Das Elektor MultiCalculator Kit ist ein Arduino-basierter Multifunktionsrechner, der über einfache Berechnungen hinausgeht. Es bietet 22 Funktionen, darunter Licht- und Temperaturmessung, Differenztemperaturanalyse und NEC-IR-Fernbedienungsdekodierung. Der Elektor MultiCalculator ist ein praktisches Werkzeug für den Einsatz in Ihren Projekten oder für Bildungszwecke.
Das Kit enthält ein Pro Mini-Modul als Recheneinheit. Die Platine lässt sich mithilfe von Durchgangslochkomponenten einfach zusammenbauen. Das Gehäuse besteht aus 11 Acrylplatten und Montagematerial für eine einfache Montage. Darüber hinaus ist das Gerät mit einem 16x2 alphanumerischen LCD, 20 Tasten und Temperatursensoren ausgestattet.
Der Elektor MultiCalculator ist über einen 6-Wege-PCB-Header mit der Arduino-IDE programmierbar. Der Rechner kann mit einem Programmieradapter programmiert werden und wird über USB-C mit Strom versorgt.
Betriebsmodi
Rechner
4-Ring-Widerstandscode
5-Ring-Widerstandscode
Konvertierung von Dezimalzahlen in Hexadezimalzahlen und Zeichen (ASCII)
Konvertierung von Hexadezimalzahlen in Dezimalzahlen und Zeichen (ASCII)
Dezimal-zu-Binär- und Zeichen-Konvertierung (ASCII)
Binär-zu-Dezimal- und Hexadezimal-Konvertierung
Berechnung von Hz, nF und kapazitiver Reaktanz (XC)
Hz, µH, Berechnung der induktiven Reaktanz (XL)
Widerstandsberechnung zweier parallel geschalteter Widerstände
Widerstandsberechnung zweier in Reihe geschalteter Widerstände
Berechnung des unbekannten Parallelwiderstands
Temperaturmessung
Differenztemperaturmessung T1&T2 und Delta (δ)
Lichtmessung
Stoppuhr mit Rundenzeitfunktion
Artikelzähler
NEC IR-Fernbedienungsdekodierung
AWG-Umwandlung (American Wire Gauge)
Würfeln
Startnachricht personalisieren
Temperaturkalibrierung
Technische Daten
Menüsprachen: Englisch, Niederländisch
Abmessungen: 92 x 138 x 40 mm
Bauzeit: ca. 5 Stunden
Lieferumfang
Leiterplatten- und Durchgangslochkomponenten
Vorgeschnittene Acrylplatten mit allen mechanischen Teilen
Pro Mini Mikrocontroller-Modul (ATmega328/5 V/16 MHz)
Programmieradapter
Wasserdichte Temperatursensoren
USB-C Kabel
Downloads
Software
Raspberry Pi-basierter Eyecatcher
Eine handelsübliche Sanduhr zeigt nur, wie die Zeit verrinnt. Dagegen zeigt diese Raspberry Pi Pico-gesteuerte Sanduhr die genaue Uhrzeit an, indem die vier Ziffern für Stunde und Minute in die Sandschicht „eingraviert“ werden. Nach einer einstellbaren Verzögerung wird der Sand durch zwei Vibrationsmotoren flachgedrückt und der Zyklus beginnt von vorne.
Das Herzstück der Sanduhr sind zwei Servomotoren, die über einen Pantographenmechanismus einen Schreibstift antreiben. Ein dritter Servomotor hebt den Stift auf und ab. Der Sandbehälter ist mit zwei Vibrationsmotoren ausgestattet, um den Sand zu glätten. Der elektronische Teil der Sanduhr besteht aus einem Raspberry Pi Pico und einer RTC/Treiberplatine mit Echtzeituhr, plus Treiberschaltungen für die Servomotoren.
Eine ausführliche Bauanleitung steht zum Download bereit.
Features
Abmessungen: 135 x 110 x 80 mm
Bauzeit: ca. 1,5 bis 2 Stunden
Lieferumfang
3x vorgeschnittene Acrylplatten mit allen mechanischen Teilen
3x Mini-Servomotoren
2x Vibrationsmotoren
1x Raspberry Pi Pico
1x RTC/Treiberplatine mit montierten Teilen
Muttern, Bolzen, Abstandshalter und Drähte für die Baugruppe
Feinkörniger weißer Sand
Der Elektor Mini-Wheelie ist eine experimentelle autonome selbstbalancierende Roboterplattform. Der selbstbalancierende Roboter basiert auf einem ESP32-S3-Mikrocontroller und ist mithilfe der Arduino-Umgebung und Open-Source-Bibliotheken vollständig programmierbar. Dank seiner drahtlosen Fähigkeiten kann er über WLAN, Bluetooth oder ESP-NOW ferngesteuert werden oder mit einem Benutzer oder sogar einem anderen Roboter kommunizieren.
Zur Erkennung von Hindernissen steht ein Ultraschallwandler zur Verfügung. Über das Farbdisplay lassen sich niedliche Gesichtsausdrücke oder für den bodenständigeren Nutzer auch kryptische Debug-Meldungen darstellen.
Der Roboter wird als Komplettbausatz mit Teilen geliefert, die Sie selbst zusammenbauen müssen. Alles ist dabei, sogar ein Schraubenzieher.
Hinweis: Der Mini-Wheelie ist eine pädagogische Entwicklungsplattform, die zum Lernen, Experimentieren und zur Entwicklung von Robotern gedacht ist. Er ist nicht als Kinderspielzeug klassifiziert, und seine Funktionen, Dokumentation und Zielgruppe spiegeln diesen Zweck wider. Das Produkt richtet sich an Studenten, Dozenten und Entwickler, die Robotik, Programmierung und Hardware-Integration in einem pädagogischen Umfeld erforschen möchten.
Technische Daten
ESP32-S3 Mikrocontroller mit WLAN und Bluetooth
MPU6050 6-achsige Inertial Measurement Unit (IMU)
Zwei unabhängig gesteuerte 12 V-Elektromotoren mit Drehzahlmesser
Ultraschallwandler
2,9" TFT-Farbdisplay (320 x 240)
MicroSD-Kartensteckplatz
Batterieleistungsmonitor
3S wiederaufladbarer Li-Po-Akku (11,1 V/2200 mAh)
Batterieladegerät im Lieferumfang enthalten
Arduino-basierte Open-Source-Software
Abmessungen (B x L x H): 23 x 8 x 13 cm
Lieferumfang
1x ESP32-S3 Mainboard + MPU6050 Modul
1x LCD-Board (2,9 Zoll)
1x Ultraschallsensor
1x Akku (2200 mAh)
1x Batterieladegerät
1x Motorreifen-Set
1x Gehäuseplatine
1x Acrylplatte
1x Schraubendreher
1x Schutzstreifen
1x Flexkabel B (8 cm)
1x Flexkabel A (12 cm)
1x Flexkabel C
4x Kupfersäule A (25 mm)
4x Kupfersäule B (55 mm)
4x Kupfersäule C (5 mm)
2x Kunststoff-Nylonsäule
8x Schrauben A (10 mm)
24x Schrauben B (M3x5)
8x Nüsse
24x Metallscheiben
2x Kabelbinder
1x MicroSD-Karte (32 GB)
Downloads
Documentation
Bauen Sie Ihren eigenen Vintage-Radiosender
Das Elektor AM-Sender-Kit ermöglicht das Streamen von Audio auf Vintage-AM-Radioempfänger. Basierend auf einem Raspberry Pi Pico Mikrocontroller-Modul kann der AM-Sender auf 32 Frequenzen im AM-Band senden, von 500 kHz bis 1,6 MHz in 32 Schritten von ca. 35 kHz.
