Das ATmega328 Uno Development Board (Arduino Uno kompatibel) ist ein Mikrocontroller-Board, das auf dem ATmega328 basiert.
Es verfügt über 14 digitale Ein-/Ausgangspins (von denen 6 als PWM-Ausgänge verwendet werden können), 6 analoge Eingänge, einen 16 MHz-Keramikresonator, einen USB-Anschluss, eine Strombuchse, einen ICSP-Header und eine Reset-Taste.
Es enthält alles, was zur Unterstützung des Mikrocontrollers erforderlich ist. Schließen Sie es über ein USB-Kabel an einen Computer an oder betreiben Sie es mit einem AC-DC-Adapter oder einer Batterie, um loszulegen.
Technische Daten
Mikrocontroller
ATmega328
Betriebsspannung
5 V DC
Eingangsspannung (empfohlen)
7-12 V DC
Eingangsspannung (Grenzwerte)
6-20 V DC
Digitale I/O-Pins
14 (davon 6 mit PWM-Ausgang)
Analoge Eingangspins
6
SRAM
2 kB (ATmega328)
EEPROM
1 kB (ATmega328)
Flash-Speicher
32 kB (ATmega328), davon 0,5 kB vom Bootloader verwendet
Taktgeschwindigkeit
16 MHz
Downloads
Manual
Dieser Ultraschall-Abstandssensor (ME007-ULA V1) bietet hohe Leistung mit einer robusten, wasserdichten Sonde. Der Sensor basiert auf dem Prinzip der Ultraschall-Echoentfernungsmessung und bestimmt die Entfernung zu einem Ziel, indem er die Zeit misst, die zwischen dem Senden eines Impulses und dem Empfang des Echos vergeht. Sein berührungsloses Design ermöglicht die Erkennung einer Vielzahl von Materialien, einschließlich transparenter oder nicht eisenhaltiger Objekte, Metalle, Nichtmetalle, Flüssigkeiten, Feststoffe und Pulver.
Technische Daten
Entfernung erkennen
27~800 cm
Ausgabeschnittstelle
RS232, Spannungsanalog
Betriebsspannung
5-12 V
Durchschnittlicher Strom
<10 mA
Betriebstemperatur
−15~60°C
Abmessungen
60 x 43 x 31 mm
Der SparkFun RP2350 Pro Micro bietet eine leistungsstarke Entwicklungsplattform, die auf dem RP2350-Mikrocontroller basiert. Dieses Board verwendet den aktualisierten Pro Micro-Formfaktor. Es umfasst einen USB-C-Anschluss, einen Qwiic-Anschluss, eine adressierbare WS2812B-RGB-LED, Boot- und Reset-Tasten, eine rücksetzbare PTC-Sicherung sowie PTH- und zinnenförmige Lötpads.
Der RP2350 ist ein einzigartiger Dual-Core-Mikrocontroller mit zwei ARM Cortex-M33-Prozessoren und zwei Hazard3 RISC-V-Prozessoren, die alle mit bis zu 150 MHz laufen! Das bedeutet jedoch nicht, dass der RP2350 ein Quad-Core-Mikrocontroller ist. Stattdessen können Benutzer auswählen, welche zwei Prozessoren stattdessen beim Booten ausgeführt werden sollen. Sie können zwei Prozessoren desselben Typs oder jeweils einen davon betreiben. Der RP2350 verfügt außerdem über 520 kB SRAM in zehn Bänken, eine Vielzahl von Peripheriegeräten, darunter zwei UARTs, zwei SPI- und zwei I²C-Controller sowie einen USB 1.1-Controller für Host- und Geräteunterstützung.
Der Pro Micro verfügt außerdem über zwei erweiterte Speicheroptionen: 16 MB externer Flash und 8 MB PSRAM, verbunden mit dem QSPI-Controller des RP2350. Der RP2350 Pro Micro arbeitet mit C/C++ unter Verwendung der Entwicklungsumgebungen Pico SDK, MicroPython und Arduino.
Features
RP2350-Mikrocontroller
8 MB PSRAM
16 MB Flash
Versorgungsspannung
USB: 5 V
RAW: 5,3 V (max.)
Pro Micro Pinbelegung
2x UART
1x SPI
10x GPIO (4 werden für UART1 und UART0 verwendet)
4x Analog
USB-C-Anschluss
USB 1.1-Host-/Geräteunterstützung
Qwiic-Connector
Buttons
Reset
Boot
LEDs
WS2812 Adressierbare RGB-LED
Rote Power-LED
Abmessungen: 33 x 17,8 mm
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
RP2350 MicroPython Firmware (Beta 04)
SparkFun Pico SDK Library
Arduino Pico Arduino Core
Datasheet (RP2350)
Datasheet (APS6404L PSRAM)
RP2350 Product Brief
Raspberry Pi RP2350 Microcontroller Documentation
Qwiic Info Page
GitHub Repository
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications.
Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels.
The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions.
