Entwicklungsboards

10 Produkte


  • Nordic Semiconductor nRF52840 USB-Dongle

    Nordic Semiconductor nRF52840 USB-Dongle

    Der nRF52840-Dongle ist ein kleiner, kostengünstiger USB-Dongle, der die proprietären Protokolle Bluetooth 5.3, Bluetooth Mesh, Thread, ZigBee, 802.15.4, ANT und 2,4 GHz unterstützt. Der Dongle ist die perfekte Hardware für die Verwendung mit nRF Connect for Desktop, da er kostengünstig ist und dennoch alle drahtlosen Nahbereichsstandards unterstützt, die mit Nordic-Geräten verwendet werden. Der Dongle wurde entwickelt, um zusammen mit nRF Connect for Desktop als drahtloses HW-Gerät verwendet zu werden. Für andere Anwendungsfälle beachten Sie bitte, dass es keine Debug-Unterstützung auf dem Dongle gibt, sondern nur Unterstützung für die Programmierung des Geräts und die Kommunikation über USB. Es wird von den meisten nRF Connect for Desktop-Apps unterstützt und bei Bedarf automatisch programmiert. Darüber hinaus können benutzerdefinierte Anwendungen kompiliert und auf den Dongle heruntergeladen werden. Es verfügt über eine benutzerprogrammierbare RGB-LED, eine grüne LED, eine benutzerprogrammierbare Taste sowie 15 GPIO, die über kronenförmige Lötpunkte entlang der Kante zugänglich sind. Beispielanwendungen sind im nRF5 SDK unter dem Boardnamen PCA10059 verfügbar. Der nRF52840-Dongle wird von nRF Connect for Desktop sowie von der Programmierung über nRFUtil unterstützt. Features Bluetooth 5.2-fähiges Multiprotokoll-Funkgerät 2 Mbit/s Lange Reichweite Werbeerweiterungen Kanalauswahlalgorithmus 2 (CSA #2) IEEE 802.15.4-Funkunterstützung Thread ZigBee Arm Cortex-M4 mit Gleitkommaunterstützung DSP-Befehlssatz ARM CryptoCell CC310-Kryptografiebeschleuniger 15 GPIO über Edge-Castellation verfügbar USB-Schnittstelle direkt zum nRF52840 SoC Integrierte 2,4-GHz-PCB-Antenne 1 Programmierbare Taste 1 Programmierbare RGB-LED 1 Programmierbare LED 1,7-5,5 V Betrieb über USB oder extern Downloads Datasheet Hardware Files

    € 19,95

    Mitglieder € 17,96

  • BBC micro:bit v2

    BBC micro:bit v2

    Unterschiede zwischen micro:bit v1 und micro:bit v2 Der BBC micro:bit v2 ist mit BLE Bluetooth 5.0 ausgestattet Es verfügt über eine Ausschalttaste (Einschalttaste gedrückt halten) MEMS-Mikrofon mit LED-Anzeige Integrierter Lautsprecher Berührungsempfindlicher Logo-Pin LED-Betriebsanzeige Ein gekerbter Kantenverbinder für einfachere Verbindungen.