Die Frequenz wird mit einem Potentiometer gewählt und auf einem 0,96" OLED-Display angezeigt. Eine Taste ermöglicht das Umschalten des Sendemodus zwischen Ein und Aus. Die Reichweite des Senders hängt von der Antenne ab. Die integrierte Antenne bietet eine Reichweite von wenigen Zentimetern, sodass der AM-Sender nahe am Radio oder im Radio selbst platziert werden muss. Eine externe Loop-Antenne (nicht enthalten) kann angeschlossen werden, um die Reichweite zu erhöhen.
Das Elektor AM-Sender-Kit wird als Bausatz geliefert, den Sie selbst auf die Platine löten müssen.
Features
Die Platine ist kompatibel mit einem Hammond-1593N-Gehäuse (nicht enthalten).Ein 5-VDC-Netzteil mit Micro-USB-Anschluss (z. B. ein altes Handy-Ladegerät) wird benötigt, um das Kit zu betreiben (nicht enthalten). Stromaufnahme: 100 mA.
Die Arduino-Software (benötigt Earle Philhowers RP2040-Boards-Paket) für das Elektor-AM-Sender-Kit sowie weitere Informationen sind auf der Elektor-Labs-Seite dieses Projekts verfügbar.
Stückliste
Widerstände
R1, R4 = 100 Ω
R2, R3, R8 = 10 kΩ
R5, R6, R9, R10, R11 = 1 kΩ
R7 = optional (nicht enthalten)
P1 = Potentiometer 100 kΩ, linear
Kondensatoren
C1 = 22 µF 16V
C2, C4 = 10 nF
C3 = 150 pF
Sonstiges
K1 = 4×1 Stiftleiste
K2, K3 = 3,5-mm-Buchse
Raspberry Pi Pico
Drucktaste, Winkelmontage
0,96" monochromes I²C-OLED-Display
Leiterplatte 150292-1
Über 180 Projekte mit Raspberry Pi, Pico W, Arduino und ESP32
Dieses Bundle enthält das Universal Maker Sensor Kit mit zahlreichen Sensoren, Aktoren, Displays und Motoren. Es eignet sich perfekt für Umweltüberwachung, Smart-Home-Projekte, Robotik und Gamecontroller.
Das neue Elektor-Buch beschreibt die Entwicklung zahlreicher Projekte mit dem Kit und den beliebten Entwicklungsboards Raspberry Pi, Raspberry Pi Pico W, Arduino Uno und der ESP32-Familie. Sie können jedes dieser Entwicklungsboards für Ihre Projekte auswählen und die bereitgestellten Programme entweder unverändert verwenden oder an Ihre Anwendungen anpassen.
Dieses Bundle enthält:
Buch: Universal Maker Sensor Kit (Einzelpreis: 45 €)
Universal Maker Sensor Kit (für Raspberry Pi, Pico W, Arduino, ESP32) (Einzelpreis: 70 €)
Raspberry Pi Pico 2 W (Einzelpreis: 8 €)
Buch: Universal Maker Sensor Kit
Lernen Sie, mehr als 35 Sensoren und Aktoren mit C++, Python und MicroPython zu verwenden
Dieses Buch enthält über 180 Projekte für alle vier wichtigen Entwicklungsboards (Arduino, Raspberry Pi, Pico W und ESP32). Je nach Entwicklungsboard sind Projekte in den Programmiersprachen C, Python oder MicroPython verfügbar.
Die Projekttitel, Kurzbeschreibungen, Schaltpläne und vollständigen Programmlisten sind zusammen mit ihren detaillierten Beschreibungen im Buch aufgeführt.
Universal Maker Sensor Kit (für Raspberry Pi, Pico W, Arduino, ESP32)
Entdecken Sie grenzenlose Kreativität mit dem Universal Maker Sensor Kit, das für Raspberry Pi, Pico W, Arduino und ESP32 entwickelt wurde. Dieses vielseitige Kit ist mit gängigen Entwicklungsplattformen kompatibel, darunter Arduino Uno R4 Minima/WiFi, Uno R3, Mega 2560, Raspberry Pi 5, 4, 3B+, 3B, Zero, Pico W und ESP32.
Mit über 35 Sensoren, Aktoren und Displays eignet es sich perfekt für Projekte von Umweltüberwachung und Smart-Home-Automatisierung bis hin zu Robotik und interaktivem Gaming. Schritt-für-Schritt-Tutorials in C/C++, Python und MicroPython führen Anfänger und erfahrene Maker gleichermaßen durch 169 spannende Projekte.
Features
Umfassende Kompatibilität: Vollständige Unterstützung für Arduino (Uno R3, Uno R4 Minima/WiFi, Mega 2560), Raspberry Pi (5, 4, 3B+, 3B, Zero, Pico W) und ESP32. Dies ermöglicht umfassende Flexibilität auf zahlreichen Entwicklungsplattformen. Enthält Anleitungen für 169 Projekte.
Umfassende Komponenten: Mehr als 35 Sensoren, Aktoren und Anzeigemodule für vielfältige Projekte wie Umweltüberwachung, Smart Home-Automatisierung, Robotik und interaktive Spielesteuerungen.
Ausführliche Tutorials: Klare Schritt-für-Schritt-Anleitungen für Arduino, Raspberry Pi, Pico W, ESP32 und alle enthaltenen Komponenten. Es stehen Tutorials in C/C++, Python und MicroPython zur Verfügung, die sowohl für Anfänger als auch für erfahrene Maker geeignet sind.
Für alle Kenntnisstufen geeignet: Bietet strukturierte Projekte, die Benutzer nahtlos vom Anfänger zum Fortgeschrittenen in Elektronik und Programmierung führen und so Kreativität und technisches Know-how fördern.
Lieferumfang des Kits
Breadboard
Tastenmodul
Kapazitives Bodenfeuchtemodul
Flammensensormodul
Gas-/Rauchsensormodul (MQ2)
Gyroskop & Beschleunigungssensormodul (MPU6050)
Hall-Sensormodul
Infrarot-Geschwindigkeitssensormodul
IR-Hindernisvermeidungssensormodul
Joystickmodul
PCF8591 ADC/DAC-Wandlermodul
Fotowiderstandsmodul
PIR-Bewegungssensormodul (HC-SR501)
Potentiometermodul
Pulsoximeter- und Herzfrequenzsensormodul (MAX30102)
Regentropfenerkennungsmodul
Echtzeituhrmodul (DS1302)
Drehgebermodul
Temperatursensormodul (DS18B20)
Temperatur- und Feuchtigkeitssensormodul (DHT11)
Temperatur, Luftfeuchtigkeit und Drucksensor (BMP280)
Time-of-Flight-Mikro-LIDAR-Distanzsensor (VL53L0X)
Berührungssensormodul
Ultraschallsensormodul (HC-SR04)
Vibrationssensormodul (SW-420)
Wasserstandssensormodul
I²C LCD 1602
OLED-Displaymodul (SSD1306)
RGB-LED-Modul
Ampelmodul
5-V-Relaismodul
Kreiselpumpe
L9110-Motortreibermodul
Passives Summermodul
Servomotor (SG90)
TT-Motor
ESP8266 Modul
JDY-31 Bluetooth-Modul
Stromversorgungsmodul
Dokumentation
Online-Tutorial
Das Elektor ESP32-Energiemessgerät wurde für die Echtzeit-Energieüberwachung und die Smart Home-Integration entwickelt. Angetrieben durch den ESP32-S3 Mikrocontroller bietet es robuste Leistung mit modularen und skalierbaren Funktionen.