Features
Arduino compatible
Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262
LoRaWAN 1.0.2 support
Ultra low power design, 21 uA in deep sleep
Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching)
Good impendence matching and long communication distance
Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel
Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures
Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing
Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information
Using Air530 GPS module with GPS/Beidou Dual-mode position system support
Specifications
Main Chip
ASR6502 (48 MHz ARM Cortex-M0+ MCU)
LoRa Chipset
SX1262
Frequency
863~870 MHz
Max. TX Power
22 ±1 dBm
Max. Receiving Sensitivity
−135 dBm
Hardware Resource
2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO
Memory
128 Kb FLASH16 Kb SRAM
Power consumption
Deep sleep 21 uA
Interfaces
1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header)
Battery
3.7 V lithium battery (power supply and charging)
Solar Energy
VS pin can be connected to 5.5~7 V solar panel
USB to Serial Chip
CP2102
Display
0.96" OLED (128 x 64)
Operating temperature
−20~70°C
Dimensions
55.9 x 27.9 x 9.5 mm
Included
1x CubeCell HTCC-AB02S Development Board
1x Antenna
1x 2x SH1.25 battery connector
Downloads
Datasheet
Schematic
GPS module (Manual)
Quick start
GitHub
Merkmale
Implementiert CAN V2.0B mit bis zu 1 Mb/s
9-poliger Sub-D-Stecker nach Industriestandard
OBD-II- und CAN-Standard-Pinout wählbar.
Wechselbarer Chip-Select-Pin
Programmierbarer CS-Pin für TF-Kartensteckplatz
Auswechselbarer INT-Pin
Schraubklemme für den einfachen Anschluss von CAN_H und CAN_L
Arduino Uno Stiftleisten
MicroSD - Kartenhalter
2 Grove-Anschlüsse (I2C und UART)
SPI-Schnittstelle mit bis zu 10 MHz
Standard (11 Bit) und erweiterte (29 Bit) Daten und Remote Frames
Zwei Empfangspuffer mit priorisiertem Nachrichtenspeicher
Die Pico Breakout Garden Base befindet sich unter Ihrem Pico und ermöglicht den Anschluss von bis zu sechs unserer umfangreichen Auswahl an Pimoroni-Breakouts. Sei es Umgebungssensoren, mit denen Sie die Temperatur und Luftfeuchtigkeit in Ihrem Büro im Auge behalten, eine ganze Reihe kleiner Bildschirme für wichtige Benachrichtigungen und Anzeigen und natürlich LEDs. Scrollen Sie nach unten für eine Liste der Breakouts, die derzeit mit unseren C++/MicroPython-Bibliotheken kompatibel sind! Neben einem beschrifteten Landebereich für Ihren Pico gibt es auch einen vollständigen Satz herausgebrochener Pico-Anschlüsse für den Fall, dass Sie noch mehr Sensoren, Kabel und Schaltkreise anschließen müssen. Wir haben einige Gummifüße eingebaut, um die Basis schön stabil zu halten und zu verhindern, dass sie Ihren Schreibtisch zerkratzt, oder es gibt M2,5-Befestigungslöcher an den Ecken, damit Sie sie bei Bedarf auf einer festen Oberfläche festschrauben können.
Bei den sechs stabilen schwarzen Steckplätzen handelt es sich um Kantenverbinder, die die Breakouts mit den Pins Ihres Pico verbinden. Es gibt zwei Steckplätze für SPI-Breakouts und vier Steckplätze für I²C-Breakouts. Da es sich bei I²C um einen Bus handelt, können Sie mehrere I²C-Geräte gleichzeitig verwenden, vorausgesetzt, sie haben nicht die gleiche I²C-Adresse (wir haben dafür gesorgt, dass alle unsere Breakouts unterschiedliche Adressen haben, und wir drucken sie auf der Rückseite auf). die Ausbrüche, damit sie leicht zu finden sind). Breakout Garden ist nicht nur eine praktische Möglichkeit, Ihrem Pico Funktionalität hinzuzufügen, sondern ist auch sehr nützlich für Prototyping-Projekte, ohne dass komplizierte Verkabelungen, Lötarbeiten oder Steckbretter erforderlich sind, und Sie können Ihr Setup jederzeit erweitern oder ändern.
Merkmale
Sechs stabile Kantensteckplätze für Breakouts
4x I²C-Steckplätze (5 Pins)
2x SPI-Steckplatz (7 Pins)
Landebereich mit Buchsenleisten für Raspberry Pi Pico
0,1-Zoll-Raster, 5- oder 7-polige Steckverbinder
Ausgebrochene Stifte
Verpolungsschutz (in Breakouts integriert)
Zu 99 % montiert – nur noch die Füße aufkleben!
Kompatibel mit Raspberry Pi Pico
Grove-Servo is a rotary actuator that allows for precise control of the angular position. It's suitable for use in closed-loop systems where precise position control is needed. We regulated the three-wire servo into a Grove standard connecter. You can plug and play it as a typical Grove module now, without jumper wires clutter.
