Dieses Wi-Fi-Modul basiert auf dem beliebten ESP8266-Chip. Das Modul ist FCC- und CE-zertifiziert und RoHS-konform.
Voll kompatibel mit ESP-12E. 13 GPIO-Pins, 1 Analogeingang, 4 MB Flash-Speicher.
Die Flexibilität des Artemis-Moduls beginnt mit dem Arduino-Kern von SparkFun. Sie können das Artemis-Modul genauso programmieren und verwenden wie einen Uno oder jeden anderen Arduino. Der Zeitpunkt des ersten Blinkens ist nur 5 Minuten entfernt! Wir haben den Kern von Grund auf neu entwickelt, um ihn schnell und so leicht wie möglich zu machen.
Nächste Aufgabe ist das Modul selbst. Mit einer Größe von 10 mm x 15 mm verfügt das Artemis-Modul über alle unterstützenden Schaltungen, die Sie benötigen, um den fantastischen Ambiq Apollo3-Prozessor in Ihrem nächsten Projekt einzusetzen. Wir sind stolz darauf, sagen zu können, dass das SparkFun Artemis-Modul das erste Open-Source-Hardware-Modul ist, bei dem die Design-Dateien frei und einfach verfügbar sind. Wir haben das Modul sorgfältig entworfen, so dass die Implementierung von Artemis in Ihr Design mit kostengünstigen 2-Lagen-Leiterplatten und 8mil Leiterbahnabstand erfolgen kann.
Das Artemis-Modul wird in den USA in der SparkFun-Produktionsstätte in Boulder hergestellt und ist für Consumer-Produkte konzipiert. Damit unterscheidet sich das Artemis-Modul deutlich von seinen Arduino-Brüdern. Sind Sie bereit, Ihr Produkt zu skalieren? Das Artemis wächst mit Ihnen über den Uno-Footprint und die Arduino-IDE hinaus. Zusätzlich verfügt der Artemis über einen erweiterten HAL (Hardware Abstraction Layer), der es dem Anwender ermöglicht, die moderne Cortex-M4F-Architektur bis an ihre Grenzen zu treiben.
Das SparkFun Artemis Modul ist vollständig FCC/IC/CE-zertifiziert und ist in vollen Tape-and-Reel-Stückzahlen erhältlich. Mit 1M Flash und 384k RAM haben Sie viel Platz für Ihren Code. Das Artemis-Modul läuft mit 48MHz mit einem 96MHz Turbo-Modus verfügbar und mit Bluetooth zu booten!
TapNLink-Module bieten drahtlose Schnittstellen zur Verknüpfung elektronischer Systeme mit mobilen Geräten und der Cloud. TapNLink stellt eine direkte Verbindung zum Mikrocontroller des Zielsystems her. Es integriert sich in das Zielsystem und wird von diesem mit Strom versorgt. Alle TapNLink-Produkte lassen sich einfach konfigurieren, um den Zugriff verschiedener Benutzertypen auf Daten im Zielsystem zu steuern. TapNLink ermöglicht die schnelle Erstellung von Human Machine Interfaces (HMI), die auf Android-, iOS- und Windows-Mobilgeräten laufen. HMI-Apps lassen sich leicht an verschiedene Benutzer anpassen und können bereitgestellt und aktualisiert werden, um mit den sich ändernden Systemanforderungen und Benutzerbedürfnissen Schritt zu halten.
TapNLink-WLAN-Module können auch so konfiguriert werden, dass sie das Zielsystem dauerhaft mit einem drahtlosen Netzwerk und der Cloud verbinden. Dies ermöglicht eine permanente Protokollierung von Zielsystemdaten und Alarmen.
Merkmale
Drahtlose Kanäle
WLAN 802.11b/g/n
Bluetooth Low Energy (BLE 4.2)
Near Field Communication (NFC) Typ5-Tag (ISO/IEC 15693)
Unterstützte Zielverbindungen: Verbindet sich mit 2 GPIOs des Ziel-Mikrocontrollers und unterstützt:
Serielle Schnittstelle mit Software Secure Serial Port (S3P)-Protokoll
Serielle Schnittstelle mit ARM SWD-Debug-Protokoll.