Das Gerät verwendet einen 220 V-auf-12 V-Abwärtstransformator zur Spannungsabtastung, der eine galvanische Trennung und Sicherheit gewährleistet. Sein kompaktes Platinenlayout umfasst Schraubklemmenblöcke für sichere Verbindungen, einen Qwiic-Anschluss für zusätzliche Sensoren und einen Programmier-Header für die direkte ESP32-S3-Konfiguration. Der Energiezähler ist mit einphasigen und dreiphasigen Systemen kompatibel und somit für verschiedene Anwendungen anpassbar.
Das Energiemessgerät ist einfach einzurichten und lässt sich in Home Assistant integrieren. Er bietet Echtzeitüberwachung, Verlaufsanalysen und Automatisierungsfunktionen. Es liefert genaue Messungen von Spannung, Strom und Leistung und ist damit ein wertvolles Werkzeug für das Energiemanagement in Haushalten und Unternehmen.
Features
Umfassende Energieüberwachung: Erhalten Sie detaillierte Einblicke in Ihren Energieverbrauch für eine intelligentere Verwaltung.
Anpassbare Software: Passen Sie die Funktionalität an Ihre Bedürfnisse an, indem Sie eigene Sensoren programmieren und integrieren.
Smart Home Ready: Kompatibel mit ESPHome, Home Assistant und MQTT für vollständige Smart Home-Integration.
Sicher & Flexibles Design: Funktioniert mit einem 220 V-zu-12 V-Abwärtstransformator und verfügt über eine vormontierte SMD-Platine.
Schnellstart: Enthält einen Stromwandlersensor und Zugang zu kostenlosen Einrichtungsressourcen.
Technische Daten
Mikrocontroller
ESP32-S3-WROOM-1-N8R2
Energiemess-IC
ATM90E32AS
Statusanzeigen
4x LEDs zur Anzeige des Stromverbrauchs2x programmierbare LEDs für benutzerdefinierte Statusbenachrichtigungen
Benutzereingabe
2x Drucktasten zur Benutzersteuerung
Ausgabe anzeigen
I²C-OLED-Display zur Echtzeit-Anzeige des Stromverbrauchs
Eingangsspannung
110/220 V AC (über Abwärtstransformator)
Eingangsleistung
12 V (über Abwärtstransformator oder DC-Eingang)
Klemmstromsensor
YHDC SCT013-000 (100 A/50 mA) im Lieferumfang enthalten
Smart Home-Integration
ESPHome, Home Assistant und MQTT für nahtlose Konnektivität
Konnektivität
Header für die Programmierung, Qwiic für Sensorerweiterung
Anwendungen
Unterstützt einphasige und dreiphasige Energieüberwachungssysteme
Abmessungen
79,5 x 79,5 mm
Lieferumfang
1x Teilbestückte Platine (SMD-Bauteile sind vormontiert)
2x Schraubklemmenblock-Anschlüsse (nicht montiert)
1x YHDC SCT013-000 Stromwandler
Erforderlich
Netztransformator nicht enthalten
Downloads
Datasheet (ESP32-S3-WROOM-1)
Datasheet (ATM90E32AS)
Datasheet (SCT013-000)
Frequently Asked Questions (FAQ)
Vom Prototyp zum fertigen Produkt
Was als innovatives Projekt zur Entwicklung eines zuverlässigen und benutzerfreundlichen Energiemessgeräts mithilfe des ESP32-S3-Mikrocontrollers begann, hat sich zu einem robusten Produkt entwickelt. Ursprünglich als Open-Source-Projekt entwickelt, zielte das Gerät darauf ab, eine präzise Energieüberwachung, Smart-Home-Integration und mehr zu ermöglichen. Durch sorgfältige Hardware- und Firmware-Entwicklung ist das Energiemessgerät heute eine kompakte, vielseitige Lösung für das Energiemanagement.
Der Elektor Super Servo Tester kann Servos steuern und Servosignale messen. Es können bis zu vier Servokanäle gleichzeitig getestet werden.
Der Super Servo Tester wird als Bausatz geliefert. Alle zum Zusammenbau des Super Servo Testers erforderlichen Teile sind im Bausatz enthalten. Für den Zusammenbau des Bausatzes sind grundlegende Lötkenntnisse erforderlich. Der Mikrocontroller ist bereits programmiert.
Der Super Servo Tester verfügt über zwei Betriebsmodi: Steuerung/Manuell und Messen/Eingänge.
Im Control/Manual Modus generiert der Super Servo Tester an seinen Ausgängen Steuersignale für bis zu vier Servos oder für den Flugregler oder ESC. Die Signale werden über die vier Potentiometer gesteuert.
Unter Measure/Inputs misst der Super Servo Tester die an seine Eingänge angeschlossenen Servosignale. Diese Signale können beispielsweise von einem Regler, einem Flugregler, dem Empfänger oder einem anderen Gerät stammen. Die Signale werden auch an die Ausgänge weitergeleitet, um die Servos oder den Flugregler bzw. ESC zu steuern. Die Ergebnisse werden auf dem Display angezeigt.
Technische Daten
Betriebsmodi
Control/Manual & Measure/Inputs
Kanäle
3
Servosignaleingänge
4
Servosignalausgänge
4
Alarm
Summer & LED
Anzeige
0,96' OLED (128 x 32 Pixel)
Eingangsspannung an K5
7-12 VDC
Eingangsspannung an K1
5-7,5 VDC
Eingangsstrom
30 mA (9 VDC an K5, nichts an K1 und K2 angeschlossen)
Abmessungen
113 x 66 x 25 mm
Gewicht
60 g
Lieferumfang
Widerstände (0,25 W)
R1, R3
1 kΩ, 5%
R2, R4, R5, R6, R7, R9, R10
10 kΩ, 5%
R8
22 Ω, 5%
P1, P2, P3, P4
10 kΩ, lin/B, vertikales Potentiometer
Kondensatoren
C1
100 µF 16 V
C2
10 µF 25 V
C3, C4, C7
100 nF
C5, C6
22 pF
Halbleiter
D1
1N5817
D2
LM385Z-2.5
D3
BZX79-C5V1
IC1
7805
IC2
ATmega328P-PU, programmiert
LED1
LED, 3 mm, rot
T1
2N7000
Außerdem
BUZ1
Piezo-Summer mit Oszillator
K1, K2
2-reihiger, 12-poliger Pinheader, 90°
K5
Barrel jack
K4
1-reihige, 4-polige Stiftbuchse
K3
2-reihiger, 6-fach geschachtelter Pinheader
S1
Slide Switch DPDT
S2
Slide Switch SPDT
X1
Crystal, 16 MHz
28-polige DIP-Buchse für IC2
Elektor Platine
OLED-Display, 0,96', 128 x 32 Pixel, 4-pin I²C-Interface
Links
Elektor Magazine
Elektor Labs
Der Elektor Milliohmmeter-Adapter nutzt die Präzision eines Multimeters zur Messung sehr niedriger Widerstandswerte. Er wandelt einen Widerstand in eine Spannung um, die mit einem Standardmultimeter gemessen werden kann.