    € 24,95

    Mitglieder € 22,46

  •  -40% WCH CH32V307V-EVT-R1 RISC-V Development Board

    WCH CH32V307V-EVT-R1 RISC-V Entwicklungsboard

    WCH CH32V307 RISC-V-Entwicklungsboard verfügt über 8 UART-Ports, die über Ethernet gesteuert werden Der CH32V307 ist ein vernetzter Mikrocontroller auf Basis eines 32-Bit-RISC-V-Kerns mit Hardware-Stack-Bereich und schnellem Interrupt-Einstieg. Im Vergleich zu Standard-RISC-V wurde die Interrupt-Reaktionsgeschwindigkeit deutlich verbessert. Mit hinzugefügten Single-Precision-Float-Point-Instruktionssätzen und erweiterter Stack-Fläche bietet der CH32V307 eine höhere Leistung, erweitert die Anzahl der U(S)ARTs auf 8 und die Anzahl der Motor-Timer auf 4. Der CH32V307 bietet eine USB-2.0-Hochgeschwindigkeitsschnittstelle (480 Mbps) und verfügt über einen integrierten PHY-Transceiver. Die Ethernet-MAC wurde auf GbE aufgerüstet und integriert ein 10M-PHY-Modul. Features RISC-V4F-Prozessor, maximaler Systemtakt von 144 MHz Einkreis-Multiplikation und Hardware-Division, Hardware-Fließkommaeinheit (FPU) 64 KB SRAM, 256 KB Flash Versorgungsspannung: 2,5 V/3,3 V, GPIO-Einheit wird unabhängig versorgt Mehrere Niedrigleistungsmodi: Schlaf-/Stopp-/Standby-Modus Power-on/Power-down-Reset (POR/PDR), programmierbarer Spannungsdetektor (PVD) 2 allgemeine DMA-Controller, insgesamt 18 Kanäle 4 Verstärker Einzelner echter Zufallszahlengenerator (TRNG) 2x 12-Bit-DAC 2 Einheiten mit 16 Kanälen und 12-Bit-ADC, 16-Kanal-TouchKey 10 Timer USB-2.0-Full-Speed-OTG-Schnittstelle USB-2.0-Hochgeschwindigkeits-Host/Device-Schnittstelle (integrierter 480 Mbps PHY) 3 USARTs, 5 UARTs 2 CAN-Schnittstellen (2.0B aktiv) SDIO-Schnittstelle, FSMC-Schnittstelle, DVP 2x I²C, 3x SPI, 2x I²S 80 I/O-Ports, können 16 externen Interrupts zugeordnet werden CRC-Berechnungseinheit, 96-Bit-eindeutige Chip-ID Serielle 2-Draht-Debug-Schnittstelle Pakete: LQFP64M, LQFP100 Downloads Datenblatt GitHub

    € 19,95€ 11,95

    Mitglieder identisch

  • Pinecone BL602 Evaluation Board

    Pinecone BL602 Evaluierungsboard

    Nicht auf Lager

    Merkmale Eingebaute USB-zu-Seriell-Schnittstelle Eingebaute PCB-Antenne Angetrieben durch Pineseed BL602 SoC mit Pinenut-Modell: 12S-Stempel 2 MB Flash USB-C-Anschluss Geeignet für Steckbrett-BIY-Projekte An Bord befinden sich drei Farb-LEDs Abmessungen: 25,4 x 44,0 mm Hinweis: USB-Kabel ist nicht im Lieferumfang enthalten.

    Nicht auf Lager

    € 8,95

    Mitglieder identisch

  • RA-08H LoRaWAN Development Board mit integriertem RP2040 und 1,8" LCD (EU868)

    RA-08H LoRaWAN Development Board mit integriertem RP2040 und 1,8" LCD (EU868)

