SPEZIFIKATIONEN
DRAHTLOSES ÜBERTRAGUNGSVERFAHREN
Hochfrequenzübertragung
REICHWEITE
bis zu 10 Meter
KOMMUNIKATIONSADRESSE
0 - 99
KOMMUNIKATIONSKANAL
0 - 30
BATTERIE ODER BEDIENFELD
3,7 V 2000 mAh
BILDSCHIRMGRÖSSE
2,4 Zoll (6,35 cm)
MASSE
120 x 80 x 25 mm
GEWICHT
108g
ARTIKEL VERSENDET
Bedienfeld, Kabel
Inky Frame 5.7' verfügt über ein schönes, großes E-Ink-Display mit sieben Farben und viel Platz für die Anzeige von Bildern, Texten, Grafiken oder Schnittstellen. Es gibt fünf Tasten mit LED-Anzeigen zur Interaktion mit dem Display, zwei Qw/ST-Anschlüsse zum Anschließen von Breakouts und einen Micro-SD-Kartensteckplatz für die wichtige Speicherung von Katzenfotos. Jeder Inky Frame wird mit einem Paar schlanker kleiner Metallbeine geliefert, damit Sie ihn auf Ihren Schreibtisch stellen können (und mit einer Auswahl an Befestigungslöchern, falls Sie lieber etwas anderes machen möchten). Es gibt auch einen Batterieanschluss, damit Sie ihn ohne störende Kabel mit Strom versorgen können, und einige nette Energiesparfunktionen, die dafür sorgen, dass Sie ihn ewig mit Batterien betreiben können.
Inky Frame eignet sich hervorragend für:
Überblick über Ihren Kalender und anstehende Termine auf einen Blick
Zur Anbringung an Ihrer Bürotür, um Ihre Verfügbarkeit anzuzeigen
Anzeigen von motivierenden Postern, Zitaten oder Bildern (austauschbar oder anderweitig)
Anzeige von Messwerten anderer drahtlos verbundener Umwelttafeln
Merkmale
Raspberry Pi Pico W an Bord
Dual Arm Cortex M0+ mit bis zu 133 MHz und 264 kB SRAM
2 MB QSPI-Flash mit XiP-Unterstützung
Stromversorgung und Programmierung über USB Micro-B
2,4 GHz WLAN
5,7-Zoll-EPD-Display (600 x 448 Pixel)
E Ink Gallery Palette 4000 ePaper
ACeP (Advanced Color ePaper) 7-farbig mit Schwarz, Weiß, Rot, Grün, Blau, Gelb, Orange. Ultraweiter Betrachtungswinkel – >170°
Punktabstand – 0,1915 x 0,1915 mm
5x Taktile Tasten mit LED-Anzeigen
Zwei Qw/ST-Anschlüsse zum Anschließen von Breakouts
microSD-Kartensteckplatz
Dedizierter RTC-Chip (PCF85063A) für Tiefschlaf/Wach
Komplett montiert
Kein Löten erforderlich.
C/C++- und MicroPython-Bibliotheken
Schema
Inbegriffen
1x Inky Frame 5,7' (inkl. Pico W)
2x Metallbeine
Downloads
MicroPython
(Lernen) Erste Schritte mit Inky Frame
(Readme) Installation von MicroPython
(Readme) Häufig gestellte Fragen (und Fehlerbehebung) zu MicroPython
Laden Sie die Raubkopie MicroPython herunter (Sie benötigen Inky Frame.uf2).
MicroPython-Beispiele
PicoGraphics-Funktionsreferenz
C/C++
C Beispiele
Picographics-Funktionsreferenz
Das SparkFun JetBot AI Kit V2.1 ist ein großartiger Startpunkt für die Erstellung völlig neuer KI-Projekte für Maker, Studenten und Enthusiasten, die daran interessiert sind, KI zu lernen und lustige Anwendungen zu bauen. Es ist einfach einzurichten und zu verwenden und ist mit vielen beliebten Zubehörteilen kompatibel.
Mehrere interaktive Tutorials zeigen Ihnen, wie Sie die Kraft der KI nutzen können, um dem SparkFun JetBot beizubringen, Objekten zu folgen, Kollisionen zu vermeiden und vieles mehr. Das Jetson Nano Developer Kit (nicht in diesem Kit enthalten) bietet nützliche Tools wie die Jetson GPIO Python-Bibliothek und ist kompatibel mit Standardsensoren und Peripheriegeräten; einschließlich einiger neuer Python-Kompatibilität mit dem SparkFun Qwiic-Ökosystem.
Zusätzlich wird das mitgelieferte Image mit der erweiterten Funktionalität von JetBot ROS (Robot Operating System) und AWS RoboMaker Ready mit AWS IoT Greengrass bereits installiert geliefert. Das JetBot AI Kit von SparkFun ist das einzige Kit auf dem Markt, das über die Standard-JetBot-Beispiele hinaus in die Welt der vernetzten und intelligenten Robotik vorstößt.
Dieses Kit enthält alles, was Sie brauchen, um mit JetBot zu beginnen, abzüglich eines Kreuzschlitzschraubendrehers und einer Ubuntu-Desktop-GUI. Wenn Sie diese benötigen, sehen Sie sich die Registerkarten "Includes" für einige Vorschläge aus unserem Katalog an. Bitte beachten Sie, dass die Fähigkeit, mehrere neuronale Netzwerke parallel zu betreiben, nur mit einer vollen 5V-4A Stromversorgung möglich ist.
Features
SparkFun Qwiic Ökosystem für I²C-Kommunikation
Das Ökosystem kann mit 4x Qwiic-Anschlüssen auf GPIO-Header erweitert werden
Beispielcode für Grundbewegung, Teleoperation, Kollisionsvermeidung, & Objektverfolgung
Kompakter Formfaktor zur Optimierung des vorhandenen neuronalen Netzes von NVIDIA
136° FOV Kamera für maschinelles Sehen
Vorgeflashte MicroSD-Karte
Gehäuseaufbau bietet erweiterbare Architektur
Lieferumfang
64GB MicroSD-Karte - vorgeflashtes SparkFun JetBot Image:
Nvidia Jetbot Basis-Image mit folgendem installiert: SparkFun Qwiic python library package
Treiber für Edimax WiFi-Adapter
Greengrass
Jetbot ROS
Leopard Imaging 136FOV Weitwinkelkamera & Flachbandkabel
EDIMAX WiFi Adapter
SparkFun Qwiic Motor Driver
SparkFun Micro OLED Breakout (Qwiic)
Alle Hardware & Prototyping-Elektronik benötigt, um Ihren voll funktionsfähigen Roboter zu vervollständigen!