Der Elektor Milliohmmeter-Adapter misst Widerstände unter 1 mΩ mit der 4-Leiter-Methode (Kelvin). Er eignet sich zum Auffinden von Kurzschlüssen auf Leiterplatten.
Der Adapter bietet drei Messbereiche – 1 mΩ, 10 mΩ und 100 mΩ –, die über einen Schiebeschalter ausgewählt werden können. Integrierte Kalibrierwiderstände sind ebenfalls enthalten. Der Elektor Milliohmmeter-Adapter wird mit drei 1,5-V-AA-Batterien betrieben (nicht im Lieferumfang enthalten).
Technische Daten
Messbereiche
1 mΩ, 10 mΩ, 100 mΩ, 0,1%
Stromversorgung
3x 1,5 V AA-Batterien (nicht im Lieferumfang enthalten)
Abmessungen
103 x 66 x 18 mm (kompatibel mit Hammond 1593N-Gehäuse, nicht im Lieferumfang enthalten)
Besonderheit
Integrierte Kalibrierwiderstände
Downloads
Documentation
Ein Retro-Würfel mit Neon-Charakter
LED-basierte Würfel sind weit verbreitet, doch ihr Licht ist kalt. Nicht so dieser elektronische Neonwürfel, der seinen Wert mit dem warmen Schein von Neonröhren anzeigt. Er eignet sich perfekt für Spiele an kalten, dunklen Winterabenden. Die Würfelpunkte sind Neonlampen, und der Zufallszahlengenerator verfügt über sechs Neonröhren, die seine Funktion anzeigen.
Obwohl der Würfel über eine integrierte 100-V-Stromversorgung verfügt, ist er absolut sicher. Wie bei allen Elektor Classic-Produkten ist auch bei diesem Würfel der Schaltplan auf der Vorderseite aufgedruckt, während sich auf der Rückseite eine Erklärung zur Funktionsweise befindet.
Der Glimmlampenwürfel wird als Kit mit leicht zu lötenden bedrahteten Bauteilen geliefert. Die Stromversorgung erfolgt über eine 9-V-Batterie (nicht im Lieferumfang enthalten).
Features
Warmer Vintage-Glanz
Elektor Heritage Schaltsymbole
Erprobt und getestet von Elektor Labs
Lern- und Technikprojekt
Nur bedrahtete Bauteile
Lieferumfang
Platine
Alle Komponenten
Holzständer
Erforderlich
9 V Batterie
Stückliste
Widerstände (THT, 150 V, 0.25 W)
R1, R2, R3, R4, R5, R6, R14 = 1 MΩ
R7, R8, R9, R10, R11, R12 = 18 kΩ
R13, R15, R16, R17, R18, R21, R23, R24, R25, R26, R28, R30, R33 = 100 kΩ
R32, R34 = 1.2 kΩ
R19, R20, R22, R27, R29 = 4.7 kΩ
R31 = 1 Ω
Kondensatoren
C1, C2, C3, C4, C5, C6 = 470 nF, 50 V, 5 mm pitch
C7, C9, C11, C12 = 1 µF, 16 V, 2 mm pitch
C8 = 470 pF, 50 V, 5 mm pitch
C10 = 1 µF, 250 V, 2.5 mm pitch
Induktivitäten
L1 = 470 µH
Halbleiter
D1, D2, D3, D4, D5, D6, D7 = 1N4148
D8 = STPS1150
IC1 = NE555
IC2 = 74HC374
IC3 = MC34063
IC4 = 78L05
T1, T2, T3, T4, T5 = MPSA42
T6 = STQ2LN60K3-AP
Sonstiges
K1 = PP3 9 V Batteriehalter
NE1, NE2, NE3, NE4, NE5, NE6, NE7, NE8, NE9, NE10, NE11, NE12, NE13 = Neonlicht
S2 = Miniatur-Schiebeschalter
S1 = Druckknopf (12 x 12 mm)
Ziehen Sie den Hebel nach unten, um die höchste Punktzahl zu erzielen!Dieser Elektor-Schaltungsklassiker aus dem Jahr 1984 zeigt eine spielerische Anwendung von Logik-ICs der CMOS-400x-Serie in Kombination mit LEDs, einer damals sehr beliebten Kombination. Das Projekt imitiert einen Spielautomaten mit rotierenden Ziffern.Das SpielUm das Spiel zu spielen, vereinbaren Sie zunächst die Anzahl der Runden. Spieler 1 betätigt den Schalthebel so lange wie gewünscht und lässt ihn los. Die LEDs zeigen dann die Punktzahl an, die sich aus der Summe der 50-20-10-5 aufleuchtenden Ziffern ergibt. Wenn die Play Again!-LED aufleuchtet, hat Spieler 1 eine weitere, „freie“ Runde. Wenn nicht, ist Spieler 2 am Zug. Die Spieler behalten ihre Punkte im Auge und der Spieler mit der höchsten Punktzahl gewinnt.FeaturesLEDs zeigen den Punktestand anMulti-Player und Play Again!Symbole des Elektor Heritage CircuitGetestet und geprüft von Elektor LabsEdukatives und geekiges ProjektNur Teile mit DurchgangslochLieferumfangPlatineAlle KomponentenHolzständerStücklisteWiderstände (5%, 250 mW)R1,R2,R3,R4 = 100kΩR5,R6,R7,R8,R9,R10 = 1kΩKondensatorenC1 = 4.7nF, 10%, 50V, 5mmC2 = 4.7μF, 10%, 63V, axialC3,C4 = 100nF, 10 %, 50V, Keramik X7R, 5mmHalbleiterLED1-LED6 = rot, 5mm (T1 3/4)IC1 = 74HC4024IC2 = 74HC132SonstigesS1 = Schalter, Kipphebel, 21-mm-Hebel, SPDT, tastendS2 = Schalter, taktil, 24V, 50mA, 6x6mmS3 = Schalter, Schieber, SPDTIC1,IC2 = IC-Sockel, DIP14BT1 = CR2032-Batteriehalteklammer für PlatinenmontageTischständerPCB 230098-1Nicht im Lieferumfang enthalten: BT1 = CR2032-Knopfzellenbatterie
Mehrsprachiges DIY-Kit (inkl. 27 RGB-LEDs + Raspberry Pi Pico)
Verleihen Sie Ihrer Weihnachtszeit einen Hauch von Ingenieurskunst – mit dem "wortreichen" LED-Weihnachtsbaum von Elektor. Der kunstvoll gestaltete 3D-Weihnachtsbaum vereint elf Platinen, einen Raspberry Pi Pico und 27 adressierbare RGB-LEDs, um festliche Botschaften in sieben Sprachen erstrahlen zu lassen: Dänisch, Niederländisch, Englisch, Französisch, Deutsch, Italienisch und Spanisch.
Anders als bei herkömmlichen LED-Bäumen verfügt jedes Wort im Inneren über eine eigene Leuchtkammer. So entsteht eine elegante, sanft leuchtende Anzeige ohne Geräusche oder Flackern. Die LEDs sind vollständig WS2812-kompatibel und werden über die beliebte Adafruit NeoPixel-Bibliothek angesteuert, wodurch sich individuelle Animationen und Farbeffekte ganz einfach erstellen lassen.
