Benutzersteuerung
Automatische Umschaltung von Kabelbetrieb auf Batteriebetrieb und umgekehrt (USV-Funktionalität)
Mit der USB-Stromversorgung, der externen Stromversorgung und der Batterieversorgung können verschiedene Stromversorgungsschemata gleichzeitig verwendet werden
1,5 A bei 4,8 V Abwärtswandler auf EPR
Eingebetteter 3,3 V @ 600 mA LDO
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Externe Stromversorgung 6–18 V (über spezielle Buchse – 3,4/1,3 mm)
Externe Batterie
Unterstützte Batterietypen
LiPo mit Schutzplatine, max. Strom 2A
Li-Ion mit Schutzplatine, max. Strom 2A
Eingebettete Peripheriegeräte und Schnittstellen
Integrierte 1-Draht-Schnittstelle
Eingebettete DHT-11/22-Schnittstelle
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexi-Cut-Gehäuse
Systemüberwachung
Batteriestand über Raspberry Pi Pico ADC0 (GP26)
EPR-Level über Raspberry Pi Pico ADC1 (GP27)
Informative LEDs
VB (VUSB)
USA (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
Systemschutz
Sofortiger Raspberry Pi Pico-Hardware-Reset-Knopf
ESD-Schutz auf EPR
Verpolungsschutz bei EPR
PPTC 500 mA @ 18 V-Sicherung am EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO Über den aktuellen Schutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2-Unzen-Kupfer-Leiterplatte, hergestellt für eine ordnungsgemäße Hochstromversorgung und Kühlung
6-mil-Spur-/6-mil-Lücken-Technologie, 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersionsgold
Mehrschichtige Kupfer-Thermorohre für eine erhöhte thermische Reaktion des Systems und eine bessere passive Kühlung
Downloads
Datenblatt
Datenblatt
Der Raspberry Pi Zero W erweitert die Raspberry Pi Zero-Familie. Der Raspberry Pi Zero W hat alle Funktionen des ursprünglichen Raspberry Pi Zero, kommt aber mit zusätzlichen Anschlussmöglichkeiten bestehend aus:
802.11 b/g/n wireless LAN
Bluetooth 4.1
Bluetooth Low Energy (BLE)
Weitere Features
1 GHz, Single-Core-CPU
512 MB RAM
Mini HDMI und USB On-The-Go Anschlüsse
Micro-USB power
HAT-compatible 40-pin header
Composite-Video- und Reset-Anschlüsse
CSI-Kamera-Anschluss
Downloads
Mechanical Drawing
Schematics