Erforderlich
NVIDIA Jetson Nano Developer Kit
Hier finden Sie die von SparkFun bereitgestellte Montageanleitung!
Der OWON XSA815-TG 9 kHz-1,5 GHz ist ein kostengünstiger Spektrumanalysator mit Tracking-Generator und einer Frequenzauflösung von 1 Hz.FeaturesFrequenzbereich von 9 kHz bis 1,500009 GHz9-Zoll-Display9 kHz bis 1 MHz -95 dBm Angezeigter durchschnittlicher Geräuschpegel, 1 MHz bis 500 MHz 140 dBm (typisch), Phasenrauschen-10 kHz 100 kHz 1 MHz Auflösungsbandbreite (-3 dB): 1 Hz bis 1 MHz, in der Reihenfolge 1-3-5-10Tracking-Generator-Kit: 100 kHz bis 1,500009 GHzTechnische DatenFrequenzbereich9 kHz bis 500.009 MHzFrequenzauslösung1 HzFrequenzspanne9 kHz bis 1.500009 GHzSpan Range0 Hz, 100 Hz to max frequency of instrumentSpan Uncertainty± span / (sweep points-1)SSB Phase Noise (20°C to 30°C, fc=1 GHz) Carrier Offset10 kHz Resolution Bandwidth (-3 dB)1 Hz to 1 MHz, in 1-3-5-10 sequenceRBW AccuracyResolution Filter Shape Factor (60 dB: 3 dB)Video Bandwidth (-3 dB)10 Hz to 1 MHz, in 1-3-5-10 sequenceAmplitude measurement rangeDANL to +10 dBm, 100 kHz to 10 MHz, Preamp Off DANL to +20 dBm, 10 MHz to 1.5 GHz, Preamp OffReference Level-80 dBm to +30 dBm, 0.01dB by stepPreamp20 dB, nominal, 100 kHz to 1.5 GHzInput Attenuator0 to 40 dB, 1 dB by step Display Average Noise Level Input attenuation = 0 dB, RBW = VBW = 100 Hz, sample detector, trace average ≥ 50, 20°C to 30°C, input impedance = 50 Ω)Preamp Off 9 kHz to 1 MHz-95 dBm (Typical), Preamp Off 1 MHz to 500 MHz-140 dBm (Typical), Preamp On 100 kHz to 1 MHz-135 dBm (Typical), Preamp On 1 MHz to 500 MHz-160 dBm (Typical),Tracking Generator (optional) Frequency Range100 kHz to 1.500009 GHzOutput power level range-40 dBm to 0 dBmOutput level resolution 1 dB Output flatnessRelative to 50 MHz | ±3 dBTracking generator spuriousHarmonic spurious -30 dBc (Tracking generator output power -10 dBm) Non-harmonic spurious -40 dBc (Tracking generator output power -10 dBm)Tracking generator to input terminal isolation-60 dB (Tracking generator output power 0 dBm)Tracking generator to input terminal isolation-60 dB (Tracking generator output power 0 dBm)Tracking generator to input terminal isolation-60 dB (Tracking generator output power 0 dBm)Abmessungen375 x 185 x 120 mmGewicht3,7 kgLieferumfang1x XSA815-TG1x 220 V AC-Netzkabel1x USB-Kabel1x SchnellstartanleitungDownloadsQuick GuideSpecifications
Der Pico Cube ist ein 4x4x4 LED-Würfel-HAT für den Raspberry Pi Pico mit einer Betriebsspannung von 5 VDC. Der Pico Cube, ein monochromatisches Grün mit 64 LEDs, ist eine unterhaltsame Möglichkeit, Programmieren zu lernen. Er wurde entwickelt, um Glühbetrieb mit geringem Energieverbrauch, robuster Optik und einfacher Installation auszuführen, so dass Menschen/Kinder/Benutzer die Effekte von LED-Leuchten mit einem unterschiedlichen Farbmuster durch die Kombination von Software und Hardware, d.h. Raspberry Pi Pico, kennenlernen können.
Features
Standard 40 Pins Raspberry Pi Pico Header
Kommunikation über GPIO
64 hochintensive monochromatische LEDs
Einzeln ansteuerbare LEDs
Zugriff auf jede Schicht
Technische Daten
Betriebsspannung: 5 V
Farbe: Grün
Kommunikation: GPIO
LEDs: 64
Lieferumfang
1x Pico Cube Base PCB
4x Layer PCB
8x Pillar PCB
2x Male Berg (1 x 20)
2x Female Berg (1 x 20)
70 LEDs
Hinweis: Der Raspberry Pi Pico ist nicht im Lieferumfang enthalten.
Downloads
GitHub
Wiki
Der Unicorn Pack passt gut auf die Rückseite Ihres Pico – mit einer ordentlichen 7x16-Matrix (das sind 112 RGB-LEDs!) ist er sicherlich der schickste Rucksack, den es gibt. Die vier taktilen Tasten können zum Wechseln zwischen den Modi, als Steuerung für einfache Spiele oder zum Anpassen der Helligkeit verwendet werden.
Es ist möglich, die Farbe und Helligkeit jeder LED einzeln zu steuern, sodass Sie damit Animationen, Text, einfache Bilder und mehr anzeigen können. Erstellen Sie eine Mini-Foto-FX-Lampe, eine intelligente Statusleuchte für Zoom, zeigen Sie damit farbenfrohe Laufnachrichten auf Ihrem Kühlschrank an oder genießen Sie einfach ein paar hübsche Animationen.