UART mit Modbus-Protokoll
Unterstützung für mobile Plattformen
HTML5-Web-Apps (Android, iOS)
API für Cordova (Android, iOS, Windows 10)
Java (Android, iOS nativ)
Auto-App-Generator für Android- und iOS-Handys
Sicherheit
Konfigurierbare Zugangsprofile
Konfigurierbare, verschlüsselte Passwörter
AES-128/256 Datenverschlüsselung auf Modulebene
Konfigurierbare sichere Kopplung mit NFC
Abmessungen: 38 mm x 28 mm x 3 mm
Elektrische Eigenschaften
Eingangsspannung: 2,3 V bis 3,6 V
Energieeffizient:
Standby: 100 µA
NFC Tx/Rx: 7 mA
WLAN-Empfang: 110 mA
Wi-Fi-Sende: 280 mA (802.11b)
Temperaturbereich: -20 °C bis +55 °C
Einhaltung
CE (Europa), FCC (USA), IC (Kanada)
ERREICHEN
RoHS
WEEE
Bestellinformationen
Basisteilenummer: TnL-FIW103
Mindestbestellmenge: 20 Module
TapNLink-Module vorqualifiziert, vorprogrammiert und konfigurierbar.
Konfigurations- und Testsoftware IoTize Studio
Software für HMI auf mobilen Geräten (iOS, Android, Windows 10)
IoTize Cloud MQTT-Infrastruktur (Open Source)
Weitere Informationen finden Sie im Datenblatt hier .
Der Arduino Nano 33 BLE Rev2 steht an der Spitze der Innovation und nutzt die erweiterten Funktionen des nRF52840-Mikrocontrollers. Diese 32-Bit-Arm Cortex-M4-CPU, die mit beeindruckenden 64 MHz arbeitet, ermöglicht Entwicklern eine Vielzahl von Projekten. Die zusätzliche Kompatibilität mit MicroPython erhöht die Flexibilität des Boards und macht es einer breiteren Entwicklergemeinschaft zugänglich.
Das herausragende Merkmal dieses Entwicklungsboards ist seine Bluetooth Low Energy (Bluetooth LE)-Fähigkeit, die eine mühelose Kommunikation mit anderen Bluetooth LE-fähigen Geräten ermöglicht. Dies eröffnet den Entwicklern eine Fülle von Möglichkeiten und ermöglicht ihnen den nahtlosen Datenaustausch und die Integration ihrer Projekte in eine Vielzahl vernetzter Technologien.
Der Nano 33 BLE Rev2 wurde im Hinblick auf Vielseitigkeit entwickelt und ist mit einer integrierten 9-Achsen-Trägheitsmesseinheit (IMU) ausgestattet. Diese IMU ist bahnbrechend und bietet präzise Messungen von Position, Richtung und Beschleunigung. Ganz gleich, ob Sie Wearables oder Geräte entwickeln, die Echtzeit-Bewegungsverfolgung erfordern, die integrierte IMU sorgt für beispiellose Genauigkeit und Zuverlässigkeit.
Im Wesentlichen bietet der Nano 33 BLE Rev2 die perfekte Balance zwischen Größe und Funktionen und ist damit die ultimative Wahl für die Herstellung tragbarer Geräte, die nahtlos mit Ihrem Smartphone verbunden sind. Egal, ob Sie ein erfahrener Entwickler oder ein Bastler sind, der sich auf ein neues Abenteuer in der vernetzten Technologie einlässt, dieses Entwicklungsboard eröffnet eine Welt voller Möglichkeiten für Innovation und Kreativität. Erweitern Sie Ihre Projekte mit der Leistung und Flexibilität des Nano 33 BLE Rev2.
