Radio | SDR

1 Produkt


  • Adafruit Feather 32u4 RFM69HCW Packet Radio (868 or 915 MHz) RadioFruit

    Adafruit Adafruit Feather 32u4 RFM69HCW Paketradio (868 oder 915 MHz) RadioFruit

    Diese 900-MHz-Funkversion kann entweder für 868 MHz oder 915 MHz Senden/Empfangen verwendet werden - die genaue Funkfrequenz wird beim Laden der Software festgelegt, da sie dynamisch umgestimmt werden kann. Das Herzstück des Feather 32u4 ist ein ATmega32u4, der mit 8 MHz getaktet ist und mit 3,3 V Logik arbeitet. Dieser Chip hat 32 K Flash und 2 K RAM, mit eingebautem USB, so dass er nicht nur eine USB-zu-Seriell-Programm- und Debug-Fähigkeit besitzt, ohne dass ein FTDI-ähnlicher Chip erforderlich ist, sondern auch als Maus, Tastatur, USB-MIDI-Gerät usw. fungieren kann. Um die Verwendung für tragbare Projekte zu erleichtern, haben wir einen Anschluss für 3,7-V-Lithium-Polymer-Batterien und eine integrierte Ladefunktion eingebaut. Sie brauchen keine Batterie, das Gerät läuft problemlos direkt über den Micro-USB-Anschluss. Wenn du aber einen Akku hast, kannst du ihn mitnehmen und dann zum Aufladen an den USB-Anschluss anschließen. Der Feather schaltet automatisch auf USB-Strom um, wenn dieser verfügbar ist. Außerdem haben wir die Batterie über einen Teiler mit einem analogen Pin verbunden, so dass Sie die Batteriespannung messen und überwachen können, um zu erkennen, wann Sie eine Aufladung benötigen. Merkmale Dimensionen 2,0" x 0,9" x 0,28" (51 x 23 x 8 mm) ohne eingelötete Header Leicht wie eine (große?) Feder - 5,5 Gramm ATmega32u4 @ 8 MHz mit 3,3 V Logik/Stromversorgung 3,3-V-Regler mit 500-mA-Spitzenstromausgang Native USB-Unterstützung, mit USB-Bootloader und Debugging über die serielle Schnittstelle Sie erhalten außerdem eine Vielzahl von Pins - 20 GPIO-Pins Hardware Seriell, Hardware I²C, Hardware SPI Unterstützung 7x PWM-Anschlüsse 10x analoge Eingänge Eingebautes 100 mA Lipoly-Ladegerät mit Ladestatusanzeige-LED Pin #13 rote LED für allgemeines Blinken Power/Enable-Pin 4 Befestigungslöcher Reset-Taste Das Feather 32u4 Radio nutzt den zusätzlichen Platz, der übrig bleibt, um ein RFM69HCW 868/915 MHz Funkmodul hinzuzufügen. Diese Funkmodule eignen sich nicht für die Übertragung von Audio- oder Videodaten, aber sie eignen sich sehr gut für die Übertragung kleiner Datenpakete, wenn Sie eine größere Reichweite als 2,4 GHz benötigen (BT, BLE, WiFi, ZigBee). SX1231-basiertes Modul mit SPI-Schnittstelle Packet Radio mit vorgefertigten Arduino-Bibliotheken Verwendet das lizenzfreie ISM-Band ("European ISM" @ 868 MHz oder "American ISM" @ 915 MHz) +13 bis +20 dBm bis zu 100 mW Ausgangsleistung (Ausgangsleistung in Software wählbar) 50 mA (+13 dBm) bis 150 mA (+20 dBm) Stromaufnahme für Übertragungen Reichweite von ca. 350 Metern, abhängig von Hindernissen, Frequenz, Antenne und Ausgangsleistung Aufbau von Mehrpunkt-Netzwerken mit individuellen Knotenadressen Verschlüsselte Packet Engine mit AES-128 Einfache Drahtantenne oder Spot für uFL-Anschluss Komplett zusammengebaut und getestet, mit einem USB-Bootloader, mit dem Sie es schnell mit der Arduino IDE verwenden können. Kopfstücke sind auch enthalten, so dass Sie es einlöten und in ein lötfreies Breadboard stecken können. Sie müssen ein kleines Stück Draht abschneiden und anlöten (jeder Volldraht oder Litze ist in Ordnung), um Ihre Antenne zu erstellen. Lipoly-Batterie und USB-Kabel nicht enthalten.