Merkmale
16x7 Matrix- oder RGB-LEDs (insgesamt 112)
Individuelle Farb-/Helligkeitssteuerung jeder LED
4 x taktile Tasten
Vorgelötete Buchsenleisten zum Anbringen an Pico
Kompatibel mit Raspberry Pi Pico.
Komplett montiert
Kein Löten erforderlich (solange Ihr Pico über Stiftleisten verfügt).
Abmessungen: ca. 62 mm x 25 mm x 10 mm (L x B x H, einschließlich Kopfzeilen und Schaltflächen) C/C++- und MicroPython-Bibliotheken
Ein stromsparendes, open source, 2,7-Zoll-IoT-Display, das mit einem ESP32-S2-Modul betrieben wird und über SHARPs Memory-in-Pixel (MiP)-Bildschirmtechnologie verfügt. Der Newt ist ein batteriebetriebenes, immer aktives, an der Wand montierbares Display, das online Wetter, Kalender, Sportergebnisse, To-Do-Listen, Zitate … eigentlich alles aus dem Internet abrufen kann! Es beinhaltet einen ESP32-S2-Mikrocontroller, den Sie mit Arduino, CircuitPython, MicroPython oder ESP-IDF Entwicklungsumgebung programmieren können. Es ist perfekt für Maker: Die Memory-in-Pixel (MiP)-Technologie von Sharp vermeidet die von E-Ink-Displays bekannten langsamen Aktualisierungszeiten Eine Echtzeituhr (RTC) wurde hinzugefügt, um Timer und Alarme zu unterstützen Der Newt wurde unter Berücksichtigung eines Batteriebetriebs entwickelt. Jede Komponente auf der Platine wurde aufgrund geringer Leistungsaufnahme ausgewählt. Newt wurde entwickelt, um 'unverkabelt' zu arbeiten, was bedeutet, dass es an Orten montiert werden kann, an denen ein Netzkabel unpraktisch wäre, z. B. eine Wand, ein Kühlschrank, ein Spiegel oder Whiteboard. Mit dem optionalen Ständer sind Schreibtische, Regale und Nachttische ebenfalls gute Aufstelloptionen. Newt ist Open Source und damit stehen alle Designdateien und Bibliotheken zur Verfügung um überprüft, verwendet oder abgeändert werden zu können. Dies sollte jedoch nicht erforderlich sein. Jeder Newt wird mit funktionierendem Code und folgenden Funktionen geliefert: Aktuelle Wetterdetails Stündliche und tägliche Wettervorhersage Alarm Zeitschaltuhr Inspirierende Zitate Vorhersage der Luftqualität Gewohnheitskalender Kurzzeit Timer (Pomodoro-Technik) Oblique Strategiekarten Um loszulegen, befolgen Sie nur die Anweisungen zur WLAN-Konfiguration. Es sind keine App-Downloads erforderlich. Leistungsbeschreibung Display Sharp Memory LCD-Anzeige Bildschirmgröße 2,7 Zoll Auflösung 240 x 400 Ruhestrom 30 µA Aktualisierungsrate Regelmäßige Bildschirmaktualisierung erforderlich Nein Eingabetasten 10 kapazitive Felder, 1 Druckknopf RTC inklusive Ja Lautsprecher inklusive Ja Spannungsversorgung USB Type-C Batterie im Lieferumfang enthalten Nein Programmiersprachen Arduino, CircuitPython, ESP IDF, MicroPython Abmessungen 91 x 61 x 9 mm Mikrocontroller Espressif ESP32-S2-WROVER Modul mit 4 MB Flash und 2 MB PSRAM Wi-Fi-fähig Unterstützt Arduino, MicroPython, CircuitPython und ESP-IDF Ruhestrom bis zu 25 μA Display 2,7 Zoll, 240 x 400 Pixel MiP-LCD Liefert kontrastreiche, hochauflösende Inhalte mit geringer Latenz und extrem niedrigem Stromverbrauch Der reflektierende Modus nutzt das Umgebungslicht und macht damit eine separate Hintergrundbeleuchtung unnötig Zeitmessung, Timer und Alarm RV-3028-C7 RTC Optimiert für extrem niedrigen Stromverbrauch (45 μA) Kann gleichzeitig einen periodischen Timer, einen Countdown-Timer und einen Alarm verwalten Hardware-Interrupt für Timer und Alarm 43 Byte nichtflüchtiger Benutzerspeicher, 2 Byte Benutzer-RAM Separater UNIX-Zeitzähler Summer Lautsprecher bzw. Summer mit Mini-Class-D-Verstärker am DAC-Ausgang A0 kann Töne oder Lo-Fi-Audioclips abspielen Benutzereingabe Netzschalter Zwei programmierbare Tasten für Reset und Boot 10 kapazitive Felder Power Newt ist für den Betrieb von ein bis zwei Monaten bis zum erneuten Ladevorgang mit einem 500mAh LiPo-Akku ausgelegt. Die genaue Laufzeit variiert. (Insbesondere reduziert starke Wi-Fi-Nutzung die Batterieladung schneller.) USB-Typ-C-Anschluss für Programmierung, Stromversorgung und Aufladen Spannungsregler mit niedrigem Ruhestromverbrauch (TOREX XC6220), der 1 A Strom ausgeben und mit nur bis zu 8 μA Eigenbedarf arbeiten kann. JST-Stecker für einen Lithium-Ionen-Akku Batterieladeregelschaltung (MCP73831) Anzeige für niedrigen Batteriestand (1 μA Ruhestrom) Software Newt-Hardware ist kompatibel mit Open-Source-Arduino-Bibliotheken für ESP32-S2, Adafruit GFX (Schriftarten), Adafruit Sharp Memory Display (Display Writing) und RTC RV-3028-C7 (RTC) Arduino-Bibliotheken und Beispielprogramme befinden sich in der Entwicklung und werden vor dem Start in unserem GitHub-Repository verfügbar sein CircuitPython-Bibliotheken und Registrierung stehen auf der Roadmap, mit der Entwicklung einer CircuitPython-Bibliothek für die RV-3028-Echtzeituhr als Hauptmeilenstein. Lieferumfang Phambili Newt – Komplett montiert mit vorinstallierter Firmware Lasergeschnittener Tischständer Mini-Magnetfüße Erforderliche Schrauben Support & Dokumentation Vollständige Gebrauchsanweisung (Auf Englisch) GitHub: Arduino-Bibliothek und Codebasis (Auf Englisch) GitHub: Board-Schaltpläne (Auf Englisch) Videos von Prototypen oder Demos (Aufgenommen auf dem „Hackaday“. Auf Englisch)
Dieses hochempfindliche Picoammeter ist für die Messung und Aufzeichnung sehr kleiner Ströme bis hinunter in den pA-Bereich konzipiert und damit ein ideales Instrument für wissenschaftliche und Forschungsanwendungen, einschließlich Physik, Materialwissenschaft und Elektronenmikroskopie.