Features
High Accuracy: closed-loop control of position, speed and torque is achieved
High Stability: stable operation at a low speed of 0.12/0.16s/60°
Easy to use: compatible with Grove port, just plug-and-play
Merkmale
Integrierte Vergleichsstellenkompensation
Unterstützte Typen (bezeichnet durch NIST ITS-90): Typ K, J, T, N, S, E, B und R Vier programmierbare Temperaturalarmausgänge:
Überwachen Sie Hot- oder Cold-Junction
Temperaturen
Erkennen Sie steigende oder fallende Temperaturen
Bis zu 255 °C oder programmierbare Hysterese
Programmierbarer digitaler Filter für Temperatur
Geringer Strom
Abmessungen: 20 mm x 40 mm x 18 mm
Gewicht: 18g
Anwendung
Petrochemisches Wärmemanagement
Handmessgeräte
Wärmemanagement für Industrieanlagen
Öfen
Wärmeüberwachung für Industriemotoren
Temperaturerkennungsregale
Downloads
Eagle-Dateien
Github-Bibliothek
Datenblatt
Challenger RP2040 NFC ist ein kleiner Embedded-Computer, der mit einem fortschrittlichen integrierten NFC-Controller (NXP PN7150) im beliebten Adafruit Feather-Formfaktor ausgestattet ist. Es basiert auf einem RP2040-Mikrocontroller-Chip der Raspberry Pi Foundation, einem Dual-Core-Cortex-M0, der mit einer Taktrate von bis zu 133 MHz betrieben werden kann. NFC Der PN7150 ist eine voll ausgestattete NFC-Controllerlösung mit integrierter Firmware und NCI-Schnittstelle, die für kontaktlose Kommunikation bei 13,56 MHz konzipiert ist. Es ist vollständig mit den Anforderungen des NFC-Forums kompatibel und basiert weitgehend auf Erkenntnissen aus früheren NXP-NFC-Gerätegenerationen. Es ist die ideale Lösung für die schnelle Integration der NFC-Technologie in jede Anwendung, insbesondere in kleine eingebettete Systeme, wodurch die Stückliste (BOM) reduziert wird. Das integrierte Design mit vollständiger NFC-Forum-Konformität bietet dem Benutzer alle folgenden Funktionen: Eingebettete NFC-Firmware, die alle NFC-Protokolle als vorintegrierte Funktion bereitstellt. Direkte Verbindung zum Haupthost oder Mikrocontroller über den physischen I²C-Bus und das NCI-Protokoll. Extrem geringer Stromverbrauch im Polling-Loop-Modus. Hocheffiziente integrierte Power-Management-Einheit (PMU), die eine direkte Versorgung über eine Batterie ermöglicht. Technische Daten Mikrocontroller RP2040 von Raspberry Pi (133 MHz Dual-Core Cortex-M0) SPI Ein SPI-Kanal konfiguriert I²C Zwei I²C-Kanäle konfiguriert (dedizierter I²C für den PN7150) UART Ein UART-Kanal konfiguriert Analogeingänge 4 analoge Eingangskanäle NFC-Modul PN7150 von NXP Flash-Speicher 8 MB, 133 MHz SRAM-Speicher 264 KB (aufgeteilt in 6 Bänke) USB 2.0-Controller Bis zu 12 MBit/s Full Speed (integriertes USB 1.1 PHY) JST-Batterieanschluss 2,0 mm Teilung LiPo-Ladegerät an Bord 450 mA Standard-Ladestrom Abmessungen 51 x 23 x 3,2 mm Gewicht 9 g Hinweis: Antenne ist nicht im Lieferumfang enthalten. Downloads Datasheet Quick start example
Der 301T Fingerabdrucksensor ist durch den integrierten Chip in der Lage, Bilder zu sammeln und Algorithmen zu berechnen. Eine weitere bemerkenswerte Funktion des Sensors ist, dass er Fingerabdrücke unter verschiedenen Bedingungen, wie z. B. Feuchtigkeit, Lichtbeschaffenheit oder Veränderungen der Haut, erkennen kann. Dies bietet ein sehr breites Spektrum an Anwendungsmöglichkeiten, unter anderem zur Sicherung von Schlössern und Türen. Der Chip kann Daten über UART, TTL seriell und USB an den angeschlossenen Controller senden.