    Lora-Technologie und Lora-Geräte sind im Bereich des Internets der Dinge (IoT) weit verbreitet, und immer mehr Menschen schließen sich der Lora-Entwicklung an und erlernen sie, was sie zu einem unverzichtbaren Bestandteil der IoT-Welt macht. Um Anfängern das Erlernen und Entwickeln der Lora-Technologie zu erleichtern, wurde speziell für Anfänger ein Lora-Entwicklungsboard entwickelt, das RP2040 als Hauptsteuerung verwendet und mit dem RA-08H-Modul ausgestattet ist, das Lora- und LoRaWAN-Protokolle unterstützt, um Benutzern bei der Umsetzung der Entwicklung zu helfen. RP2040 ist ein leistungsstarker Dual-Core-Chip mit ARM-Cortex-M0+-Architektur und geringem Stromverbrauch, der für IoT, Roboter, Steuerung, eingebettete Systeme und andere Anwendungsbereiche geeignet ist. RA-08H besteht aus dem von Semtech autorisierten ASR6601-HF-Chip, der das 868-MHz-Frequenzband unterstützt, über eine integrierte 32-MHz-MCU verfügt, die über leistungsfähigere Funktionen als gewöhnliche HF-Module verfügt und auch die AT-Befehlssteuerung unterstützt. Dieses Board verfügt über verschiedene Funktionsschnittstellen für die Entwicklung, wie z. B. die Crowtail-Schnittstelle, den gemeinsamen PIN-zu-PIN-Header, der GPIO-Ports nach außen führt, und 3,3 V- und 5 V-Ausgänge bereitstellt, die für die Entwicklung und Verwendung häufig verwendeter Sensoren und elektronischer Module auf dem Markt geeignet sind. Darüber hinaus verfügt das Board über RS485-Schnittstellen, SPI-, I²C- und UART-Schnittstellen, die mit mehr Sensoren/Modulen kompatibel sein können. Zusätzlich zu den grundlegenden Entwicklungsschnittstellen integriert das Board auch einige häufig verwendete Funktionen, wie einen Summer, eine benutzerdefinierte Taste, dreifarbige Rot-Gelb-Grün-Anzeigeleuchten und einen 1,8-Zoll-LCD-Bildschirm mit SPI-Schnittstelle und einer Auflösung von 128x160. Features Verwendet RP2040 als Hauptcontroller mit zwei 32-Bit-ARM-Cortex-M0+-Prozessorkernen (Dual-Core) und bietet eine höhere Leistung Integriert das RA-08H-Modul mit 32-MHz-MCU, unterstützt das 868-MHz-Frequenzband und AT-Befehlssteuerung Reichhaltige externe Schnittstellenressourcen, kompatibel mit Modulen der Crowtail-Serie und anderen gängigen Schnittstellenmodulen auf dem Markt Integriert häufig verwendete Funktionen wie Summer, LED-Licht, LCD-Anzeige und benutzerdefinierte Tasten und macht so die Erstellung von Projekten übersichtlicher und bequemer Onboard 1,8 Zoll 128x160 SPI-TFT-LCD, ST7735S-Treiberchip Kompatibel mit Arduino/MicroPython, einfache Durchführung verschiedener Projekte Technische Daten Hauptchip Raspberry Pi RP2040, integrierter 264 KB SRAM, integrierter 4 MB Flash Prozessor Dual Core Arm Cortex-M0+ bei 133 MHz RA-08H Frequenzband 803-930 MHz RA-08H-Schnittstelle Externe Antenne, SMA-Schnittstelle oder IPEX-Schnittstelle der ersten Generation LCD-Display Onboard 1,8-Zoll 128x160SPI-TFT-LCD LCD-Auflösung 128x160 LCD-Treiber ST7735S (4-Draht-SPI) Entwicklungsumgebung Arduino/MicroPython Schnittstellen 1x Passiver Summer 4x Benutzerdefinierte Schaltflächen 6x Programmierbare LEDs 1x RS485-Kommunikationsschnittstelle 8x 5 V Crowtail-Schnittstellen (2x analoge Schnittstellen, 2x digitale Schnittstellen, 2x UART, 2x I²C) 12x 5 V Universal-Stiftleiste IO 14x 3,3 V Universal-Pin-Header-IO 1x 3,3 V/5 V umschaltbarer SPI 1x 3,3 V/5 V umschaltbarer UART 3x 3,3 V/5 V umschaltbarer I²C Arbeitseingangsspannung USB 5 V/1 A Betriebstemperatur -10°C ~ 65°C Abmessungen 102 x 76,5 mm (L x B) Lieferumfang 1x Lora RA-08H Development Board 1x Lora Spring Antenne (868 MHz) 1x Lora-Gummiantenne (868 MHz) Downloads Wiki