Das SPA100 verfügt über alle Funktionen zu einem erschwinglichen Preis und kombiniert Empfindlichkeit, Genauigkeit und Stabilität, so dass der Benutzer niedrige Ströme mit hoher Präzision messen und bequem Biasspannungen für Experimente erzeugen kann. Das SPA100 kann auch als Ultrahochohm-Messgerät eingesetzt werden und misst präzise bis in den Teraohm-Bereich.
Das SPA100 wird über USB an den PC angeschlossen und nutzt die kostenlose Software SPA, die es dem Benutzer ermöglicht, auf einfache Weise zu messen, Grafiken zu erstellen und Messwerte mit Zeitstempeln und Informationen zur Messstabilität zu erfassen.
Technische Daten
Eingang: ±2 mA bis ±200 pA in 8 Bereichen
Genauigkeit und Auflösung (2 Hz):
±2 mA Bereich: ±0,1%, Auflösung <20 nA
±200 uA Bereich: ±0,1%, Auflösung <2 nA
±20 uA Bereich: ±0,2%, Auflösung <200 pA
±2 uA Bereich: ±0,2%, Auflösung <20 pA
±200 nA Bereich: ±0,5%, Auflösung <2 pA
±20 nA Bereich: ±0,5%, Auflösung <200 fA
±2 nA Bereich: ±1,0%, Auflösung <20 fA
±200 pA Bereich: ±1,5%, Auflösung <2 fA
Abtastrate: 2 Hz (18 Bit) oder 10 Hz (16 Bit)
Einstellbarer Filter: 1 Sample bis 64 Samples
Ausgangsspannung: -40 V bis +40 V (in 1 V Schritten), Ausgangswiderstand 2,7 KOhm
Widerstandsmessung: ~1 Kohm bis 40 Tohm (z. B. 40 V Quelle, 1 pA Messung)
Genauigkeit: >±0,5% 1 Mohm bis 1 Tohm
Stromversorgung über USB 2.0 (das Instrument verbraucht im Betrieb bis zu 0,3 A)
Lieferumfang
1x SPA100 Source Picoammeter
1x USB-Kabel
Downloads
Manual
Software
Der SparkFun DataLogger IoT (9DoF) ist ein Datenlogger, der vorprogrammiert ist, um automatisch IMU, GPS und verschiedene Druck-, Feuchtigkeits- und Entfernungssensoren aufzuzeichnen. Alles ohne eine einzige Zeile Code zu schreiben! Der DataLogger erkennt, konfiguriert und protokolliert Qwiic-Sensoren automatisch. Er wurde speziell für Benutzer entwickelt, die einfach nur viele Daten in einer CSV- oder JSON-Datei erfassen und sich dann wieder ihrem größeren Projekt widmen möchten. Speichern Sie die Daten auf einer microSD-Karte oder senden Sie sie drahtlos an Ihren bevorzugten Internet of Things (IoT)-Dienst!
Jeder DataLogger IoT verfügt über eine IMU für die integrierte Aufzeichnung eines dreiachsigen Beschleunigungsmessers, Kreisels und Magnetometers. Während der ursprüngliche 9DOF Razor die alte MPU-9250 verwendete, nutzt der DataLogger IoT die ISM330DHCX von STMicroelectronics und MMC5983MA von MEMSIC. Schalten Sie den DataLogger IoT einfach ein, konfigurieren Sie das Board für die Aufzeichnung von Messwerten aus unterstützten Geräten und beginnen Sie mit der Aufzeichnung! Die Daten können mit einem Zeitstempel versehen werden, wenn die Zeit mit NTP, GNSS oder RTC synchronisiert wird.
Der DataLogger IoT ist über eine einfach zu bedienende serielle Schnittstelle in hohem Maße konfigurierbar. Schließen Sie einfach ein USB-C-Kabel an und öffnen Sie ein serielles Terminal mit 115200 Baud. Die Logging-Ausgabe wird automatisch sowohl auf das Terminal als auch auf die microSD-Karte gestreamt. Durch Drücken einer beliebigen Taste im Terminalfenster wird das Konfigurationsmenü geöffnet.
Der DataLogger IoT (9DoF) scannt, erkennt, konfiguriert und protokolliert automatisch verschiedene Qwiic-Sensoren, die an das Board angeschlossen sind (kein Löten, keine Programmierung!).
Technische Daten
ESP32-WROOM-32E Modul
Integrierter 802.11b/g/n WLAN 2,4 GHz-Transceiver
Konfigurierbar über CH340C
Betriebsspannungsbereich
3,3 V bis 6,0 V (über VIN)
5 V mit USB (über 5 V oder USB-C)
3,6 V bis 4,2 V mit LiPo-Akku (über BATT oder 2-Pin JST)
Eingebautes Einzelzellen-LiPo-Ladegerät MCP73831
Mindestens 500 mA Ladestrom
3,3 V (über 3V3)
MAX17048 LiPo-Ladeanzeige
Anschlüsse
1x USB-C
1x JST-Stecker für LiPo-Akku
2x Qwiic-fähiges I²C
1x microSD-Sockel
Unterstützung für 4-Bit-SDIO- und microSD-Karten, die mit FAT32 formatiert sind
9-Achsen-IMU
Beschleunigungsmesser & Gyro (ISM330DHCX)
Magnetometer (MMC5983MA)
LEDs
Ladung (CHG)
Status (STAT)
WS2812-2020 adressierbare RGB
Jumper
IMU-Unterbrechung
Magnetometer-Unterbrechung
RGB-LED
Status-LED
Lade-LED
I²C-Pull-up-Widerstände
USB-Shield
Tasten
Reset
Boot
Abmessungen: 4,2 x 5,1 cm
Gewicht: 10,7 g
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
CH340 Drivers
Firmware
GitHub Hardware Repo
Der Micro enthält alles, was zur Unterstützung des Mikrocontrollers benötigt wird. Schließen Sie ihn einfach mit einem Micro-USB-Kabel an einen Computer an, und schon kann es losgehen. Dank seines Formfaktors kann er problemlos auf einem Steckbrett platziert werden.