Technische Daten
Modell
JP2000 Sensor
Chip
32 Bit ARM Cortex-M3
Chip-Speicher
96 kB RAM, 1 MB Flash
Versorgungsspannung
4,2 - 6,0 V
Arbeitsstromverbrauch
Durchschnittlich: 40 mASpitze: 50 mA
Logiklevel
3,3 / 5 V TTL Logic
Fingerabdruckspeicherkapazität
3000 Abdrücke
Abgleichmethode
1:N Identifikation1:1 Verifizierung
Anpassbare Sicherheitsstufe
Stufe 1 - 5(Standardstufe: 3)
Falschakzeptanzrate
(auf Sicherheitsstufe 3)
Falschablehnungsrate
(auf Sicherheitsstufe 3)
Antwortzeit
Vorberechnung: Abgleich:
Baudratenunterstützung
9600 - 921600
UART-Übertragung
Keine Parität, Stopp-Bit: 1
Abmessungen
42 x 19 x 8 mm
Lieferumfang
1x Fingerabdrucksensor COM-FP-R301T
1x Kabel
Downloads
Datenblatt
Handbuch
THSER102 ist ein Plug-and-Play-Kabelverlängerungskit für Raspberry Pi-Kameramodule. Das Kit ist mit dem Raspberry Pi-Kameramodul 3 kompatibel, zusätzlich zu Camera V2 (Version 2.1), der HQ/Global Shutter-Kamera und definierten Modi des Raspberry Pi-Kameramoduls V1.3.
Der THSER102 verlängert die Kabellänge um >10 Meter zwischen dem Raspberry Pi-Kameramodul und dem Computer mit einem Standard-LAN-Kabel.
Es ist keine Software oder Codierung erforderlich. THSER102 funktioniert so, als ob die Raspberry Pi-Kamera direkt an den Computer angeschlossen wäre.
Der THSER102 unterstützt auch erweiterte Anwendungen. Die HAT-on-HAT-Unterstützung ermöglicht die Verwendung einer weiteren HAT-Karte auf der THSER102 Rx-Karte. Die 3-Kanal-GPIO-Erweiterung ermöglicht die Erweiterung der GPIO-Kommunikation zwischen dem Kamerastandort und dem Computer.
Features
Unterstützt alle Raspberry Pi-Kameramodule, einschließlich Kameramodul 3
>10-Meter-Kabelverlängerung
Plug-and-Play
Es ist keine Softwarekonfiguration erforderlich.
Kamera funktioniert, als ob THSER102 nicht vorhanden wäre.
Erweiterte Anwendungen werden unterstützt
HUT auf HUT
3-Kanal-GPIO-Erweiterung
Lieferumfang
1x Tx-Board
1x Rx-Board
1x LAN-Kabel (2 m)
2x flache Flexkabel
1x Stiftleiste
6x Befestigungsschrauben für Rx-Board
3x längere Abstandshalter für Rx-Board
4x Befestigungsschrauben für Tx-Platine (nur für Kamera V2)
4x kürzere Abstandshalter für Tx-Board (nur für Kamera V2)
4x Befestigungsmuttern für Tx-Platine (nur für Kamera V2)
Downloads
Datasheet
Der GrovePi+ ist ein benutzerfreundliches und modulares System zum Hardware-Hacken mit dem Raspberry Pi, ohne dass Löten oder Steckbretter erforderlich sind: Schließen Sie Ihre Grove-Sensoren an und beginnen Sie direkt mit der Programmierung. Grove ist eine benutzerfreundliche Sammlung von mehr als 100 kostengünstigen Plug-and-Play-Modulen, die die physische Welt erfassen und steuern. Durch die Verbindung von Grove Sensors mit Raspberry Pi wird Ihr Pi in der physischen Welt gestärkt. Mit Hunderten von Sensoren aus den Grove-Familien sind die Möglichkeiten der Interaktion endlos.
Einrichtung in 4 einfachen Schritten
Schieben Sie das GrovePi+-Board über Ihren Raspberry Pi
Verbinden Sie die Grove-Module mit der GrovePi+-Platine
Laden Sie Ihr Programm auf Raspberry Pi hoch
Beginnen Sie mit der Aufnahme der Weltdaten
Bitte beachten Sie: Raspberry Pi-Board ist nicht im Lieferumfang enthalten
Das SparkFun MicroMod mikroBUS Carrier Board nutzt die Vorteile der MicroMod-, Qwiic- und mikroBUS-Ökosysteme und ermöglicht es Ihnen, schnell Prototypen zu erstellen, indem Sie sie kombinieren. Der MicroMod M.2-Anschluss und der mikroBUS 8-Pin-Header bieten Benutzern die Freiheit, mit jedem Prozessorboard im MicroMod-Ökosystem und jedem Click-Board im mikroBUS-Ökosystem zu experimentieren. Dieses Board verfügt außerdem über zwei Qwiic-Anschlüsse, um Hunderte von Qwiic-Sensoren und Zubehör nahtlos in Ihr Projekt zu integrieren.
Der mikroBUS-Anschluss besteht aus einem Paar weiblicher 8-Pin-Header mit einer standardisierten Pin-Konfiguration. Die Pins bestehen aus drei Gruppen von Kommunikationspins (SPI, UART und I²C), sechs zusätzlichen Pins (PWM, Interrupt, Analogeingang, Reset und Chip-Select) und zwei Stromgruppen (3,3 V und 5 V).
Während ein moderner USB-C-Anschluss das Programmieren erleichtert, ist das Carrier Board auch mit einem MCP73831 Single-Cell Lithium-Ionen-/Lithium-Polymer-Lade-IC ausgestattet, mit dem Sie einen angeschlossenen LiPo-Akku mit einer Zelle aufladen können. Das Lade-IC erhält Strom über die USB-Verbindung und kann bis zu 450 mA bereitstellen, um einen angeschlossenen Akku aufzuladen.