    € 34,95

    Mitglieder € 31,46

Was ist RF? Wofür wird RF verwendet?

Elektromagnetische Felder, Radiowellen, Mikrowellen und drahtlose Signale werden als Hochfrequenzenergie (RF) bezeichnet. HF-Ströme sind elektrische Ströme, die bei Radiofrequenzen schwingen und einzigartige Eigenschaften aufweisen. HF-Energie ist überall um uns herum und HF wird in einer Vielzahl von Elektronikgeräten und Geräten verwendet, darunter Radio- und Fernsehsender, Mobiltelefone, Satellitenkommunikation, Mikrowellenherde, Radargeräte sowie industrielle Heiz- und Versiegelungsgeräte. Dies sind nur einige Beispiele.

Was ist Software Defined Radio (SDR) und was kann man mit SDR machen?

Im Allgemeinen wird ein elektrisches Signal durch Hardwarekomponenten erzeugt. Die Verarbeitung von Signalen mit Hardware ist recht kompliziert und die Fehlerbehebung unterliegt Einschränkungen. Bei Software Defined Radio (SDR) erfolgt die HF-Kommunikation mithilfe von Software, wodurch die Einschränkungen der Signalverarbeitung mit Hardware vereinfacht werden. Anstatt Mischer, Filter, Verstärker, Modulatoren, Demodulatoren usw. verwenden zu müssen, verwendet SDR nur einen ADC und DAC sowie Antennen, ohne dass viele Hardwarekomponenten erforderlich sind.

Die Software für SDR kann auf einem Personalcomputer oder einem eingebetteten System verwendet werden, was eine flexiblere Anwendung ermöglicht und die Fehlerbehebung erleichtert. SDR wird im Rundfunk- und Amateurfunk, in der Radioastronomie, bei der Flugzeugverfolgung und beim Aufbau von GSM-Netzwerken sowie in vielen weiteren Anwendungen eingesetzt. Es ist eine gute Wahl für viele lustige Projekte.

RTL-SDR ist ein preisgünstiges USB-Radio zum Empfang von Live-Radiosendungen von einem Computer. Aufgrund seiner Beliebtheit profitieren Benutzer von einer größeren Vielfalt an Funksignalen, die noch vor wenigen Jahren Hunderte oder Tausende von Dollar gekostet hätten.

Was hat Elektor zu bieten?

Elektor bietet eine Vielzahl von RF- und SDR-bezogenen Kits an, wie zum Beispiel das Elektor Raspberry Pi RTL-SDR Kit , mit dem Sie Funksignale zwischen 500 kHz und 1,75 GHz von Sendern empfangen können, die verschiedene Bänder nutzen, darunter MW/SW/LW Broadcast, ISM , CB, Amateurfunk, Versorgungsfunk und mehr. Darüber hinaus beliefert Elektor seine Kunden mit Teleskopantennen , magnetisch montierbaren Antennen und vielem mehr. Durchsuchen Sie unsere Liste, um eine passende Lösung für Sie zu finden.

Wie sieht die Zukunft für SDR aus?

Die Beliebtheit von SDR-Lösungen nimmt seit der weit verbreiteten Verfügbarkeit von 4G-Geräten zu. Die Aussichten auf kommende Technologien wie 5G, das Internet der Dinge (IoT) und Sensornetzwerke versprechen, SDR noch weiter voranzutreiben. SDRs werden mit leistungsstärkeren FPGAs gebaut und diese Anwendungen sind für immer komplexere Aufgaben gedacht. Infolgedessen werden FPGA-Tools, die wachsende Datenmengen und Komplexität verwalten können, zwangsläufig an Popularität gewinnen.

Login

Passwort vergessen?

Sie haben noch kein Konto?
Konto erstellen