Die Micro-Platine ähnelt dem Arduino Leonardo darin, dass der ATmega32U4 über integrierte USB-Kommunikation verfügt, wodurch ein zweiter Prozessor überflüssig wird. Dadurch kann der Micro für einen angeschlossenen Computer als Maus und Tastatur fungieren und verfügt zusätzlich über einen virtuellen (CDC) seriellen/COM-Anschluss.
Mikrocontroller
ATmega32U4
Betriebsspannung
5 V
Eingangsspannung
7 V bis 12 V
Analoge Eingangspins
12
PWM-Pins
7
DC E/A-Pin
20
Gleichstrom pro E/A-Pin
20 mA
Gleichstrom für 3,3 V Pin
50 mA
Flash-Speicher
32 KB, davon 4 KB vom Bootloader genutzt
SRAM
2,5 KB
EEPROM
1 KB
Taktfrequenz
16 MHz
LED_Eingebaut
13
Länge
45 mm
Breite
18 mm
Gewicht
13 g
Ardi32 ist die ultimative Arduino Uno-Alternative voller leistungsstarker Spezifikationen und aufregender Funktionen im Arduino Uno-Formfaktor. Ardi32 wird mit dem neuesten ESP32-S3-WROOM-1 betrieben. Die integrierte Wi-Fi- und Bluetooth-Konnektivität macht das Board ideal für IoT-Projekte oder Projekte, die drahtlose Kommunikation erfordern.
Features
Angetrieben durch das leistungsstarke ESP32-S3-WROOM-1-Modul mit integrierter WLAN- und BLE-Unterstützung.
Arduino Uno-Formfaktor, sodass Sie 3,3 V-kompatible Arduino-Shields anschließen können
SD-Kartensteckplatz für Speicherung und Datenübertragung
Die Möglichkeit einer USB-C-Schnittstelle zur Programmierung und zur Stromversorgungsplatine
Boot- und Reset-Buttons stehen für den Betrieb in verschiedenen Modi zur Verfügung.
Multifunktions-GPIO-Breakout mit Unterstützung für allgemeine E/A, UART, I²C, SPI, ADC und mehr. PWM-Funktionen.
Multi-Tune-Summer, um dem Projekt einen Audioalarm hinzuzufügen
Multiplattform-Unterstützung wie Arduino IDE, Espressif IDF und MicroPython/CircuitPython
Verfügt über HID-Unterstützung, sodass das Gerät eine Maus oder Tastatur simulieren kann
Technische Daten
ESP32-S3-SoC-Serie mit Xtensa-Dual-Core-32-Bit-LX7-Mikroprozessor
4-GHz-WLAN (802.11 b/g/n) und Bluetooth 5 (LE)
Flash bis zu 16 MB, PSRAM bis zu 8 MB
Board-Versorgung 5 V und GPIO-Pins Betriebsspannung 3,3 V
22 Mehrzweck-GPIOs-Breakout im Arduino-Stil für einfache Peripherie- und Abschirmungsschnittstellen
Unterstützung für I²C-, SPI- und UART-Kommunikationsprotokolle
Plattformübergreifende Entwicklung und Unterstützung mehrerer Programmiersprachen
Können Sie den SparkFun Top pHAT verwenden, um maschinelles Lernen auf Ihrem Raspberry Pi 4, NVIDIA Jetson, Google Coral oder einem anderen Einplatinencomputer zu prototypisieren? Zweifellos! Der SparkFun Top pHAT unterstützt Interaktionen für maschinelles Lernen, einschließlich Sprachsteuerung mit Onboard-Mikrofonen & Lautsprecher, grafisches Display für Feedback zur Kamerasteuerung und ungehinderten Zugriff auf den RPi-Kameraanschluss. Zusätzlich können Sie die programmierbaren Tasten, den Joystick und die RGB-LED für benutzerdefinierte E/A, dynamische Systeminteraktion oder Systemstatusanzeigen verwenden.
Können Sie es als Schnittstelle verwenden, um Ihr Projekt in das SparkFun Qwiic-Ökosystem einzuführen? Ja, natürlich! Zusätzlich zu all den vorherigen Funktionen haben wir auch einen Qwiic-Anschluss integriert, um eine einfache Integration über I2C zu ermöglichen. Es stehen Ihnen Milliarden von Kombinationen von Qwiic-fähigen Boards zur Verfügung, um die Möglichkeiten des SparkFun Top pHAT zu erweitern.
Mit all den E/A-Interaktionen auf diesem Board und dem Mangel an Lötarbeiten, die nötig sind, um es in Betrieb zu nehmen, ist der SparkFun Top pHAT das grundlegende Add-on für maschinelles Lernen für den Raspberry Pi oder jeden 2x20 GPIO SBC!
Features
Ein Raspberry Pi pHAT, der sich auf die Benutzerinteraktion mit einem SBC/RPi konzentriert.
Unterstützung für maschinelle Lerninteraktionen
Sprachsteuerung (Mikrofone, Lautsprecher)
Grafisches Display auf 2,4"-Farb-TFT
Zwei programmierbare Tasten für benutzerdefinierte E/A
Programmierbarer Joystick - für Dynamik/Interaktion mit dem System (GUI-Menüs, Roboterfahren).
Programmierbare RGB-LEDs - für Systemstatus, Anzeige.