Features
M.2 MicroMod (Prozessorboard) Anschluss
USB-C-Anschluss
3,3 V 1 A Spannungsregler
2x Qwiic-Anschlüsse
mikroBUS-Anschluss
Boot/Reset-Tasten
Ladekreis
JTAG/SWD PTH-Pins
Downloads
Schaltplan
Eagle-Dateien
Platinenabmessungen
Anschlussanleitung
Erste Schritte mit Necto Studio
mikroBUS-Standard
Qwiic Info-Seite
GitHub-Hardware-Repo
Der DiP-Pi WiFi Master ist ein fortschrittliches WiFi-Konnektivitätssystem mit eingebetteten Sensorschnittstellen, das die meisten möglichen Anforderungen für IoT-Anwendungen auf Basis von Raspberry Pi Pico abdeckt. Es wird direkt vom Raspberry Pi Pico VBUS mit Strom versorgt. Der DiP-Pi WiFi Master enthält eine in Raspberry Pi Pico eingebettete RESET-Taste sowie einen EIN/AUS-Schiebeschalter, der auf die Stromquellen von Raspberry Pi Pico einwirkt.
Der DiP-Pi WiFi Master ist mit einem WiFi ESP8266 Clone-Modul mit integrierter Antenne ausgestattet. Diese Funktion eröffnet eine breite Palette darauf basierender IoT-Anwendungen.
Zusätzlich zu allen oben genannten Funktionen ist DiP-Pi WiFi Master mit eingebetteten 1-Wire-, DHT11/22-Sensoren und Micro-SD-Kartenschnittstellen ausgestattet. Die Kombination der erweiterten Stromversorgungs-, Batterie- und Sensorschnittstellen macht den DiP-Pi WiFi Master ideal für IoT-Anwendungen wie Datenlogger, Anlagenüberwachung, Kühlschranküberwachung usw. DiP-Pi WiFi Master wird mit zahlreichen gebrauchsfertigen Beispielen unterstützt, die in Micro Python oder C/C++ geschrieben sind.
Spezifikationen
Allgemein
Abmessungen 21 x 51 mm
Kompatibel mit Raspberry Pi Pico-Pinbelegung
Unabhängige informative LEDs (VBUS, VSYS, V3V3)
Raspberry Pi Pico RESET-Taste
EIN/AUS-Schiebeschalter mit Wirkung auf die Stromversorgung des Raspberry Pi Pico
Eingebetteter 3,3 V bei 600 mA LDO
ESP8266-Klon-WLAN-Konnektivität
ESP8266 Firmware-Upload-Schalter
Eingebettete 1-Wire-Schnittstelle
Integrierte DHT-11/22-Schnittstelle
Stromversorgungsoptionen
Raspberry Pi Pico Micro-USB (über VBUS)
Eingebettete Peripheriegeräte und Schnittstellen
Eingebettete 1-Wire-Schnittstelle
Integrierte DHT-11/22-Schnittstelle
Micro SD-Kartensteckplatz
Programmierschnittstelle
Standard Raspberry Pi Pico C/C++
Standard-Raspberry Pi Pico Micro Python
Gehäusekompatibilität
DiP-Pi Plexiglasgehäuse
Informative LEDs
VB (VUSB)
VS (VSYS)
V3 (V3V3)
Systemschutz
Direkter Raspberry Pi Pico Hardware-Reset-Knopf
PPTC 500 mA @ 18 V Sicherung auf EPR
EPR/LDO-Übertemperaturschutz
EPR/LDO-Überstromschutz
System-Design
Entworfen und simuliert mit PDA Analyzer mit einem der fortschrittlichsten CAD/CAM-Tools – Altium Designer
Industriell entstanden
PCB-Konstruktion
2 ozKupfer-PCB für ordnungsgemäße Hochstromversorgung und Kühlung
6 mils Spur/6 mils Lückentechnologie 2-lagige Leiterplatte
PCB-Oberflächenveredelung – Immersion Gold
Mehrschichtige Kupfer-Thermorohre für eine verbesserte thermische Reaktion des Systems und bessere passive Kühlung
Downloads
Datenblatt
Handbuch
Wenn Sie die Auflösungsgrenzen des V-One erweitern möchten, helfen Ihnen diese Dosierspitzen bei der Umsetzung Ihrer experimentellen Projekte. Dieses Set enthält 4 extra feine Düsen mit einem Innendurchmesser von 0,150 mm (6 mil).
Verwenden Sie diese Düsen nicht mit Lötpaste! Es wird verstopfen!