Technische Daten
Mikrocontroller
nRF52840
USB-Anschluss
Micro-USB
Pins
Eingebaute LED-Pins
13
Digitale I/O-Pins
14
Analoge Eingangspins
8
PWM-Pins
Alle digitalen Pins (4 gleichzeitig)
Externe Interrupts
Alle digitalen Pins
Konnektivität
Bluetooth
u-blox NINA-B306
Sensoren
IMU
BMI270 (3-Achsen-Beschleunigungsmesser + 3-Achsen-Gyroskop) + BMM150 (3-Achsen-Magnetometer)
Kommunikation
UART
RX/TX
I²C
A4 (SDA), A5 (SCL)
SPI
D11 (COPI), D12 (CIPO), D13 (SCK). Verwenden Sie einen beliebigen GPIO für Chip Select (CS)
LStromversorgung
I/O-Spannung
3,3 V
Eingangsspannung (nominal)
5-18 V
Gleichstrom pro I/O-Pin
10 mA
Taktgeschwindigkeit
Prozessor
nRF52840 64 MHz
Speicher
nRF52840
256 KB SRAM, 1 MB Flash
Abmessungen
18 x 45 mm
Downloads
Datasheet
Schematics
Grundlagen und Selbstbau
Weshalb nicht damit beginnen, Mikrocontroller-Module selbst zu entwickeln, zumindest aber sich in Gedanken mit solchen Aufgaben zu beschäftigen? Wie Mikrocontroller-Module aufgebaut sind und wozu sie verwendet werden, soll in 'Mikrocontroller-Module – Grundlagen und Selbstbau' dargestellt werden.
Das vorliegende Buch beleuchtet Mikrocontroller-Module, die vor allem zum Experimentieren, zum Lernen und zum Einarbeiten in die Entwicklung und Programmierung von Embedded Systems gedacht sind.
Die Entwurfsgrundsätze, Lösungsvorschläge und Projekte, die in diesem Buch beschrieben werden, sind aus zwei Ideen hervorgegangen: Erstens können neue Entwicklungen zwischen den weit verbreiteten kostengünstigen Mikrocontroller-Modulen und der industriellen Computer- und Steuerungstechnik ihren Platz finden und zweitens ist es eine Herausforderung an sich, solche Module zu entwickeln und einzusetzen.
In den ersten sieben Kapiteln dieses Buches werden die technischen Grundlagen diskutiert und anhand eigener Entwicklungen veranschaulicht. Das achte Kapitel gibt einen Überblick über diesen Modulbaukasten.
Alle Fotos aus dem Buch können hier vierfarbig heruntergeladen werden.
Grundlagen und Selbstbau
Weshalb nicht damit beginnen, Mikrocontroller-Module selbst zu entwickeln, zumindest aber sich in Gedanken mit solchen Aufgaben zu beschäftigen? Wie Mikrocontroller-Module aufgebaut sind und wozu sie verwendet werden, soll in 'Mikrocontroller-Module – Grundlagen und Selbstbau' dargestellt werden.
Das vorliegende Buch beleuchtet Mikrocontroller-Module, die vor allem zum Experimentieren, zum Lernen und zum Einarbeiten in die Entwicklung und Programmierung von Embedded Systems gedacht sind.
Die Entwurfsgrundsätze, Lösungsvorschläge und Projekte, die in diesem Buch beschrieben werden, sind aus zwei Ideen hervorgegangen: Erstens können neue Entwicklungen zwischen den weit verbreiteten kostengünstigen Mikrocontroller-Modulen und der industriellen Computer- und Steuerungstechnik ihren Platz finden und zweitens ist es eine Herausforderung an sich, solche Module zu entwickeln und einzusetzen.
In den ersten sieben Kapiteln dieses Buches werden die technischen Grundlagen diskutiert und anhand eigener Entwicklungen veranschaulicht. Das achte Kapitel gibt einen Überblick über diesen Modulbaukasten.
Alle Fotos aus dem Buch können hier vierfarbig heruntergeladen werden.
