Das ESP8266 ist ein beeindruckendes, kostengünstiges WiFi-Modul, das sich zum Hinzufügen von WiFi-Funktionalität zu einem bestehenden Mikrocontrollerprojekt über eine serielle UART-Verbindung eignet. Das Modul kann sogar so umprogrammiert werden, dass es als eigenständiges, WiFi-verbundenes Gerät fungiert – einfach mit Strom versorgen!
802.11 b/g/n-Protokoll
Wi-Fi Direct (P2P), Soft-AP
Integrierter TCP/IP-Protokollstapel
Dieses Modul ist ein in sich geschlossenes SOC (System On a Chip), das nicht unbedingt einen Mikrocontroller benötigt, um Ein- und Ausgänge zu manipulieren, wie Sie es normalerweise beispielsweise mit einem Arduino tun würden, da der ESP-01 als kleiner Computer fungiert. So können Sie einem Mikrocontroller Internetzugriff geben, wie es das Wi-Fi-Shield mit dem Arduino tut, oder Sie können den ESP8266 einfach so programmieren, dass er nicht nur Zugriff auf ein Wi-Fi-Netzwerk hat, sondern auch als Mikrocontroller fungiert, was den ESP8266 sehr vielseitig macht.
Dieses Wi-Fi-Modul basiert auf dem beliebten ESP8266-Chip. Das Modul ist FCC- und CE-zertifiziert und RoHS-konform.
Voll kompatibel mit ESP-12E. 13 GPIO-Pins, 1 Analogeingang, 4 MB Flash-Speicher.
Diese Version des Micro-OLED-Breakout hat exakt die Größe seines nicht-Qwiic-kompatiblen Geschwisters, mit einem 64 Pixel breiten und 48 Pixel hohen Bildschirm und einer Größe von 0,66". Es wurde aber zusätzlich mit zwei Qwiic-Anschlüssen ausgestattet und ist damit ideal für den I2C-Betrieb. Außerdem haben wir zwei Montagelöcher und eine praktische Qwiic-Kabelhalterung in eine abnehmbare Lasche auf der Platine integriert, die sich dank einer v-förmigen Kante leicht entfernen lässt. Wir haben sogar darauf geachtet, einen I2C-Pull-Up-Jumper und einen ADDR-Jumper auf der Rückseite des Boards zu integrieren, falls Sie also Ihre eigenen I2C-Pull-Ups haben oder die I2C-Adresse des Boards ändern müssen!
Features
Qwiic-Connector Enabled
Betriebsspannung: 3,3V
Betriebsstrom: 10mA (20mA max)
Bildschirmgröße: 64x48 Pixel (0,66" Querschnitt)
Monochrom Blau-auf-Schwarz
I2C-Schnittstelle
Um die Verwendung dieses Breakouts noch einfacher zu machen, erfolgt die gesamte Kommunikation ausschließlich über I2C, unter Verwendung unseres praktischen Qwiic-Systems. Dennoch haben wir Pins im Abstand von 0,1" herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Der CCS811 ist ein äußerst beliebter Sensor, der Messwerte für äquivalentes CO2 (oder eCO2) in Teilen pro Million (PPM) und gesamte flüchtige organische Verbindungen in Teilen pro Milliarde (PPB) liefert. Der CCS811 verfügt außerdem über eine Funktion, mit der er seine Messwerte feinabstimmen kann, wenn er Zugriff auf die aktuelle Luftfeuchtigkeit und Temperatur hat.
Glücklicherweise liefert der BME280 die Luftfeuchtigkeit, die Temperatur und den barometrischen Druck! So können die Sensoren zusammenarbeiten und uns genauere Messwerte liefern, als sie es alleine könnten. Wir haben es auch einfach gemacht, mit ihnen über I2C zu kommunizieren.