Zugang zur RPi-Kamera und zum Display-Anschluss nicht behindert
Ein/Aus-Schalter für Rpi.
Unterstützt den Zugriff auf das SparkFun Qwiic Ökosystem
Geplant für die Spitze eines pHAT-Stapels - keine Pins zum Stapeln auf diesem Board. Es ist der Top pHAT!
Mit diesem Komplett-Werkzeugset sind Sie bereit, mit dem Löten zu beginnen!
Wollen Sie mit dem Löten anfangen, oder wollen Sie einige Haushaltsgeräte reparieren, aber Sie wissen nicht, welche Werkzeuge Sie brauchen? Dann ist dies das perfekte Set für Sie! Es enthält alle grundlegenden Werkzeuge und wichtiges Zubehör, um Ihre Reise als Elektroniker oder Maker zu beginnen!
Lieferumfang
AS19: Silikon-Lötmatte (350 x 250 mm)
Bleifreies Lot Sn 99,3% – Cu 0,7% mit Dispenser (1,0 mm, 15 g)
Entlötgerät: Entlötgeflecht
Stand20: Universal-Lötkolbenständer
VT281: Seitenschneiderzange
VTD7: Leistungsstarke Entlötpumpe
VTHHN: Helfende Hand mit Lupe
VTSI30C: High-Q Keramiklötkolben 30 W / 220-240 VAC
Nach dem Einschalten beginnt der YDLIDAR G4 sich zu drehen und die Umgebung um sich herum zu scannen. Die Scandistanz beträgt 16 m und das Gerät bietet eine Scanrate von 9.000 Mal pro Sekunde.
Es macht detaillierte Untersuchungen seiner Umgebung und kann die kleinsten Objekte um sich herum lokalisieren. Mit einem hochpräzisen bürstenlosen Motor und einem Encoder-Disc, der auf Lagern montiert ist, dreht es sich reibungslos und hat eine Betriebsdauer von bis zu 500.000 Stunden.
Der G4 ist eine kostengünstige Lösung für Projekte, die Hinderniserkennung, Hindernisvermeidung und/oder simultane Lokalisierung und Kartierung (SLAM) erfordern. Alle YDLIDAR-Produkte sind ROS-ready.
Features
360 Grad 2D-Reichweiten-Scanning
Stabile Leistung, hohe Präzision
16 m Reichweite
Starke Widerstandsfähigkeit gegenüber Umgebungslichtinterferenzen
Bürstenloser Motorantrieb, stabile Leistung
FDA-Lasersicherheitsstandard Klasse I
360 Grad omnidirektionales Scanning, 5-12 Hz adaptive Scanning-Frequenz
OptoMagnetic-Technologie
Drahtlose Datenkommunikation
Scanrate von 9000 Hz
Dokumentation
ROS-Treiber
Ydlidar-Download-Seite
Unten im Abschnitt "Downloads" finden Sie das Datenblatt sowie die Benutzer- und Entwicklungsanleitungen.
Das Power Delivery Board verwendet einen eigenständigen Controller, um mit den Stromadaptern zu verhandeln und auf eine höhere Spannung als nur 5V umzuschalten. Dies verwendet den gleichen Stromadapter für verschiedene Projekte, anstatt sich auf mehrere Stromadapter zu verlassen, die unterschiedliche Ausgangsspannungen bereitstellen. Das Board kann als Teil des Qwiic-Connect-Systems von SparkFun geliefert werden, so dass Sie keine Lötarbeiten durchführen müssen, um herauszufinden, wie die Dinge ausgerichtet sind.
Das SparkFun Power Delivery Board nutzt die Vorteile des Power-Delivery-Standards mit einem Standalone-Controller von STMicroelectronics, dem STUSB4500. Der STUSB4500 ist ein USB-Power-Delivery-Controller, der Senkengeräte anspricht. Er implementiert einen proprietären Algorithmus zur Aushandlung eines Stromversorgungsvertrags mit einer Quelle (d. h. einer Steckdose oder einem Netzteil), ohne dass ein externer Mikrocontroller erforderlich ist. Sie benötigen jedoch einen Mikrocontroller, um die Karte zu konfigurieren. PDO-Profile werden in einem integrierten nichtflüchtigen Speicher konfiguriert. Der Controller übernimmt die ganze Arbeit der Leistungsaushandlung und bietet eine einfache Möglichkeit zur Konfiguration über I2C.
Um die Karte zu konfigurieren, benötigen Sie einen I2C-Bus. Das Qwiic-System macht es einfach, das Power Delivery Board mit einem Mikrocontroller zu verbinden. Je nach Anwendung können Sie den I2C-Bus auch über die durchkontaktierten SDA- und SCL-Löcher anschließen.