Challenger RP2040 WiFi ist ein kleiner Embedded-Computer mit einem WiFi-Modul im beliebten Adafruit Feather-Formfaktor. Es basiert auf einem RP2040-Mikrocontroller-Chip der Raspberry Pi Foundation, einem Dual-Core-Cortex-M0, der mit einer Taktrate von bis zu 133 MHz betrieben werden kann. Der RP2040 ist mit einem 8-MB-Hochgeschwindigkeits-Flash-Speicher ausgestattet, der Daten mit maximaler Geschwindigkeit liefern kann. Der Flash-Speicher kann sowohl zum Speichern von Anweisungen für den Mikrocontroller als auch von Daten in einem Dateisystem verwendet werden. Durch die Verfügbarkeit eines Dateisystems können Daten einfach strukturiert und einfach zu programmieren gespeichert werden. Das Gerät kann über einen Lithium-Polymer-Akku mit Strom versorgt werden, der über einen standardmäßigen 2,0-mm-Anschluss an der Seite der Platine angeschlossen ist. Eine interne Batterieladeschaltung ermöglicht Ihnen ein sicheres und schnelles Laden Ihrer Batterie. Das Gerät wird mit einem Programmierwiderstand geliefert, der den Ladestrom auf 250 mA einstellt. Dieser Widerstand kann vom Benutzer ausgetauscht werden, um den Ladestrom je nach verwendeter Batterie entweder zu erhöhen oder zu verringern. Der WiFi-Bereich auf dieser Platine basiert auf dem Espressif ESP8285-Chip, bei dem es sich im Grunde um einen ESP8266 mit 1 MB Flash-Speicher im Chip handelt, was ihn zu einem vollständigen WiFi macht, das nur sehr wenige externe Komponenten benötigt. Der ESP8285 ist über einen UART-Kanal mit dem Mikrocontroller verbunden und der Betrieb wird über einen Satz standardisierter AT-Befehle gesteuert. Technische Daten Mikrocontroller RP2040 von Raspberry Pi (133 MHz Dual-Core Cortex-M0) SPI Ein SPI-Kanal konfiguriert I²C Ein I²C-Kanal konfiguriert UART Ein UART-Kanal konfiguriert (der zweite UART ist für den WiFi-Chip) Analogeingänge 4 analoge Eingangskanäle WLAN-Controller ESP8285 von Espressif (160 MHz Single-Core Tensilica L106) Flash-Speicher 8 MByte, 133 MHz SRAM-Speicher 264 KByte (aufgeteilt in 6 Bänke) USB 2.0-Controller Bis zu 12 MBit/s Full Speed (integriertes USB 1.1 PHY) JST-Batterieanschluss 2,0 mm Teilung Onboard-LiPo-Ladegerät 250 mA Standard-Ladestrom Onboard NeoPixel LED RGB-LED Abmessungen 51 x 23 x 3,2 mm Gewicht 9 g Downloads Datasheet Design files Product errata
NRF24L01 ist ein universeller monolithischer ISM-Band-Transceiver-Chip, der im 2,4-2,5-GHz-Bereich arbeitet.
Features
Drahtloser Transceiver einschließlich: Frequenzgenerator, erweiterter Typ, SchockBurstTM, Modusregler, Leistungsverstärker, Kristallverstärker, Modulator, Demodulator
Die Auswahl des Ausgangsleistungskanals und die Protokolleinstellungen können über die SPI-Schnittstelle auf einen extrem niedrigen Stromverbrauch eingestellt werden
Im Sendemodus beträgt die Sendeleistung 6 dBm, der Strom 9,0 mA, der akzeptierte Modusstrom 12,3 mA, der Stromverbrauch im Abschaltmodus und im Standby-Modus ist geringer
Eingebaute 2,4-GHz-Antenne, unterstützt bis zu sechs Kanäle für den Datenempfang
Abmessungen: 15 x 29 mm (inkl. Antenne)
Lauftextanzeige mit acht 8 x 8 LED-Punktmatrixanzeigen (insgesamt 512 LEDs).
Basiert auf einem ESP-12F-WLAN-Modul (basierend auf ESP8266), das in der Arduino IDE programmiert wurde.