Dieses Kit ist perfekt für Maker, Tüftler und alle, die sich für festliche Elektronik begeistern. Es bietet sowohl ein unterhaltsames Bauprojekt als auch eine beeindruckende Dekoration, die garantiert für Gesprächsstoff sorgt. Der Elektor LED-Weihnachtsbaum ist das ideale Bastelprojekt für die Feiertage!
Features
Mehrsprachige Begrüßungen (7 Sprachen) in die Frontplatte eingefräst
3D-Konstruktion aus 11 ineinandergreifenden Leiterplatten
Angetrieben von einem Raspberry Pi Pico
27 einzeln ansteuerbare RGB-LEDs (vormontiert)
Sanfte Ein- und Ausblendanimationen
Vollständig programmierbar mit der Arduino IDE
Für maximale Helligkeit wird ein 5-V-Netzteil (mit Micro-USB-Anschluss) mit einer Leistung von ≥1 A empfohlen (nicht im Lieferumfang enthalten)
Abmessungen (H x B x T): 130 x 115 x 75 mm
Lieferumfang
Alle benötigten Leiterplatten mit LEDs und anderen SMD-Bauteilen
Raspberry Pi Pico (vom Benutzer zu löten und zu programmieren)
3-polige Stiftleiste (vom Benutzer zu löten)
3-polige Buchse (vom Benutzer zu löten)
4x Selbstklebende Gummipuffer
Projektseite
Elektor Labs
Merkmale
NFC-Chipmaterial: PET + Ätzantenne
Chip: NTAG216 (kompatibel mit allen NFC-Telefonen)
Frequenz: 13,56 MHz (Hochfrequenz)
Lesezeit: 1 - 2 ms
Speicherkapazität: 888 Byte
Lese- und Schreibvorgänge: > 100.000 Mal
Leseabstand: 0 - 5 mm
Datenaufbewahrung: > 10 Jahre
NFC-Chipgröße: Durchmesser 30 mm
Berührungslos, keine Reibung, geringe Ausfallrate, geringe Wartungskosten
Leserate, Verifizierungsgeschwindigkeit, die effektiv Zeit sparen und die Effizienz verbessern kann
Wasserdicht, staubdicht, vibrationshemmend
Keine Stromversorgung mit Antenne, eingebetteter Verschlüsselungssteuerungslogik und Kommunikationslogikschaltung
Inbegriffen
1x NFC-Sticker (6-Farben-Set)
Dieses Bundle enthält die beliebte Elektor Sanduhr für Raspberry Pi Pico und das neue Elektor Laserkopf-Upgrade und bietet damit noch mehr Möglichkeiten zur Zeitanzeige. Sie können die aktuelle Uhrzeit nicht nur in Sand "gravieren", sondern sie jetzt auch alternativ auf eine im Dunkeln leuchtende Folie schreiben oder grüne Zeichnungen erstellen.
Inhalt des Bundles
Elektor Sanduhr für Raspberry Pi Pico (Einzelpreis: 50 €)
Elektor Laserkopf-Upgrade für Sanduhr (Einzelpreis: 35 €)
Elektor Sanduhr für Raspberry Pi Pico (Raspberry Pi-basierter Eyecatcher)
Eine handelsübliche Sanduhr zeigt nur, wie die Zeit verrinnt. Dagegen zeigt diese Raspberry Pi Pico-gesteuerte Sanduhr die genaue Uhrzeit an, indem die vier Ziffern für Stunde und Minute in die Sandschicht "eingraviert" werden. Nach einer einstellbaren Verzögerung wird der Sand durch zwei Vibrationsmotoren flachgedrückt und der Zyklus beginnt von vorne.
Das Herzstück der Sanduhr sind zwei Servomotoren, die über einen Pantographenmechanismus einen Schreibstift antreiben. Ein dritter Servomotor hebt den Stift auf und ab. Der Sandbehälter ist mit zwei Vibrationsmotoren ausgestattet, um den Sand zu glätten. Der elektronische Teil der Sanduhr besteht aus einem Raspberry Pi Pico und einer RTC/Treiberplatine mit Echtzeituhr, plus Treiberschaltungen für die Servomotoren.
Eine ausführliche Bauanleitung steht zum Download bereit.
Features
Abmessungen: 135 x 110 x 80 mm
Bauzeit: ca. 1,5 bis 2 Stunden
Lieferumfang
3x vorgeschnittene Acrylplatten mit allen mechanischen Teilen
3x Mini-Servomotoren
2x Vibrationsmotoren
1x Raspberry Pi Pico
1x RTC/Treiberplatine mit montierten Teilen
Muttern, Bolzen, Abstandshalter und Drähte für die Baugruppe
Feinkörniger weißer Sand
Elektor Laserkopf-Upgrade für Sanduhr
Der neue Elektor-Laserkopf verwandelt die Elektor Sanduhr in eine Uhr, die die Zeit auf eine im Dunkeln leuchtende Folie statt auf Sand schreibt. Neben der Anzeige der Zeit können damit auch flüchtige Zeichnungen erstellt werden. Der 5-mW-Laserpointer mit einer Wellenlänge von 405 nm erzeugt leuchtend grüne Zeichnungen auf der im Dunkeln leuchtenden Folie. Um optimale Ergebnisse zu erzielen, verwenden Sie das Kit in einem schwach beleuchteten Raum. Achtung: Schauen Sie niemals direkt in den Laserstrahl!
Der Bausatz enthält alle notwendigen Komponenten, es ist jedoch das Anlöten von drei Drähten erforderlich.
Hinweis: Dieses Kit ist auch mit der originalen Arduino-basierten Sanduhr aus dem Jahr 2017 kompatibel. Weitere Einzelheiten finden Sie unter Elektor 1-2/2017 und Elektor 1-2/2018.
Der Elektor Laserkop verwandelt die Elektor Sanduhr in eine Uhr, die die Zeit auf eine im Dunkeln leuchtende Folie statt auf Sand schreibt. Neben der Anzeige der Zeit können damit auch flüchtige Zeichnungen erstellt werden. Der 5-mW-Laserpointer mit einer Wellenlänge von 405 nm erzeugt leuchtend grüne Zeichnungen auf der im Dunkeln leuchtenden Folie. Um optimale Ergebnisse zu erzielen, verwenden Sie das Kit in einem schwach beleuchteten Raum. Achtung: Schauen Sie niemals direkt in den Laserstrahl!
Der Bausatz enthält alle notwendigen Komponenten, es ist jedoch das Anlöten von drei Drähten erforderlich.
Hinweis: Dieses Kit ist auch mit der originalen Arduino-basierten Sanduhr aus dem Jahr 2017 kompatibel. Weitere Einzelheiten finden Sie unter Elektor 1-2/2017 und Elektor 1-2/2018.
Dieses Board ermöglicht es dem Raspberry Pi Pico (angeschlossen über die Stiftleiste), zwei Motoren gleichzeitig mit voller Vorwärts-, Rückwärts- und Stoppsteuerung anzutreiben, was es ideal für Pico-gesteuerte Buggy-Projekte macht. Alternativ kann die Platine auch zum Betrieb eines Schrittmotors verwendet werden. Die Platine ist mit dem Motortreiber-IC DRV8833 ausgestattet, der über einen integrierten Kurzschluss-, Überstrom- und Wärmeschutz verfügt.