Funktionen
Qwiic-Connector Enabled
Betriebsspannung: 3,3 V
Messung der gesamten flüchtigen organischen Verbindungen (TVOC) von 0 bis 1.187 Teilen pro Milliarde
eCO2-Messung von 400 bis 8.192 Teilen pro Million
Temperaturbereich: -40C bis 85C
Feuchtigkeitsbereich: 0--100% RH, = -3 % von 20--80%
Druckbereich: 30.000Pa bis 110.000Pa, relative Genauigkeit von 12Pa, absolute Genauigkeit von 100Pa
Höhenbereich: 0 bis 30.000 Fuß (9,2 km), relative Genauigkeit von 3,3 Fuß (1 m) auf Meereshöhe, 6,6 (2 m) bei 30.000 Fuß
Der Qwiic Mux verfügt außerdem über acht eigene konfigurierbare Adressen, wodurch bis zu 64 I2C-Busse an einem Anschluss möglich sind. Um den Einsatz dieses Multiplexers noch einfacher zu machen, erfolgt die gesamte Kommunikation ausschließlich über I2C, unter Verwendung unseres praktischen Qwiic-Systems.
Der Qwiic Mux erlaubt es auch, die letzten drei Bits des Adressbytes zu ändern, so dass acht per Jumper wählbare Adressen zur Verfügung stehen, falls Sie mehr als einen Qwiic Mux Breakout an denselben I2C-Port anschließen möchten.
Die Adresse kann durch Lötzinn an jedem der drei ADR-Jumper geändert werden. Jedes SparkFun Qwiic Mux Breakout arbeitet zwischen 1,65 V und 5,5 V und ist damit ideal für alle von uns produzierten Qwiic-Boards.
Die Pico Breakout Garden Base befindet sich unter Ihrem Pico und ermöglicht den Anschluss von bis zu sechs unserer umfangreichen Auswahl an Pimoroni-Breakouts. Sei es Umgebungssensoren, mit denen Sie die Temperatur und Luftfeuchtigkeit in Ihrem Büro im Auge behalten, eine ganze Reihe kleiner Bildschirme für wichtige Benachrichtigungen und Anzeigen und natürlich LEDs. Scrollen Sie nach unten für eine Liste der Breakouts, die derzeit mit unseren C++/MicroPython-Bibliotheken kompatibel sind! Neben einem beschrifteten Landebereich für Ihren Pico gibt es auch einen vollständigen Satz herausgebrochener Pico-Anschlüsse für den Fall, dass Sie noch mehr Sensoren, Kabel und Schaltkreise anschließen müssen. Wir haben einige Gummifüße eingebaut, um die Basis schön stabil zu halten und zu verhindern, dass sie Ihren Schreibtisch zerkratzt, oder es gibt M2,5-Befestigungslöcher an den Ecken, damit Sie sie bei Bedarf auf einer festen Oberfläche festschrauben können.
Bei den sechs stabilen schwarzen Steckplätzen handelt es sich um Kantenverbinder, die die Breakouts mit den Pins Ihres Pico verbinden. Es gibt zwei Steckplätze für SPI-Breakouts und vier Steckplätze für I²C-Breakouts. Da es sich bei I²C um einen Bus handelt, können Sie mehrere I²C-Geräte gleichzeitig verwenden, vorausgesetzt, sie haben nicht die gleiche I²C-Adresse (wir haben dafür gesorgt, dass alle unsere Breakouts unterschiedliche Adressen haben, und wir drucken sie auf der Rückseite auf). die Ausbrüche, damit sie leicht zu finden sind). Breakout Garden ist nicht nur eine praktische Möglichkeit, Ihrem Pico Funktionalität hinzuzufügen, sondern ist auch sehr nützlich für Prototyping-Projekte, ohne dass komplizierte Verkabelungen, Lötarbeiten oder Steckbretter erforderlich sind, und Sie können Ihr Setup jederzeit erweitern oder ändern.