Mit dem Voice Interaction Satellite Kit können Sie die Reichweite Ihrer Basisstation auf jeden Raum in Ihrem Haus erweitern und es Ihnen ermöglichen, mit der Hardware zu interagieren, je nachdem, wo Sie Ihre Befehle erteilen! Sie können in Ihrem Zuhause mehrere Satelliten-Kits anordnen, um dem Basis-Kit oder jedem anderen intelligenten Lautsprecher neue Funktionen hinzuzufügen und so Ihre Sprachsteuerung auf mehrere Räume auszudehnen.
Das Voice Interaction Satellite Kit wird von einem Raspberry Pi Zero W und dem ReSpeaker 2-Mics Pi HAT angetrieben. Zusammen mit dem Kit sind ein Lautsprecher, ein Grove-Temperatur- und Feuchtigkeitssensor (SHT31), ein Grove-Relais und eine Stecktafel zum Aufhängen an der Wand oder zum Erstellen eines praktischen Ständers enthalten.
Hinweis
Alle Satelliten-Kits erfordern ein Basis-Kit (Link zum Snips Voice Interaction Base Kit) oder Raspberry Pi, um wie vorgesehen zu funktionieren.
Datenerfassung: Sondieren Sie die Umwelt ihres Gerätes mit den integrierten Temperatur-, Feuchtigkeits- und Drucksensoren und sammeln Sie Daten über Bewegungen mit der 6-Achsen-IMU sowie Licht-, Gesten- und Näherungssensorik. Fügen Sie ganz einfach weitere externe Sensoren hinzu, um noch mehr Daten aus verschiedenen Quellen über die integrierten Grove-Anschlüsse (x3) zu erfassen.
Datenspeicherung: Erfassen und speichern Sie alle Daten lokal auf einer SD-Karte oder stellen Sie eine Verbindung zur Arduino IoT Cloud her, um die Daten in Echtzeit zu erfassen, zu speichern und zu visualisieren.
Datenvisualisierung: Zeigen Sie die Sensormesswerte in Echtzeit auf dem integrierten OLED-Farbdisplay an und erstellen Sie mithilfe der integrierten LEDs und des Summers visuelle oder akustische Ausgaben.
Steuerung: Das integrierte Display erlaub eine praktische und direkte Steuerung von elektronischen Kleinspannungsgeräten über die integrierten Relais und die fünf Steuertasten.
Der Arduino MKR NB 1500 ermöglicht es Ihnen, Ihr nächstes intelligentes Projekt zu entwickeln.
Haben Sie schon einmal von einem automatisierten Haus oder einem intelligenten Garten geträumt? Mit den Arduino IoT Cloud-kompatiblen Boards wird es jetzt einfach. Sie können Geräte anschließen, Daten visualisieren, Projekte von überall auf der Welt steuern und teilen. Egal, ob Sie Anfänger oder Profi sind, wir bieten eine breite Palette von Plänen an, um sicherzustellen, dass Sie die Funktionen erhalten, die Sie benötigen.
Fügen Sie Ihrem Projekt mit dem MKR NB 1500 die Narrowband-Kommunikation hinzu. Er ist die perfekte Wahl für Geräte an abgelegenen Orten ohne Internetverbindung oder in Situationen, in denen keine Stromversorgung verfügbar ist, wie z.B. bei Feldinstallationen, Fernmesssystemen, solarbetriebenen Geräten oder anderen extremen Szenarien.
Der Hauptprozessor des Boards ist ein stromsparender ARM Cortex-M0 32-Bit-SAMD21, wie auch bei anderen Boards der Arduino MKR-Familie. Die Narrowband-Konnektivität erfolgt über ein Modul von u-blox, das SARA-R410M-02B, ein stromsparender Chipsatz, der in verschiedenen Bändern des IoT-LTE-Zellbereichs arbeitet. Darüber hinaus wird die sichere Kommunikation durch den Microchip ECC508-Crypto-Chip gewährleistet. Das PCB enthält auch einen Batterielader und einen Anschluss für eine externe Antenne.
Dieses Board ist für den weltweiten Einsatz konzipiert und bietet Konnektivität in den LTE Cat M1/NB1-Bändern 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28. Zu den Betreibern, die Dienste in diesem Teil des Spektrums anbieten, gehören unter anderem Vodafone, AT&T, T-Mobile USA, Telstra und Verizon.
Spezifikationen
Der Arduino MKR NB 1500 basiert auf dem SAMD21-Mikrocontroller.