Der ESP8266-Webserver ermöglicht die Steuerung des angezeigten Textes, der Bildlaufverzögerung und der Helligkeit mit einem Mobiltelefon oder einem anderen über WLAN verbundenen (tragbaren) Gerät.
Merkmale
10 MHz Serielle Schnittstelle
Individuelle LED-Segmentsteuerung
Dekodierung/Nicht-Dekodierung der Ziffernauswahl
150 µA Abschaltung bei niedrigem Stromverbrauch (Daten bleiben erhalten) Digitale und analoge Helligkeitsregelung
Anzeige beim Einschalten dunkel
LED-Anzeige mit gemeinsamer Kathode für Antrieb
Segmenttreiber mit begrenzter Anstiegsrate für geringere elektromagnetische Störungen (MAX7221)
SPI, QSPI, MICROWIRE Serielle Schnittstelle (MAX7221)
24-polige DIP- und SO-Gehäuse
Funktionsweise, Aufbau und Handling eines Power Moduls
Das „Abc der Power Module“ beinhaltet im ersten Schritt die wesentlichen Grundlagen, die bei der Auswahl und dem Einsatz eines Power Moduls notwendig sind. Das Buch beschreibt technische Zusammenhänge und Kenngrößen betreffend der Power Module sowie Berechnungsgrundlagen und Messtechniken.
Inhalt
Grundlagen
Dieses Kapitel beschreibt die Notwendigkeit eines Gleichspannungswandlers und dessen grundlegende Funktionsweise. Darüber hinaus werden verschiedene Möglichkeiten zur Realisierung eines Spannungsreglers dargestellt sowie die wesentlichen Vorteile eines Power Moduls benannt.
Schaltungstopologien
Hier werden dem Leser die bei Power Modulen sehr häufig verwendeten Schaltungskonzepte, Abwärts- und Aufwärtstopologien, näher erläutert sowie über weitere Schaltungstopologien informiert.
Technik, Aufbau und Regelungstechnik
Vorgestellt wird der mechanische Aufbau eines Power Moduls, der einen wesentlichen Einfluss auf die EMV sowie das Wärmemanagement hat. Ferner sind diesem Kapitel Regelungs- und Schaltungstipps zu entnehmen.
Messverfahren
Aussagefähige Messergebnisse sind zur Beurteilung eines Power Moduls zwingend notwendig. In diesem Kapitel werden die entsprechenden Messpunkte und Messmethoden beschrieben.
Handhabung
Es werden die Punkte der Lagerung und den Umgang mit Power Modulen erläutert, ebenso wie deren Fertigungs- und Lötprozess.
Auswahl eines Power Moduls
Wichtige Parameter und Kriterien für die optimale Auswahl eines Power Moduls sind in dieser Rubrik nachzulesen.
Dieses Kameramodul verwendet einen SmartSens SC3336-Sensorchip mit 3 MP-Auflösung. Es zeichnet sich durch hohe Empfindlichkeit, hohes SNR und Leistung bei schwachem Licht aus und ermöglicht einen feineren und lebendigeren Nachtsicht-Bildeffekt und kann sich besser an Änderungen des Umgebungslichts anpassen. Außerdem ist es mit Platinen der Luckfox Pico-Serie kompatibel.
Spezifikationen
Sensor
Sensor: SC3336
CMOS-Größe: 1/2,8"
Pixel: 3 MP
Statische Auflösung: 2304x1296
Maximale Videobildrate: 30fps
Verschluss: Rollladen
Linse
Brennweite: 3,95 mm
Blende: F2.0
Sichtfeld: 98,3° (diagonal)
Verzerrung: <33 %
Fokussierung: Manueller Fokus
Downloads
Wiki
,
von Clemens Valens
Zwei neue Arduino UNO R4 Boards: Minima und Wi-Fi
Der leistungsstarke Arduino UNO R4 ist das neueste Mitglied der kultigen Arduino UNO Familie. Es gibt ihn sogar in zwei Versionen. Werfen wir einen Blick...