Die Platine hat 4 externe Anschlüsse für GPIO-Pins und eine 3-V- und GND-Versorgung vom Pico. Dies ermöglicht zusätzliche IO-Optionen für Ihre Buggy-Bauten, die vom Pico gelesen oder gesteuert werden können. Außerdem gibt es einen Ein/Aus-Schalter und eine Power-Status-LED, so dass Sie auf einen Blick sehen können, ob das Board eingeschaltet ist, und Ihre Batterien schonen können, wenn Ihr Projekt nicht in Gebrauch ist.
Um die Motortreiberplatine verwenden zu können, muss der Pico über eine verlötete Stiftleiste verfügen und fest in den Stecker eingesteckt werden. Die Platine erzeugt eine geregelte Stromversorgung, die in den 40-poligen Stecker eingespeist wird, um den Pico mit Strom zu versorgen, so dass dieser nicht direkt mit Strom versorgt werden muss. Die Motortreiberplatine wird entweder über Schraubklemmen oder einen Servostecker versorgt.
Kitronik hat ein Micro-Python Modul und Beispielcode entwickelt, um die Verwendung des Motor Driver Boards mit dem Pico zu unterstützen. Dieser Code ist im GitHub Repo verfügbar.
Merkmale
Ein kompaktes und dennoch funktionsreiches Board, das als Herzstück Ihrer Raspberry Pi Pico Roboter-Buggy-Projekte entwickelt wurde.
Die Platine kann 2 Motoren gleichzeitig mit voller Vorwärts-, Rückwärts- und Stoppsteuerung antreiben.
Sie enthält den Motortreiber-IC DRV8833, der über einen integrierten Kurzschluss-, Überstrom- und Überhitzungsschutz verfügt.
Darüber hinaus verfügt die Platine über einen Ein/Aus-Schalter und eine Power-Status-LED.
Die Stromversorgung der Platine erfolgt über einen Klemmenleistenanschluss.
Die 3V- und GND-Pins sind ebenfalls herausgebrochen, so dass externe Geräte mit Strom versorgt werden können.
Programmieren Sie es mit MicroPython über einen Editor wie den Thonny-Editor.
Abmessungen: 63 mm (L) x 35 mm (B) x 11,6 mm (H)
Download
Datenblatt
Merkmale
Eingebaute USB-zu-Seriell-Schnittstelle
Eingebaute PCB-Antenne
Angetrieben durch Pineseed BL602 SoC mit Pinenut-Modell: 12S-Stempel
2 MB Flash
USB-C-Anschluss
Geeignet für Steckbrett-BIY-Projekte
An Bord befinden sich drei Farb-LEDs
Abmessungen: 25,4 x 44,0 mm
Hinweis: USB-Kabel ist nicht im Lieferumfang enthalten.
Das SparkFun RedBoard Qwiic ist eine Arduino-kompatible Platine, die Funktionen verschiedener Arduinos mit dem Qwiic Connect System kombiniert.
Merkmale
ATmega328-Mikrocontroller mit Optiboot-Bootloader
Kompatibel mit R3 Shield
CH340C Seriell-USB-Konverter
Spannungspegel-Jumper von 3,3 V bis 5 V
A4 / A5 Brücken
Spannungsregler AP2112
ISP-Header
Eingangsspannung: 7 V - 15 V
1 Qwiic-Anschluss
16 MHz Taktfrequenz
32 k Flash-Speicher
Komplette SMD-Konstruktion
Verbesserter Reset-Knopf
Lerne die Grundlagen der Elektronik, indem du manuell deinen Arduino Uno zusammenbaust, gewinne Erfahrung im Löten, indem du jedes einzelne Bauteil montierst, und entfalte dann deine Kreativität mit dem einzigen Kit, das sich zu einem Synthesizer verwandelt!
Das Arduino Make-Your-Uno-Kit ist wirklich der beste Weg, um zu lernen, wie man lötet. Und wenn du fertig bist, ermöglicht dir die Verpackung, einen Synthesizer zu bauen und deine eigene Musik zu machen.
Ein Kit mit allen Komponenten, um deinen eigenen Arduino Uno und einen Audio-Synthesizer-Schild zu bauen.
Das Make-Your-Uno-Kit wird mit einem kompletten Satz von Anweisungen in einer dedizierten Inhaltsplattform geliefert. Dazu gehören Videomaterial, ein 3D- interaktiver Viewer zur detaillierten Anleitung und wie man das Board programmiert, sobald es fertig ist.
Dieses Kit enthält:
Arduino Make-Your-Uno
1x Make-Your-Uno-PCB
1x USB-C-Serieller Adapter
7x Widerstände 1 kOhm
2x Widerstände 10 kOhm
2x Widerstände 1 MOhm
1x Diode (1N4007)
1x 16 MHz Quartz
4x gelbe LEDs
1x grüne LED 1x Drucktaster
1x MOSFET
1x LDO (3,3 V)
1x LDO (5 V)
3x Keramikkondensatoren (22pF)
3x Elektrolytkondensatoren (47uF)
7x Polyesterkondensatoren (100nF)
1x Sockel für ATMega 328p
2x I/O-Steckverbinder
1x Steckerleiste 6-polig
1x Buchsenstecker
1x ATmega 328p-Mikrocontroller
Arduino Audio Synth
1x Audio Synth PCB
1x Widerstand 100kOhm
1x Widerstand 10 Ohm
1x Audio-Verstärker (LM386)
1x Keramikkondensator (47nF)
1x Elektrolytkondensator (47uF)
1x Elektrolytkondensator (220uF)
1x Polyesterkondensator (100nF)
4x Anschluss-Pin-Header
6x Potentiometer 10kOhm mit Kunststoffknöpfen
Ersatzteile
2x Elektrolytkondensatoren (47uF)
2x Polyesterkondensatoren (100nF)
2x Keramikkondensatoren (22pF)
1x Drucktaster
1x gelbe LED
1x grüne LED
Mechanische Teile
5x Abstandshalter 12 mm
11x Abstandshalter 6 mm
5x Schraubmuttern
2x Schrauben 12 mm
Das AVR-IoT WA-Entwicklungsboard kombiniert einen leistungsstarken ATmega4808 AVR MCU, einen ATECC608A CryptoAuthentication™ Secure Element IC und den vollständig zertifizierten ATWINC1510 Wi-Fi-Netzwerkcontroller – was die einfachste und effektivste Möglichkeit bietet, Ihre eingebettete Anwendung mit Amazon Web Services zu verbinden ( AWS). Das Board verfügt außerdem über einen integrierten Debugger und erfordert keine externe Hardware zum Programmieren und Debuggen der MCU.
Im Auslieferungszustand ist auf der MCU ein Firmware-Image vorinstalliert, mit dem Sie mithilfe der integrierten Temperatur- und Lichtsensoren schnell eine Verbindung zur AWS-Plattform herstellen und Daten an diese senden können. Sobald Sie bereit sind, Ihr eigenes benutzerdefiniertes Design zu erstellen, können Sie mithilfe der kostenlosen Softwarebibliotheken in Atmel START oder MPLAB Code Configurator (MCC) ganz einfach Code generieren.