    € 32,95

    Mitglieder € 29,66

  •  -20% SwiftIO – Swift-based Microcontroller Board

    SwiftIO - Swift-based Microcontroller Board

    SwiftIO bietet eine vollständige Swift-Compiler- und Framework-Umgebung, die auf dem Mikrocontroller ausgeführt wird. Das SwiftIO-Board ist eine kompakte elektronische Leiterplatte, auf der Swift auf dem Bare-Metal läuft, sodass Sie ein System erhalten, mit dem Sie alle Arten elektronischer Projekte steuern können. Merkmale NXP i.MX RT1052 Crossover-Prozessor mit ARM Cortex-M7-Kern bei 600 MHz 8 MB SPI-Flash, 32 MB SDRAM Integrierter DAPLink-Debugger Integrierter USB-zu-UART für serielle Kommunikation Integrierte RGB-LED Onboard-SD-Buchse 46x GPIO, 12x ADC, 14x PWM, 4x UART, 2x I²C, 2x SPI usw. Viele zusätzliche erweiterte Funktionen, um den Anforderungen fortgeschrittener Benutzer gerecht zu werden Zephyr RTOS-Unterstützung MadMachine IDE ist die führende integrierte Entwicklungsumgebung für SwiftIO, die es einfach macht, Swift-Code zu schreiben und auf das Board herunterzuladen.

    € 74,95€ 59,95

    Mitglieder identisch

  • PÚCA DSP ESP32 Development Board

    PUCA DSP ESP32 Entwicklungsboard

    PÚCA DSP ist ein Arduino-kompatibles Open-Source-ESP32-Entwicklungsboard für Audio- und digitale Signalverarbeitungsanwendungen (DSP) mit umfangreichen Audioverarbeitungsfunktionen. Es bietet Audioeingänge, -ausgänge, ein rauscharmes Mikrofonarray, eine integrierte Testlautsprecheroption, zusätzlichen Speicher, Batterielademanagement und ESD-Schutz – alles auf einer kleinen, Breadboard-freundlichen Platine. Synthesizer, Installationen, Voice UI und mehr PÚCA DSP kann für eine breite Palette von DSP-Anwendungen eingesetzt werden, unter anderem in den Bereichen Musik, Kunst, Kreativtechnik und adaptive Technologie. Beispiele aus dem Musikbereich sind digitale Musiksynthese, mobile Aufnahmen, Bluetooth-Lautsprecher, drahtlose Richtmikrofone und die Entwicklung intelligenter Musikinstrumente. Beispiele aus dem Bereich Kunst sind akustische Sensornetzwerke, Klangkunstinstallationen und Internet-Radioanwendungen. Beispiele aus dem Bereich der kreativen und adaptiven Technologie sind das Design von Sprachbenutzerschnittstellen (VUI) und Web-Audio für das Internet der Klänge. Kompaktes, integriertes Design PÚCA DSP wurde für den mobilen Einsatz konzipiert. In Verbindung mit einem externen 3,7-V-Akku kann er fast überall eingesetzt oder in nahezu jedes Gerät, Instrument oder jede Installation integriert werden. Sein Design entstand aus monatelangen Experimenten mit verschiedenen ESP32-Entwicklungsboards, DAC-Breakout-Boards, ADC-Breakout-Boards, Mikrofon-Breakout-Boards und Audio-Anschluss-Breakout-Boards, und – trotz seiner geringen Größe – schafft er es, all diese Funktionen in einem einzigen Board zu vereinen. Und das ohne Kompromisse bei der Signalqualität. Technische Daten Prozessor und Speicher Espressif ESP32 Pico D4 Prozessor 32-bit Dual-Core 80 MHz/160 MHz/240 MHz 4 MB SPI Flash mit 8 MB zusätzlichem PSRAM (Original Edition) Drahtloses 2,4-GHz-WLAN 802.11b/g/n Bluetooth BLE 4.2 3D-Antenne Audio Wolfson WM8978 Stereo-Audio-Codec Audio-Line-In am 3,5-mm-Stereoanschluss Audio-Kopfhörer-/Line-Ausgang am 3,5-mm-Stereoanschluss Stereo-Aux-Line-In, Audio-Mono-Out zum GPIO-Header geleitet 2x Knowles SPM0687LR5H-1 MEMS-Mikrofone ESD-Schutz an allen Audioeingängen und -ausgängen Unterstützung für Abtastraten von 8, 11,025, 12, 16, 22,05, 24, 32, 44,1 und 48 kHz 1-W-Lautsprechertreiber, auf GPIO-Header geroutet DAC SNR 98 dB, THD -84 dB ('A'-gewichtet bei 48 kHz) ADC SNR 95 dB, THD -84 dB (‘A’-gewichtet bei 48 kHz) Line-Eingangsimpedanz: 1 MOhm Line-Ausgangsimpedanz: 33 Ohm Formfaktor und Konnektivität Breadboard-freundlich 70 x 24 mm 11x GPIO-Pins mit 2,54 mm Rastermaß, mit Zugriff auf beide ESP32-ADC-Kanäle, JTAG und kapazitive Touch-Pins USB 2.0 über USB-Typ-C-Anschluss Stromversorgung 3,7/4,2 V Lithium-Polymer-Akku, USB oder externe 5 V DC-Stromquelle ESP32 und Audio-Codec können softwaregesteuert in Energiesparmodi versetzt werden Erkennung des Batteriespannungspegels ESD-Schutz am USB-Datenbus Downloads GitHub Datasheet Links Crowd Supply Campaign (includes FAQs) Hardware Overview Programming the Board The Audio Codec