Merkmale
Eingangs- und Ausgangsspannungsbereich von 5-20V
Ausgangsstrom bis zu 5A
Drei konfigurierbare Stromabgabeprofile
Automatischer Type-C™- und USB-PD-Sink-Controller
Zertifizierter USB Type-C™ rev 1.2 und USB PD rev 2.0 (TID #1000133)
Integrierte VBUS-Spannungsüberwachung
Integrierte VBUS-Switch-Gate-Treiber (PMOS)
Der kapazitive Fingerabdruck-Scanner/Sensor von Grove basiert auf dem Fingerabdruck-Erkennungsmodul KCT203 Semiconductor, das eine leistungsstarke MCU, einen vertikalen RF-Push-Fingerabdrucksensor und einen Berührungsfühler umfasst. Dieses Modul bietet viele Vorteile, wie z.B. geringe Größe, kleines Fingerabdruck-Template, geringer Stromverbrauch, hohe Zuverlässigkeit, schnelle Fingerabdruckerkennung, etc. Darüber hinaus ist es erwähnenswert, dass das Modul von einem schönen RGB-Licht umgeben ist, das anzeigt, ob die Fingerabdruckerkennung erfolgreich war. Das System ist mit einem leistungsstarken Fingerabdruck-Algorithmus ausgestattet, und die Selbstlernfunktion ist bemerkenswert. Nach jeder erfolgreichen Erkennung von Fingerabdrücken können die neuesten Werte der Herausforderungsmerkmale in die Fingerabdruckdatenbank integriert werden, um die Fingerabdruckmerkmale kontinuierlich zu verbessern und so die Erfahrung zu verbessern. Anwendungen Fingerabdruck-Schließgeräte: Türschlösser, Tresore, Lenkradschlösser, Vorhängeschlösser, Waffenschlösser usw. Fingerabdruck-Sign-in, Zugangskontrollsystem Spezifikationen CPU GD32 Speicherung von Fingerabdruckvorlagen Max. 100 Anschluss Grove UART Sensor-Auflösung 508 DPI Sensor Pixel 160x160 Falsche Ablehnungsrate Falschakzeptanzrate Ansprechzeit (1:N-Modus) Ansprechzeit (1:1-Modus) Sensor Größe Φ14.9mm Rahmen Größe Φ 19mm Stromverbrauch Volle Geschwindigkeit: ≤40 mA; Ruhezustand: ≤12 uA Betriebsspannung 3.3 V / 5 V Betriebstemperatur -20 ~ 70 ℃ ESD-Schutz Berührungslos 15 KV, Kontakt 8 KV Lieferumfang 1x KCT203 Halbleiter-Fingerabdruck-Erkennungsmodul 1x Sensorkabel 1x Grove-Kabel 1x Grove-Treiberplatine Downloads Grove Capacitive Fingerprint Scanner/Sensor eagle file Grove Capacitive Fingerprint Scanner/Sensor code Wiki
Funktionalitäten 324x324 Pixel Kamerasensor: Benutzen Sie einen der Kerne von Portenta und verwenden Sie das OpenMV für den Arduino-Editor um Bilderkennungsalgorithmen auszuführen 100 Mbps Ethernet-Anschluss: Verbinden Sie Ihre Portenta H7 mit dem kabelgebundenen Internet 2 Onboard-Mikrofone zur Richtungsschallerkennung: Schall in Echtzeit erfassen und analysieren JTAG-Konnektor: Führen Sie Low-Level-Debugging Ihres Portenta-Boards oder spezielle Firmware-Updates mit einem externen Programmiergerät durch SD-Card-Anschluss: Speichern Sie Ihre erfassten Daten auf der Karte oder lesen Sie Konfigurationsdateien aus Das Vision Shield wurde als Erweiterung der Arduino Portenta-Familie entwickelt. Die Portenta-Boards verfügen über Multicore-32-Bit-ARM-Cortex-Prozessoren®™ und laufen mit Hunderten von Megahertz, haben Megabytes Programmspeicher und verfügen über ausreichend RAM. Portenta-Boards sind mit WiFi und Bluetooth ausgestattet. Embedded Computer Bilderkennung leicht gemacht Arduino hat sich mit OpenMV zusammengetan, um Ihnen eine kostenlose Lizenz für die OpenMV IDE Entwicklungsumgebung anzubieten. Ein einfacher Weg in die Bilderkennungsentwicklung mit MicroPython als Programmiersprache. Laden Sie den OpenMV für Arduino Editor von unserer professionellen Tutorial-Seite herunter und blättern Sie durch diverse Beispiele, die wir für Sie in der OpenMV IDE vorbereitet haben. Unternehmen auf der ganzen Welt entwickeln ihre kommerziellen Produkte bereits auf der Grundlage dieses einfachen, aber leistungsstarken Ansatzes zur Erkennung, Filterung und Klassifizierung von Bildern, QR-Codes und anderem. Debuggen mit professionellen Tools Verbinden Sie Ihre Portenta H7 über den JTAG-Anschluss mit einem professionellen Debugger. Nutzen Sie professionelle Software-Tools wie die von Lauterbach oder Segger auf Ihrem Board, um Ihren Code Schritt für Schritt zu debuggen. Das Vision Shield zeigt die erforderlichen Pins an, um einfach Ihr externes JTAG Interface anschließen zu können. Kamera Himax HM-01B0 Kameramodul Auflösung 320 x 320 aktive Pixel Auflösung mit Unterstützung für QVGA Bildsensor Hochempfindliche 3,6-μ-BrightSense™-Pixeltechnologie Mikrofon 2 x MP34DT05 Länge 66 mm Breite 25 mm Gewicht 11 gr Weitere Informationen finden Sie hier in den Tutorials von Arduino.
Merkmale:
1,54-Zoll-IPS-TFT-Display mit einer Auflösung von 240 x 240, das Text oder Videos anzeigen kann
Stereo-Lautsprecheranschlüsse für die Audiowiedergabe – entweder Text-to-Speech, Benachrichtigungen oder zum Erstellen eines Sprachassistenten.
Stereo-Kopfhörerausgang für die Audiowiedergabe über eine Stereoanlage, Kopfhörer oder Aktivlautsprecher. Stereo-Mikrofoneingang – perfekt für die Erstellung Ihrer ganz eigenen Smart-Home-Assistenten
Zwei 3-polige JST STEMMA-Anschlüsse, mit denen weitere Tasten, ein Relais oder sogar einige NeoPixel angeschlossen werden können!
Der STEMMA QT Plug-and-Play-I2C-Port kann mit jedem der 50+ I2C STEMMA QT-Boards von Adafruit verwendet werden oder kann mit einem Adapterkabel zum Anschluss an Grove I2C-Geräte verwendet werden.
5-Wege-Joystick + Taste für Benutzeroberfläche und Steuerung.
Drei RGB-DotStar-LEDs für farbenfrohes LED-Feedback.
Über den STEMMA QT-Anschluss können Sie Wärmebildsensoren wie den Panasonic Grid-EYE oder MLX90640 anschließen. Wärmeempfindliche Kameras können auch im Dunkeln als Personendetektor verwendet werden! Ein externer Beschleunigungsmesser kann zur Gesten- oder Vibrationserkennung angeschlossen werden, z. B. bei vorausschauenden Maschinen-/Industriewartungsprojekten
Bitte beachten Sie: Ein Raspberry Pi 4 ist nicht im Lieferumfang enthalten.
Das iCEBreaker FPGA-Board ist ein Open-Source-FPGA-Entwicklungsboard für den Bildungsbereich.