Das AVR-IoT WA-Board wird von zwei preisgekrönten integrierten Entwicklungsumgebungen (IDEs) unterstützt – Atmel Studio und Microchip MPLAB X IDE – und gibt Ihnen die Freiheit, mit der Umgebung Ihrer Wahl Innovationen zu entwickeln.
Merkmale
ATmega4808 Mikrocontroller
Vier Benutzer-LEDs
Zwei mechanische Tasten
mikroBUS-Header-Footprint
TEMT6000 Lichtsensor
MCP9808 Temperatursensor
ATECC608A CryptoAuthentication™-Gerät
WINC1510 WiFi-Modul
Onboard-Debugger
Auto-ID zur Platinenidentifizierung in Atmel Studio und Microchip MPLAB
Eine grüne Betriebs- und Status-LED auf der Platine
Programmieren und Debuggen
Virtueller COM-Port (CDC)
Zwei DGI GPIO-Leitungen
USB- und batteriebetrieben
Integriertes Li-Ion/LiPo-Akkuladegerät
LuckFox Pico Mini ist ein kompaktes Linux-Mikro-Entwicklungsboard, das auf dem Rockchip RV1103-Chip basiert und eine einfache und effiziente Entwicklungsplattform für Entwickler bietet. Es unterstützt eine Vielzahl von Schnittstellen, einschließlich MIPI CSI, GPIO, UART, SPI, I²C, USB usw., was für eine schnelle Entwicklung und Fehlerbehebung praktisch ist.
Features
Single-Core ARM Cortex-A7 32-Bit-Kern mit integriertem NEON und FPU
Eingebaute, von Rockchip selbst entwickelte NPU der 4. Generation, zeichnet sich durch hohe Rechenpräzision aus und unterstützt die Hybridquantisierung int, int8 und int16. Die Rechenleistung von int8 beträgt 0,5 TOPS und bis zu 1,0 TOPS mit int4
Integrierter, selbst entwickelter ISP3.2 der dritten Generation, unterstützt 4 Megapixel, mit mehreren Bildverbesserungs- und Korrekturalgorithmen wie HDR, WDR, mehrstufiger Rauschunterdrückung usw.
Verfügt über eine leistungsstarke Kodierungsleistung, unterstützt den intelligenten Kodierungsmodus und das adaptive Stream-Speichern je nach Szene, spart mehr als 50% Bitrate im Vergleich zum herkömmlichen CBR-Modus, sodass die Bilder von der Kamera hochauflösende Bilder mit geringerer Größe und doppelt so viel Speicherplatz bieten Leerzeichen
Die integrierte RISC-V-MCU unterstützt einen geringen Stromverbrauch und einen schnellen Start, unterstützt eine schnelle Bildaufnahme von 250 ms und lädt gleichzeitig die Al-Modellbibliothek, um die Gesichtserkennung "in einer Sekunde" zu realisieren.
Eingebauter 16-Bit-DRAM DDR2, der anspruchsvolle Speicherbandbreiten bewältigen kann
Integriert mit integriertem POR, Audio-Codec und MAC PHY
Technische Daten
Prozessor
ARM Cortex-A7, Single-Core-32-Bit-CPU, 1,2 GHz, mit NEON und FPU
NPU
Rockchip NPU der 4. Generation, unterstützt int4, int8, int16; bis zu 1,0 TOPS (int4)
ISP
ISP3.2 der dritten Generation, bis zu 4 MP-Eingang bei 30fps, HDR, WDR, Rauschunterdrückung
RAM
64 MB DDR2
Speicher
128 MB SPI NAND Flash
USB
USB 2.0-Host/Gerät über Typ-C
Kameraschnittstelle
MIPI CSI 2-spurig
GPIO-Pins
17 GPIO-Pins
Stromverbrauch
RISC-V-MCU mit geringem Stromverbrauch für schnellen Start
Abmessungen
28 x 21 mm
Downloads
Wiki
Dieses Modul enthält eine integrierte Trace-Antenne, passt den IC an einen FCC-zugelassenen Footprint an und enthält Entkopplungs- und Timing-Mechanismen, die in einer Schaltung mit dem nackten nRF52840-IC entwickelt werden müssten. Der Bluetooth-Transceiver auf dem nRF52840 verfügt über einen BT 5.1-Stack. Er unterstützt Bluetooth 5, Bluetooth Mesh, IEEE 802.15.4 (Zigbee & Thread) und 2,4Ghz RF-Funkprotokolle (einschließlich des proprietären RF-Protokolls von Nordic), so dass Sie auswählen können, welche Option für Ihre Anwendung am besten geeignet ist.
Merkmale
ARM Cortex-M4-CPU mit einer Fließkommaeinheit (FPU)
1MB interner Flash -- Für alle Ihre Programm-, SoftDevice- und Dateispeicheranforderungen!
256kB interner RAM -- Für Ihren Stack und Heap-Speicher.
Integrierter 2,4GHz-Funk mit Unterstützung für:
Bluetooth Low Energy (BLE) -- Mit Unterstützung für periphere und/oder zentrale BLE-Geräte
Bluetooth 5 -- Mesh Bluetooth!
ANT -- Wenn Sie das Gerät in einen Herzfrequenz- oder Trainingsmonitor verwandeln möchten.
Nordic's proprietäres RF-Protokoll -- Wenn Sie sicher mit anderen Nordic-Geräten kommunizieren wollen.
Jede E/A-Peripherie, die Sie brauchen könnten.
USB -- Verwandeln Sie Ihren nRF52840 in einen USB-Massenspeicher, verwenden Sie eine CDC-Schnittstelle (USB-Seriell) und mehr.
UART -- Serielle Schnittstellen mit Unterstützung für Hardware-Flow-Control, falls gewünscht.
I²C -- Jedermanns liebste 2-Draht bidirektionale Busschnittstelle
SPI -- Wenn Sie die 3+-drahtige serielle Schnittstelle bevorzugen
Analog-Digital-Wandler (ADC) -- Acht Pins am nRF52840 Mini Breakout unterstützen analoge Eingänge
PWM -- Timer-Unterstützung an jedem Pin bedeutet PWM-Unterstützung für die Ansteuerung von LEDs oder Servomotoren.
Echtzeituhr (RTC) -- Behält Sekunden und Millisekunden genau im Auge, unterstützt auch zeitgesteuerte Deep-Sleep-Funktionen.
Drei UARTs
Primär an die USB-Schnittstelle gebunden. Zwei Hardware-UARTs.
Zwei I²C-Busse
Zwei SPI-Busse
Der sekundäre SPI-Bus wird hauptsächlich für Flash-ICs verwendet.
PDM-Audioverarbeitung
Zwei analoge Eingänge
Zwei dedizierte digitale E/A-Pins
Zwei dedizierte PWM-Pins
Elf Allzweck-E/A-Pins
Das Data Logging Carrier Board bietet Anschlüsse für I2C über einen Qwiic-Stecker oder Standard-PTH-Pins mit 0,1"-Abstand sowie SPI- und serielle UART-Anschlüsse für die Datenerfassung von Peripheriegeräten, die diese Kommunikationsprotokolle verwenden.