    € 69,95

    Mitglieder € 62,96

  • 01Space RP2040-0.42LCD Development Board

    01Space RP2040-0.42LCD Entwicklungsboard

    Arduino-, MicroPython- und CircuitPython-kompatibles, kompaktes Entwicklungsboard mit Raspberry Pi RP2040 RP2040-0.42LCD ist ein leistungsstarkes Entwicklungsboard mit integriertem 0.42" LCD (70x40 Auflösung) mit flexiblen digitalen Schnittstellen. Es enthält den RP2040 Mikrocontroller-Chip des Raspberry Pi. Der RP2040 verfügt über einen Dual-Core Arm Cortex-M0+ Prozessor, der mit 133 MHz getaktet ist, mit 264 KB internem SRAM und 2 MB Flash-Speicher. Technische Spezifikationen SoC Raspberry Pi RP2040 Dual-Core Cortex-M0+ Mikrocontroller mit bis zu 125 MHz, mit 264 KB SRAM Speicher 2 MB SPI-Flash Display 0,42-Zoll-OLED USB 1x USB Typ-C Anschluss für Stromversorgung und Programmierung Expansion - Qwiic I²C-Anschluss- 7-polige und 8-polige Stiftleisten mit bis zu 11x GPIOs, 2x SPI, 2x I²C, 4x ADC, 1x UART, 5 V, 3,3 V, VBAT, GND Misc - Reset- und Boot-Tasten- RGB-LED, Betriebs-LED Stromversorgung - 5 V über USB-C-Anschluss oder Vin- VBAT-Pin für Batterieeingang- 3,3-V-Regler mit 500-mA-Spitzenleistung Dimensionen 23.5 x 18 mm Gewicht 2.5 g Downloads GitHub