Microcontroller
SAMD21 Cortex-M0+ 32-bit low power ARM MCU (Datenblatt)
Funkmodul
u-blox SARA-R410M-02B (Zusammenfassung des Datenblatts)
Sicherheitselement:
ATECC508 (Datenblatt)
Stromversorgung des Boards (USB/VIN)
5 V
Unterstützte Batterie
Li-Po-Einzelle, 3,7 V, 1500 mAh Minimum
Betriebsspannung des Schaltkreises
3.3 V
Digitale I/O-Pins
8
PWM-Pins
13 (0 .. 8, 10, 12, 18 / A3, 19 / A4)
UART
1
SPI
1
I²C
1
Analogeingangspins
7 (ADC 8/10/12 bit)
Analogausgangspin
1 (DAC 10 bit)
Externe Unterbrechungen
8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2)
Stromstärke pro I/O-Pin
7 mA
Flash-Speicher
256 KB (internal)
SRAM
32 KB
EEPROM
No
Taktfrequenz
32.768 kHz (RTC), 48 MHz
LED_BUILTIN
6
USB
USB-Gerät in voller Geschwindigkeit und integrierter Host
Antennengewinn
2 dB
Carrier frequency
LTE bands 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28
Leistungsklasse (Funk)
LTE Cat M1/NB1: Klasse 3 (23 dBm)
Datenrate (LTE M1 Halb-Duplex)
UL 375 kbps / DL 300 kbps
Datenrate (LTE NB1 Full-Duplex)
UL 62.5 kbps / DL 27.2 kbps
Arbeitsbereich
Multiregion
Geräteposition
GNSS über Modem
Stromverbrauch (LTE M1)
min 100 mA / max 190 mA
Stromverbrauch (LTE NB1)
min 60 mA / max 140 mA
SIM-Karte
MicroSIM (nicht im Lieferumfang enthalten)
Abmessungen
67.6 x 25 mm
Gewicht
32 g
SPI
1
I²C
1
Analogeingangspins
7 (ADC 8/10/12 bit)
Analogausgangspin
1 (DAC 10 bit)
Externe Unterbrechungen
8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2)
Stromstärke pro I/O-Pin
7 mA
Flash-Speicher
256 KB (internal)
SRAM
32 KB
EEPROM
No
Taktfrequenz
32.768 kHz (RTC), 48 MHz
LED_BUILTIN
6
USB
USB-Gerät in voller Geschwindigkeit und integrierter Host
Antennengewinn
2 dB
Carrier frequency
LTE bands 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28
Leistungsklasse (Funk)
LTE Cat M1/NB1: Klasse 3 (23 dBm)
Datenrate (LTE M1 Halb-Duplex)
UL 375 kbps / DL 300 kbps
Datenrate (LTE NB1 Full-Duplex)
UL 62.5 kbps / DL 27.2 kbps
Arbeitsbereich
Multiregion
Geräteposition
GNSS über Modem
Stromverbrauch (LTE M1)
min 100 mA / max 190 mA
Stromverbrauch (LTE NB1)
min 60 mA / max 140 mA
SIM-Karte
MicroSIM (nicht im Lieferumfang enthalten)
Abmessungen
67.6 x 25 mm
Gewicht
32 g
Downloads
Eagle-dateien
Schaltpläne
Anschlussbelegung
Sind Sie auf der Suche nach Dosierspitzen für Materialien mit niedrigerer Viskosität? Dann sind diese Düsen genau das Richtige für Sie. Verwenden Sie sie nicht mit unserer Standardtinte oder Lötpaste ... dies führt zu einer schlechten Leistung.
Dieses Set enthält 4 extra feine Düsen mit einem Innendurchmesser von 0,100 mm (4 mil).
Ein Adapter zum Anschluss eines Servometers mit Krokodil-/Krokodilklemmen.
Dies ist eine praktische kleine Klemme zum Anschließen eines Servomotors mit 5,4-mm-Stiftleiste mithilfe von Krokodilklemmen. Es ist ideal für die Verwendung mit Boards wie dem BBC micro:bit und dem Circuit Playground Express oder Gemma von Adafruit.
Breite: 27 mm
Höhe: 35 mm
Downloads
Datasheet
SMD-Magazine sind spritzgegossene Behälter und eine hervorragende Möglichkeit, SMD-Teile zu organisieren und zu verbrauchen. Sie sind speziell für die Lagerung von Bauteilen und deren Bereitstellung zur Kommissionierung konzipiert. Sie können bis zu 12 mm breite und 9,5 mm hohe Bänder laden. Sie ersetzen diese schwer zu findenden Plastiktüten und sind gleichzeitig eine hervorragende Quelle für Teile, die mit Pixel Pump aufgenommen und platziert werden können.
Jede SMD-Magazinschiene präsentiert bis zu acht Magazine im perfekten Winkel, damit Sie ihre Komponenten mit der Pixel Pump aufnehmen und platzieren können. Sie können diese Schienen auch verwenden, um Komponenten für bestimmte Projekte zu gruppieren. Sie sind mit rutschfesten Gummifüßen ausgestattet und für zusätzliche Stabilität beschwert.
Eine SMD-Magazinschiene fasst bis zu acht SMD-Magazine. Eine bestimmte Schiene kann zur unbegrenzten Aufnahme eines projektspezifischen Magazinsatzes verwendet werden. Zeitschriften werden im rechten Winkel gehalten und können von Pixel Pump entnommen und platziert werden.
Jede SMD-Magazinschiene präsentiert bis zu acht Magazine im perfekten Winkel, damit Sie ihre Komponenten mit der Pixel Pump aufnehmen und platzieren können. Sie können diese Schienen auch verwenden, um Komponenten für bestimmte Projekte zu gruppieren. Sie sind mit rutschfesten Gummifüßen ausgestattet und für zusätzliche Stabilität beschwert.