Merkmale
Sechs stabile Kantensteckplätze für Breakouts
4x I²C-Steckplätze (5 Pins)
2x SPI-Steckplatz (7 Pins)
Landebereich mit Buchsenleisten für Raspberry Pi Pico
0,1-Zoll-Raster, 5- oder 7-polige Steckverbinder
Ausgebrochene Stifte
Verpolungsschutz (in Breakouts integriert)
Zu 99 % montiert – nur noch die Füße aufkleben!
Kompatibel mit Raspberry Pi Pico
Dank seiner sechs stabilen Steckplätze ermöglicht Breakout Garden den Benutzern das einfache Plug-and-Play mit verschiedenen kleinen Breakout-Boards.
Stecken Sie einfach ein oder mehrere Boards in die Steckplätze im Breakout Garden HAT und schon kann es losgehen. Die Mini-Breakouts fühlen sich in den Edge-Connector-Steckplätzen sicher genug an und es ist sehr unwahrscheinlich, dass sie herausfallen.
An der Oberseite des Breakout Garden befinden sich eine Reihe nützlicher Pins, mit denen Sie andere Geräte anschließen und in Ihr Projekt integrieren können.
Dank des Verpolungsschutzes müssen Sie sich keine Sorgen machen, wenn Sie eine Platine falsch herum einsetzen. Es spielt auch keine Rolle, welchen Steckplatz Sie für jeden Breakout verwenden, da die I²C-Adresse des Breakouts von der Software erkannt wird und diese korrekt erkennt, falls Sie sie verschieben.
Merkmale
Sechs stabile Kantensteckplätze für Pimoroni-Breakouts
0,1-Zoll-Raster, 5-polige Anschlüsse
Ausgebrochene Stifte (1 × 10 Streifen- oder Stiftleiste im Lieferumfang enthalten)
Im Lieferumfang sind Abstandshalter (M2,5, 10 mm Höhe) enthalten, um Ihren Breakout Garden sicher zu halten
Verpolungsschutz (in Breakouts integriert)
Platine im HAT-Format
Kompatibel mit Raspberry Pi 3 B+, 3, 2, B+, A+, Zero und Zero W
Es wird empfohlen, die mitgelieferten Abstandshalter zu verwenden, um Breakout Garden an Ihrem Raspberry Pi zu befestigen.
Software
Breakout Garden erfordert keine eigene Software, aber jeder von Ihnen verwendete Breakout benötigt eine Python-Bibliothek. Auf der Breakout Garden GitHub-Seite finden Sie ein automatisches Installationsprogramm, das die entsprechende Software für einen bestimmten Breakout installiert. Es gibt auch einige Beispiele, die Ihnen zeigen, was Sie sonst noch mit Breakout Garden machen können.
Der VL53L1X von STMicroelectronics nutzt einen VCSEL (Vertical Cavity Surface Emitting Laser), um einen Infrarotlaser zu emittieren, der die Reflexion zum Ziel zeitlich bestimmt. Das bedeutet, dass Sie in der Lage sind, die Entfernung zu einem 40 mm bis 4 m entfernten Objekt mit Millimeterauflösung zu messen! Um die Messung noch einfacher zu machen, erfolgt die gesamte Kommunikation ausschließlich über I2C, unter Verwendung unseres praktischen Qwiic-Systems, so dass keine Lötarbeiten erforderlich sind, um ihn mit dem Rest Ihres Systems zu verbinden. Dennoch haben wir die Pins im 0,1"-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Jeder VL53L1X-Sensor hat eine Präzision von 1mm mit einer Genauigkeit von etwa +/-5mm, und der minimale Leseabstand dieses Sensors beträgt 4cm. Das Sichtfeld dieses kleinen Breakouts ist mit 15°-27° recht eng und die Leserate beträgt bis zu 50Hz. Stellen Sie sicher, dass Sie die Platine mit einer angemessenen Spannung versorgen, da sie 2,6V-3,5V benötigt. Bitte entfernen Sie den Schutzaufkleber auf dem VL53L1X vor dem Gebrauch, da sonst die Messwerte verfälscht werden.