    € 19,95

    Mitglieder € 17,96

  • Teensy 4.1 Development Board

    Teensy 4.1 Entwicklungsboard

    Nicht auf Lager

    Spezifikationen ARM Cortex-M7 mit 600 MHz 2 USB-Anschlüsse, beide 480 MBit/s 2048 KB Flash (64 KB reserviert für Wiederherstellung und EEPROM-Emulation) 1024 KB RAM (512 KB sind eng gekoppelt) 2 I2S digitales Audio 3 CAN-Bus (1 mit CAN FD) 1 S/PDIF-Digital-Audio 3 SPI, alle mit 16-Wörter-FIFO 1 SDIO (4 Bit) native SD 3 I2C, alle mit 4 Byte FIFO 7 seriell, alle mit 4 Byte FIFO 32 Allzweck-DMA-Kanäle 31 PWM-Pins 40 digitale Pins, alle unterbrechbar 14 analoge Pins, 2 ADCs auf dem Chip Zufallszahlengenerator Kryptografische Beschleunigung Pixelverarbeitungspipeline RTC für Datum/Uhrzeit Periphere Cross-Triggerung Programmierbares FlexIO Ein/Aus-Management der Stromversorgung USB-Host Über den USB-Host-Anschluss des Teensy 4.1 können Sie USB-Geräte wie Keyboards und MIDI-Musikinstrumente anschließen. Zum Anschließen eines USB-Geräts sind ein 5-poliger Header und ein USB-Hostkabel erforderlich. Sie können eines dieser Kabel auch zum Anschluss an die USB-Pins verwenden. Erinnerung Auf der Unterseite des Teensy 4.1 befinden sich Stellen zum Löten von zwei Speicherchips. Der kleinere Bereich ist für einen PSRAM-SOIC-8-Chip vorgesehen. Der größere Platz ist für QSPI-Flash-Speicher vorgesehen. Energieverbrauch &; Management Beim Betrieb mit 600 MHz verbraucht der Teensy 4.1 etwa 100 mA Strom und bietet Unterstützung für dynamische Taktskalierung. Im Gegensatz zu herkömmlichen Mikrocontrollern, bei denen eine Änderung der Taktrate zu falschen Baudraten und anderen Problemen führt, sind die Hardware- und Softwareunterstützung von Teensy 4.1 für Arduino-Timing-Funktionen von Teensy 4.1 darauf ausgelegt, dynamische Geschwindigkeitsänderungen zu ermöglichen. Serielle Baudraten, Audio-Streaming-Abtastraten und Arduino-Funktionen wie Delay() und Millis() sowie die Erweiterungen von Teensyduino wie IntervalTimer und ElapsedMillis funktionieren weiterhin korrekt, wenn die CPU ihre Geschwindigkeit ändert. Teensy 4.1 bietet auch eine Ausschaltfunktion. Durch den Anschluss eines Druckknopfes an den Ein/Aus-Pin kann die 3,3-V-Stromversorgung durch fünf Sekunden langes Drücken des Knopfes vollständig ausgeschaltet und durch kurzes Drücken des Knopfes wieder eingeschaltet werden. Wenn eine Knopfzelle an VBAT angeschlossen ist, behält die RTC des Teensy 4.1 auch bei ausgeschaltetem Strom weiterhin Datum und Uhrzeit bei. Teensy 4.1 kann auch übertaktet werden, deutlich über 600 MHz! Der ARM Cortex-M7 bringt viele leistungsstarke CPU-Funktionen auf eine präzise Echtzeit-Mikrocontroller-Plattform. Der Cortex-M7 ist ein Dual-Issue-Superscaler-Prozessor, was bedeutet, dass der M7 zwei Befehle pro Taktzyklus mit 600 MHz ausführen kann! Die gleichzeitige Ausführung zweier Anweisungen hängt natürlich von der Reihenfolge der Anweisungen und Register durch den Compiler ab. Frühe Benchmarks haben gezeigt, dass von Arduino kompilierter C++-Code dazu neigt, zwei Anweisungen in etwa 40 bis 50 % der Zeit auszuführen, wenn numerisch intensive Arbeiten mit Ganzzahlen und Zeigern ausgeführt werden. Der Cortex-M7 ist der erste ARM-Mikrocontroller, der die Verzweigungsvorhersage nutzt. Bei M4, Schleifen und anderem Code, der Verzweigungen verwendet, kann dies drei Taktzyklen dauern. Bei M7 wird dieser Overhead durch die Verzweigungsvorhersage entfernt, nachdem eine Schleife einige Male ausgeführt wurde, sodass der Verzweigungsbefehl in nur einem Taktzyklus ausgeführt werden kann. Tightly Coupled Memory ist eine einzigartige Funktion, die es dem Cortex-M7 ermöglicht, über ein Paar 64 Bit breiter Busse einen schnellen Einzelzykluszugriff auf den Speicher zu ermöglichen. Der ITCM-Bus bietet einen 64-Bit-Pfad zum Abrufen von Befehlen. Der DTCM-Bus besteht aus einem Paar von 32-Bit-Pfaden, wodurch der M7 bis zu zwei separate Speicherzugriffe im selben Zyklus durchführen kann. Diese extrem schnellen Busse unterscheiden sich vom AXI-Hauptbus des M7, der den Zugriff auf andere Speicher- und Peripheriegeräte ermöglicht. Auf 512 Speicher kann als eng gekoppelter Speicher zugegriffen werden. Teensyduino ordnet Ihren Arduino-Skizzencode automatisch dem ITCM und die gesamte Nicht-Malloc-Speichernutzung dem schnellen DTCM zu, es sei denn, Sie fügen neue Schlüsselwörter hinzu, um den optimierten Standard zu überschreiben. Speicher, der nicht auf den eng gekoppelten Bussen verwendet wird, ist für den DMA-Zugriff durch Peripheriegeräte optimiert. Da der Großteil des M7-Speicherzugriffs über die beiden eng gekoppelten Busse erfolgt, haben leistungsstarke DMA-basierte Peripheriegeräte hervorragenden Zugriff auf Nicht-TCM-Speicher für hocheffiziente I/O. Der Cortex-M7-Prozessor von Teensy 4.1 enthält eine Gleitkommaeinheit (FPU), die sowohl 64-Bit „Double“ als auch 32-Bit „Float“ unterstützt. Mit M4s FPU auf Teensy 3.5 und 3.6 sowie Atmel SAMD51-Chips wird nur 32-Bit-Float-Hardware beschleunigt. Jede Verwendung von Double-, Double-Funktionen wie log(), sin(), cos() bedeutet langsame, softwareimplementierte Mathematik. Teensy 4.1 führt all dies mit FPU-Hardware aus. Weitere Informationen finden Sie hier auf der offiziellen Teensy 4.1-Seite.