Mit dem Data Logging Carrier Board können Sie die Stromversorgung sowohl für den Qwiic-Anschluss auf dem Board als auch für eine dedizierte 3,3-V-Stromschiene für nicht-Qwiic-Peripheriegeräte steuern, so dass Sie auswählen können, wann Sie die Peripheriegeräte mit Strom versorgen, von denen Sie die Daten überwachen. Außerdem verfügt es über einen Ladeschaltkreis für einzellige Lithium-Ionen-Akkus und einen separaten RTC-Batterie-Backup-Schaltkreis, um die Stromversorgung einer Echtzeituhrschaltung auf dem Prozessor-Board aufrechtzuerhalten.
Merkmale
M.2 MicroMod-Anschluss
microSD-Buchse
USB-C Anschluss
3,3 V 1 A Spannungsregler
Qwiic-Anschluss
Boot/Reset-Tasten
RTC-Backup-Batterie & Ladeschaltung
Independente 3,3V-Regler für Qwiic-Bus und Peripherie-Erweiterungen
Steuerung durch digitale Pins auf der Prozessorplatine, um stromsparende Sleep-Modi zu ermöglichen
Phillips #0 M2,5 x 3 mm Schraube enthalten
Spracherkennung, Always-on-Sprachbefehle, Gesten- oder Bilderkennung sind mit TensorFlow-Anwendungen möglich. Die Cloud ist beeindruckend robust, aber die ständige Verbindung erfordert Strom und Konnektivität, die möglicherweise nicht verfügbar sind. Edge Computing übernimmt diskrete Aufgaben wie die Feststellung, ob jemand "Ja" gesagt hat, und reagiert entsprechend. Die Audioanalyse wird auf der MicroMod-Kombination und nicht im Web durchgeführt. Dadurch werden Kosten und Komplexität drastisch reduziert und gleichzeitig potenzielle Datenlecks begrenzt.
Das Board verfügt über zwei MEMS-Mikrofone (eines mit PDM-Schnittstelle, eines mit I2S-Schnittstelle), einen 3-Achsen-Beschleunigungsmesser ST LIS2DH12, einen Anschluss für eine Kamera (separat erhältlich) und einen Qwiic-Anschluss. Ein moderner USB-C-Anschluss macht die Programmierung einfach und wir haben den JTAG-Anschluss für fortgeschrittene Anwender freigelegt, die lieber die Leistung und Geschwindigkeit professioneller Tools nutzen möchten. Wir haben sogar einen praktischen Jumper hinzugefügt, um den Stromverbrauch für Tests mit geringem Stromverbrauch zu messen.
Features
M.2 MicroMod Keyed-E H4,2mm 65 Pins SMD Stecker 0,5mm
Digitales I2C MEMS-Mikrofon PDM Invensense ICS-43434 (COMP)
Digitales PDM-MEMS-Mikrofon PDM Knowles SPH0641LM4H-1 (IC)
ML414H-IV01E Lithium-Batterie für RTC
ST LIS2DH12TR Beschleunigungssensor (3-Achsen, Ultra-Low-Power)
24 Pin 0,5mm FPC Stecker (Himax Kameraanschluss)
USB - C
Qwiic-Anschluss
MicroSD-Buchse
Phillips #0 M2.5x3mm Schraube enthalten
Das SparkFun Thing Plus Matter ist das erste leicht zugängliche Board seiner Art, das Matter und das Qwiic-Ökosystem von SparkFun für die schnelle Entwicklung und das Prototyping von Matter-basierten IoT-Geräten kombiniert. Das drahtlose MGM240P-Modul von Silicon Labs bietet sichere Konnektivität sowohl für 802.15.4 mit Mesh-Kommunikation (Thread) als auch für Bluetooth Low Energy 5.3-Protokolle. Das Modul ist bereit für die Integration in das IoT-Protokoll Matter von Silicon Labs für die Heimautomatisierung .
Was ist Matter? Einfach ausgedrückt ermöglicht Matter einen zuverlässigen Betrieb zwischen Smart-Home-Geräten und IoT-Plattformen ohne Internetverbindung, sogar von verschiedenen Anbietern. Auf diese Weise ist Matter in der Lage, zwischen großen IoT-Ökosystemen zu kommunizieren, um ein einziges drahtloses Protokoll zu erstellen, das einfach, zuverlässig und sicher zu verwenden ist.
Das Thing Plus Matter (MGM240P) enthält Qwiic- und LiPo-Batterieanschlüsse und mehrere GPIO-Pins, die sich per Software vollständig multiplexen lassen. Das Board verfügt über das Einzelzellen-LiPo-Ladegerät MCP73831 sowie die Ladezustandsanzeige MAX17048 zum Laden und Überwachen einer angeschlossenen Batterie. Außerdem ist ein µSD-Kartensteckplatz für externe Speicheranforderungen integriert
Das drahtlose MGM240P-Modul basiert auf dem drahtlosen EFR32MG24-SoC mit einem 32-Bit-ARM-Cortext-M33-Core-Prozessor mit 39 MHz, 1536 KB Flash-Speicher und 256 KB RAM. Das MGM240P arbeitet mit gängigen 802.15.4-Wireless-Protokollen (Matter, ZigBee und OpenThread) sowie Bluetooth Low Energy 5.3. Das MGM240P unterstützt Secure Vault von Silicon Labs für Thread-Anwendungen.
Technische Daten
MGM240P Wireless-Modul
Basierend auf dem EFR32MG24 Wireless SoC
32-Bit-ARM-M33-Core-Prozessor (@ 39 MHz)
1536 KB Flash-Speicher
256 KB Arbeitsspeicher
Unterstützt mehrere 802.15.4-Wireless-Protokolle (ZigBee und OpenThread)
Bluetooth Low Energy 5.3
Matter-ready
Secure Vault-Unterstützung
Eingebaute Antenne
Thing Plus Formfaktor (federkompatibel):
Abmessungen: 5,8 x 2,3 cm (2,30 x 0,9")
2 Befestigungslöcher:
4-40 Schrauben kompatibel
21 GPIO-PTH-Ausbrüche
Alle Stifte haben vollständige Multiplexing-Fähigkeit durch Software
SPI-, I²C- und UART-Schnittstellen werden standardmäßig auf beschriftete Pins abgebildet
13 GPIO (6 als analog gekennzeichnet, 7 als GPIO gekennzeichnet)
Alle funktionieren entweder als GPIO oder analog
Eingebauter Digital-Analog-Wandler (DAC)
USB-C-Anschluss
2-poliger JST-LiPo-Akkuanschluss für einen LiPo-Akku (nicht im Lieferumfang enthalten)
4-poliger JST-Qwiic-Anschluss
MC73831 Einzelzellen-LiPo-Ladegerät
Konfigurierbare Laderate (500 mA Standard, 100 mA alternativ)
MAX17048 Einzelzellen-LiPo-Tankanzeige
µSD-Kartensteckplatz
Geringer Stromverbrauch (15 µA, wenn sich MGM240P im Energiesparmodus befindet)
LEDs:
PWR – Rote Power-LED
CHG – Gelbe Batterieladestatus-LED
STAT – Blaue Status-LED
Reset-Taste:
Physischer Taster
Das Reset-Signal kann an A0 gebunden werden, um die Verwendung als Peripheriegerät zu ermöglichen.
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo
Hier finden Sie alle Arten von Teilen, Komponenten und Zubehör, die Sie in verschiedenen Projekten benötigen, angefangen von einfachen Kabeln, Sensoren und Displays bis hin zu bereits vormontierten Modulen und Kits.