Merkmale
Betriebsspannung: 2,6V-3,5V
Leistungsaufnahme: 20 mW @10Hz
Messbereich: ~40mm bis 4.000mm
Auflösung: +/-1mm
Lichtquelle: Klasse 1 940nm VCSEL
7-Bit unshifted I2C Adresse: 0x29
Sichtfeld: 15° - 27°
Max. Leserate: 50Hz
Das MLX90640 SparkFun IR Array Breakout verfügt über ein 32×24-Array von Thermosäulensensoren, die im Wesentlichen eine Wärmebildkamera mit niedriger Auflösung erzeugen. Mit diesem Breakout können Sie Oberflächentemperaturen aus einiger Entfernung mit einer Genauigkeit von ±1,5 °C (bester Fall) beobachten. Diese Platine kommuniziert über I²C mithilfe des von Sparkfun entwickelten Qwiic-Systems, was die Bedienung des Breakouts erleichtert. Es gibt jedoch immer noch Pins im Abstand von 0,1 Zoll, falls Sie lieber ein Steckbrett verwenden möchten.
Das SparkFun Qwiic-Verbindungssystem ist ein Ökosystem aus I²C-Sensoren, Aktoren, Abschirmungen und Kabeln, das das Prototyping beschleunigt und Ihnen hilft, Fehler zu vermeiden. Alle Qwiic-fähigen Boards verwenden einen gemeinsamen 4-poligen JST-Anschluss mit 1 mm Abstand. Dies reduziert den erforderlichen Platzbedarf auf der Leiterplatte und polarisierte Anschlüsse helfen Ihnen, alles richtig anzuschließen. Dieses spezielle IR-Array-Breakout bietet ein Sichtfeld von 110°×75° mit einem Temperaturmessbereich von -40 °C ~ 300 °C. Das MLX90640 IR-Array hat Pull-Up-Widerstände, die an den I²C-Bus angeschlossen sind; beide können entfernt werden, indem die Leiterbahnen an den entsprechenden Jumpern auf der Rückseite der Platine durchtrennt werden. Bitte beachten Sie, dass das MLX90640 komplexe Berechnungen durch die Host-Plattform erfordert, sodass ein normaler Arduino Uno (oder ein gleichwertiges Gerät) nicht über genügend RAM oder Flash verfügt, um die komplexen Berechnungen durchzuführen, die erforderlich sind, um die Rohpixeldaten in Temperaturdaten umzuwandeln. Sie benötigen einen Mikrocontroller mit 20.000 Byte oder mehr RAM.
Der ESP-01-Adapter 3,3–5 V ist die ideale Lösung für den Anschluss eines ESP-01 ESP8266-Moduls an ein 5-V-System wie Arduino Uno.
Features
Adaptermodul für ESP-01 Wi-Fi-Modul
3,3-V-Spannungsregler und Onboard-Pegelwandler für die einfache Verwendung von 5-V-Mikrocontrollern mit dem ESP-01 Wi-Fi-Modul
Kompatibel mit Uno R3
4,5~5,5 V (integrierter 3,3 V LDO-Regler)
Logikspannung der Schnittstelle: 3,3-5 V kompatibel (On-Board-Pegelumsetzung)
Stromstärke: 0-240 mA
Dieses CAN-Modul basiert auf dem CAN-Bus-Controller MCP2515 und dem CAN-Transceiver TJA1050. Mit diesem Modul können Sie einfach jedes CAN-Bus-Gerät über die SPI-Schnittstelle mit Ihrer MCU steuern, wie z. B. Arduino Uno und viele andere.
Features
Unterstützt CAN V2.0B
Kommunikationsrate bis zu 1 MB/s
Betriebsspannung: 5 V
Arbeitsstrom: 5 mA
Schnittstelle: SPI
Downloads
MCP2515 Datasheet
TJA1050 Datasheet