    Nicht auf Lager

    € 39,95

    Mitglieder € 35,96

  • iCEBreaker FPGA Development Board

    iCEBreaker FPGA Development Board

    Das iCEBreaker FPGA-Board ist ein Open-Source-FPGA-Entwicklungsboard für den Bildungsbereich. Der iCEBreaker eignet sich hervorragend für Kurse und Workshops, in denen die Verwendung des Open-Source-FPGA-Designflows durch Yosys, nextpnr, IceStorm, Icarus Verilog, Amaranth HDL und andere vermittelt wird. Dies bedeutet, dass das Board kostengünstig ist und über eine Reihe nützlicher Funktionen verfügt, die die Gestaltung interessanter Kurse und Workshop-Übungen ermöglichen. Gleichzeitig ermöglicht es dem Benutzer, die proprietären Tools des Anbieters zu verwenden, wenn er dies wünscht. Nach dem Workshop können die Platinen problemlos als Entwicklungsplatine verwendet werden, da die meisten GPIOs freigelegt, herausgebrochen und über Jumper auf der Rückseite der Platine konfigurierbar sind. Es gibt nur eine minimale Anzahl an Tasten und LEDs, die nicht abgenommen und für eigene Zwecke verwendet werden können. Dokumentation Workshop

    € 89,95

    Mitglieder € 80,96

Login

Passwort vergessen?

Sie haben noch kein Konto?
Konto erstellen