Haben Sie jemals von einem automatisierten Haus geträumt? Oder einem intelligenten Garten? Nun, mit den Arduino IoT Cloud-kompatiblen Boards ist es ganz einfach. Das bedeutet, dass Sie Geräte verbinden, Daten visualisieren, Ihre Projekte von überall auf der Welt steuern und teilen können. Egal, ob Sie Anfänger oder Profi sind, wir haben eine Vielzahl von Plänen, um sicherzustellen, dass Sie die Funktionen erhalten, die Sie benötigen.
Verbinden Sie Ihre Sensoren und Aktuatoren über lange Strecken mit der Kraft des LoRa-Funkprotokolls oder über LoRaWAN-Netzwerke.
Das Arduino MKR WAN 1310-Board bietet eine praktische und kostengünstige Lösung, um LoRa-Konnektivität für Projekte mit geringem Stromverbrauch hinzuzufügen. Dieses Open-Source-Board kann mit der Arduino IoT Cloud verbunden werden
Besser und effizienter
The MKR WAN 1310, brings in a series of improvements when compared to its predecessor, the MKR WAN 1300. While still based on the Microchip SAMD21 low power processor, the Murata CMWX1ZZABZ LoRa module, and the MKR family’s characteristic crypto chip (the ECC508), the MKR WAN 1310 includes a new battery charger, a 2 MByte SPI Flash, and improved control of the board’s power consumption.
Der MKR WAN 1310 bringt im Vergleich zu seinem Vorgänger, dem MKR WAN 1300, eine Reihe von Verbesserungen mit sich. Obwohl er immer noch auf dem stromsparenden Microchip SAMD21-Prozessor, dem Murata CMWX1ZZABZ LoRa-Modul und dem charakteristischen Crypto-Chip der MKR-Familie (dem ECC508) basiert, verfügt der MKR WAN 1310 über einen neuen Batterieladeregler, einen 2-MByte-SPI-Flash und eine verbesserte Steuerung des Stromverbrauchs des Boards.
Verbesserte Batterieleistung
Die neuesten Änderungen haben die Batterielebensdauer des MKR WAN 1310 erheblich verbessert. Bei ordnungsgemäßer Konfiguration liegt der Stromverbrauch jetzt bei nur noch 104 uA! Es ist auch möglich, den USB-Port zur Stromversorgung des Boards (5 V) zu verwenden und das Board mit oder ohne Batterien zu betreiben - die Wahl liegt bei Ihnen
Interner Speicher
Dank des integrierten 2-MByte-Flashspeichers sind nun Datenprotokollierung und andere OTA-Funktionen (Over The Air) möglich. Mit dieser aufregenden neuen Funktion können Konfigurationsdateien von der Infrastruktur auf das Board übertragen, eigene Skriptbefehle erstellt oder einfach Daten lokal gespeichert werden, um sie zu senden, wenn die Konnektivität am besten ist. Der Crypto-Chip des MKR WAN 1310 sorgt durch die Speicherung von Anmeldedaten und Zertifikaten im eingebetteten sicheren Element für zusätzliche Sicherheit.
Diese Funktionen machen es zum perfekten IoT-Knoten und Baustein für IoT-Geräte mit geringem Stromverbrauch und großer Reichweite.
Spezifikationen
Der Arduino MKR WAN 1310 basiert auf dem SAMD21-Mikrocontroller.
Microcontroller
SAMD21 Cortex-M0+ 32-Bit Low-Power ARM-MCU (Datenblatt)
Funkmodul
CMWX1ZZABZ (Datenblatt)
Stromversorgung(USB/VIN)
5 V
Sicherheits-Element
ATECC508 (datasheet)
Unterstützte Batterien
Wiederaufladbare Li-Ion, oder Li-Po, 1024 mAh mindest Kapazität
Betriebsspannung
3.3 V
Digital-I/O-Pins
8
PWM-Pins
13 (0 .. 8, 10, 12, 18 / A3, 19 / A4)
UART
1
SPI
1
I²C
1
Analog Eingangspins
7 (ADC 8/10/12 bit)
Analog Ausgangspins
1 (DAC 10 bit)
Externe Unterbrechungen
8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2)
DC-Strom pro I/O-Pin
7 mA
CPU-Flash-Speicher
256 KB (intern)
QSPI-Flash-Speicher
2 MByte (extern)
SRAM
32 KB
EEPROM
Nein
Taktfrequenz
32.768 kHz (RTC), 48 MHz
LED_BUILTIN
6
USB
Full-Speed USB Gerät und Integrierter Host
Antennengewinn
2 dB (mitgelieferte Pentaband-Antenne)
Trägerfrequenz
433/868/915 MHz
Abmessungen
67.64 x 25 mm
Gewicht
32 g
Downloads
Eagle-Dateien
Schaltpläne
Fritzing
Pinbelegung