Der iCEBreaker eignet sich hervorragend für Kurse und Workshops, in denen die Verwendung des Open-Source-FPGA-Designflows durch Yosys, nextpnr, IceStorm, Icarus Verilog, Amaranth HDL und andere vermittelt wird. Dies bedeutet, dass das Board kostengünstig ist und über eine Reihe nützlicher Funktionen verfügt, die die Gestaltung interessanter Kurse und Workshop-Übungen ermöglichen. Gleichzeitig ermöglicht es dem Benutzer, die proprietären Tools des Anbieters zu verwenden, wenn er dies wünscht.
Nach dem Workshop können die Platinen problemlos als Entwicklungsplatine verwendet werden, da die meisten GPIOs freigelegt, herausgebrochen und über Jumper auf der Rückseite der Platine konfigurierbar sind. Es gibt nur eine minimale Anzahl an Tasten und LEDs, die nicht abgenommen und für eigene Zwecke verwendet werden können.
Dokumentation
Workshop
The EC200U-EU C4-P01 development board features the EC200U-EU LTE Cat 1 wireless communication module, offering a maximum data rate of up to 10 Mbps for downlink and 5 Mbps for uplink. It supports multi-mode and multi-band communication, making it a cost-effective solution.
The board is designed in a compact and unified form factor, compatible with the Quectel multi-mode LTE Standard EC20-CE. It includes an onboard USB-C port, allowing for easy development with just a USB-C cable.
Additionally, the board is equipped with a 40-pin GPIO header that is compatible with most Raspberry Pi HATs.
Features
Equipped with EC200U-EU LTE Cat 1 wireless communication module, multi-mode & multi-band support
Onboard 40-Pin GPIO header, compatible with most Raspberry Pi HATs
5 LEDs for indicating module operating status
Supports TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS protocols, etc.
Supports GNSS positioning (GPS, GLONASS, BDS, Galileo, QZSS)
Onboard Nano SIM card slot and eSIM card slot, dual card single standby
Onboard MIPI connector for connecting MIPI screen and is fully compatible with Raspberry Pi peripherals
Onboard camera connector, supports customized SPI cameras with a maximum of 300,000 pixels
Provides tools such as QPYcom, Thonny IDE plugin, and VSCode plugin, etc. for easy learning and development
Comes with online development resources and manual (example in QuecPython)
Technische Daten
Applicable Regions
Europe, Middle East, Africa, Australia, New Zealand, Brazil
LTE-FDD
B1, B3, B5, B7, B8, B20, B28
LTE-TDD
B38, B40, B41
GSM / GPRS / EDGE
GSM: B2, B3, B5, B8
GNSS
GPS, GLONASS, BDS, Galileo, QZSS
Bluetooth
Bluetooth 4.2 (BR/EDR)
Wi-Fi Scan
2.4 GHz 11b (Rx)
CAT 1
LTE-FDD: DL 10 Mbps; UL 5 Mbps
LTE-TDD: DL 8.96 Mbps; UL 3.1 Mbps
GSM / GPRS / EDGE
GSM: DL 85.6 Kbps; UL 85.6 Kbps
USB-C Port
Supports AT commands testing, GNSS positioning, firmware upgrading, etc.
Communication Protocol
TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS
SIM Card
Nano SIM and eSIM, dual card single standby
Indicator
P01: Module Pin 1, default as EC200A-XX PWM0
P05: Module Pin 5, NET_MODE indicator
SCK1: SIM1 detection indicator, lights up when SIM1 card is inserted
SCK2: SIM2 detection indicator, lights up when SIM2 card is inserted
PWR: Power indicator
Buttons
PWK: Power ON/OFF
RST: Reset
BOOT: Forcing into firmware burning mode
USB ON/OFF: USB power consumption detection switch
Antenna Connectors
LTE main antenna + DIV / WiFi (scanning only) / Bluetooth antenna + GNSS antenna
Operating Temperature
−30~+75°C
Storage Temperature
−45~+90°C
Downloads
Wiki
Quectel Resources
Der Picoboy ist ein leistungsstarkes Mini-Handheld mit einer Größe von nur 3 x 5 cm. Er eignet sich, um das Programmieren zu lernen, eigene Spiele zu entwickeln oder einfach nur, um damit zu spielen. Eine Einführung in die Programmierung mit der Arduino-Umgebung und MicroPython steht zur Verfügung.
Sie benötigen dazu nichts als einen PC, den PicoBoy und ein USB-C-Kabel.
Da der PicoBoy kompatibel zum Raspberry Pi Pico und zur Arduino-Umgebung ist, finden sich im Netz unzählige weitere Tutorials, Beispiele und Bibliotheken, die das Programmieren erleichtern.
Technische Daten
1,3" OLED-Display mit 128 x 64 Pixeln (schwarz/weiß)
Durch RP2040-Mikrocontroller kompatibel zum Raspberry Pi Pico
2x 133 MHz ARM M0+
2 MB Flash
264 KB RAM
USB-C-Schnittstelle für Programmierung und Datenübertragung
3 vorinstallierte Spiele
5-Wege-Joystick
Beschleunigungssensor (kann jetzt auch in Python verwendet werden!)
Stromversorgung über USB-C oder eine CR2032-Knopfzelle
Abmessungen: 49,2 x 29,1 x 14,5 mm
Downloads
GitHub
Der SDS011-Sensor ermittelt die Feinstaub-Partikelkonzentration in der Luft mit Hilfe des Streulichtverfahrens.
Durch den USB-UART-Adapter lässt sich der Sensor zusätzlich direkt an einem Computer auslesen.
Technische Daten
Schnittstelle
UART (3,3 V Pegel)
Auflösung
0,3 µg/m3
Reaktionszeit
Weitere Besonderheit
Integrierter Lüfter
Strom in Ruhezustand
Versorgungsstrom
70 mA
Betriebsspannung
5 V
Abmessungen
70 x 70 x 24 mm
Gewicht
70 g
Lieferumfang
1x SDS011 Feinstaubsensor
1x Anschlusskabel
1x USB-UART-Adapter
Downloads
Datenblatt
Handbuch