Topseller

45 Produkte


  • Arduino Uno R4 WiFi

    Arduino Arduino Uno R4 WiFi

    Der Arduino Uno R4 wird vom 32-bit-ARM-Cortex-M4-Prozessor Renesas RA4M1 angetrieben, der eine deutliche Steigerung der Verarbeitungsleistung, des Speichers und der Funktionalität bietet. Die WiFi-Version wird zusätzlich zum RA4M1 mit einem ESP32-S3 WiFi-Modul geliefert, was die kreativen Möglichkeiten für Maker und Ingenieure erweitert. Der Uno R4 Minima ist eine kostengünstige Option für diejenigen, die die zusätzliche Funktionen nicht benötigen. Der Arduino Uno R4 läuft mit 48 MHz, was eine dreifache Steigerung gegenüber dem beliebten Uno R3 bedeutet. Außerdem wurde der SRAM von 2 kB auf 32 kB und der Flash-Speicher von 32 kB auf 256 kB erweitert, um komplexere Projekte zu unterstützen. Als Reaktion auf das Feedback der Community ist der USB-Anschluss jetzt USB-C, und die maximale Versorgungsspannung wurde auf 24 V angehoben und das thermische Design verbessert. Das Board verfügt über einen CAN-Bus und einen SPI-Port, so dass Anwender den Verdrahtungsaufwand reduzieren und durch den Anschluss mehrerer Shields parallele Aufgaben durchführen können. Ein 12-bit-Analog-DAC ist ebenfalls auf dem Board vorhanden. Der Arduino Uno R4 ist in 2 Versionen (Minima und WiFi) erhältlich und bietet die folgenden neuen Funktionen im Vergleich zum Uno R3: Arduino Uno R4 Minima Arduino Uno R4 WiFi USB-C-Anschluss USB-C-Anschluss RA4M1 von Renesas (Cortex-M4) RA4M1 von Renesas (Cortex-M4) HID-Gerät (emuliert eine Maus oder eine Tastatur) HID-Gerät (emuliert eine Maus oder eine Tastatur) Verbesserte Stromversorgung (bis zu 24 V über VIN) Verbesserte Stromversorgung (bis zu 24 V über VIN) CAN-Bus CAN-Bus DAC (12-bit) DAC (12-bit) Op amp Op amp   WiFi/Bluetooth LE   Vollständig adressierbare LED-Matrix (12x8)   Qwiic I²C-Anschluss   RTC (mit Unterstützung für eine Pufferbatterie)   Diagnose von Laufzeitfehlern Modellvergleich   Uno R3 Uno R4 Minima Uno R4 WiFi Mikrocontroller Microchip ATmega328P (8-bit AVR RISC) Renesas RA4M1 (32-bit ARM Cortex-M4) Renesas RA4M1 (32-bit ARM Cortex-M4) Betriebsspannung 5 V 5 V 5 V Eingangsspannung 6-20 V 6-24 V 6-24 V Digitale I/O-Pins 14 14 14 PWM Digitale I/O-Pins 6 6 6 Analoge Eingangs-Pins 6 6 6 Gleichstrom pro I/O-Pin 20 mA 8 mA 8 mA Taktgeschwindigkeit 16 MHz 48 Mhz 48 Mhz Flash-Speicher 32 KB 256 KB 256 KB SRAM 2 KB 32 KB 32 KB USB USB-B USB-C USB-C DAC (12-bit) – 1 1 SPI 1 2 2 I²C 1 2 2 CAN – 1 1 Op amp – 1 1 SWD – 1 1 RTC – – 1 Qwiic I²C-Anschluss – – 1 LED-Matrix – – 12x8 (96 rote LEDs) LED_BUILTIN 13 13 13 Abmessungen 68,6 x 53,4 mm 68,9 x 53,4 mm 68,9 x 53,4 mm Downloads Datasheet Schematics

    € 29,95

    Mitglieder identisch

  • Arduino Uno Rev3

    Arduino Arduino Uno Rev3

    Arduino Uno ist ein Open-Source-Mikrocontroller-Board basierend auf einem ATmega328P. Es hat 14 digitale Ein-/Ausgangs-Pins (von denen 6 als PWM-Ausgänge verwendet werden können), 6 analoge Eingänge, einen 16-MHz-Keramik-Resonator (CSTCE16M0V53-R0), einen USB-Anschluss, eine Stromversorgungsbuchse, einen ICSP-Header und einen Reset-Taster. Es enthält alles, was für den Betrieb des Mikrocontrollers benötigt wird; schließen Sie es einfach mit einem USB-Kabel an einen Computer an oder versorgen Sie es mit einem AC-zu-DC-Adapter oder einer Batterie, um loszulegen. Sie können mit Ihrem Uno basteln, ohne sich allzu große Sorgen machen zu müssen, etwas falsch zu machen. Im schlimmsten Fall können Sie den Chip für ein paar Dollar austauschen und noch einmal von vorne anfangen. "Uno" bedeutet auf Italienisch "eins" und wurde gewählt, um die Veröffentlichung der Arduino-Software (IDE) 1.0 zu markieren. Das Uno-Board und die Version 1.0 der Arduino Software (IDE) waren die Referenzversionen von Arduino, die nun zu neueren Versionen weiterentwickelt wurden. Das Uno-Board ist das erste in einer Reihe von USB-Arduino-Boards und das Referenzmodell für die Arduino-Plattform; eine umfangreiche Liste aktueller, vergangener oder veralteter Boards finden Sie im Arduino-Index der Boards. Technische Daten Mikrocontroller ATmega328P Betriebsspannung 5 V Eingangsspannung (empfohlen) 7-12 V Eingangsspannung (maximal) 6-20 V Digitale I/O-Pins 14 (davon 6 mit PWM-Ausgang) Digitale I/O-Pins mit PWM 6 Analoge Eingänge 6 DC-Strom pro I/O-Pin 20 mA DC-Strom für 3,3 V Pin 50 mA Flashspeicher 32 KB (ATmega328P), davon 0,5 KB vom Bootloader belegt SRAM 2 KB (ATmega328P) EEPROM 1 KB (ATmega328P) Taktgeschwindigkeit 16 MHz LED_BUILTIN 13 Abmessungen 68,6 x 53,4 mm Gewicht 25 g

    € 24,95

    Mitglieder identisch

  • Arduino Nano ESP32 with Headers

    Arduino Arduino Nano ESP32 mit Header

    Der Arduino Nano ESP32 (mit und ohne Header) ist ein Nano-Formfaktor-Board, das auf dem ESP32-S3 (eingebettet im NORA-W106-10B von u-blox) basiert. Es ist das erste Arduino-Board, das vollständig auf einem ESP32 basiert. Es bietet Wi-Fi, Bluetooth LE, Debugging über natives USB in der Arduino-IDE sowie einen geringen Stromverbrauch. Der Nano ESP32 ist kompatibel mit der Arduino IoT Cloud und unterstützt MicroPython. Es ist ein ideales Board für den Einstieg in die IoT-Entwicklung. Features Geringer Platzbedarf: Dieses Board wurde unter Berücksichtigung des bekannten Nano-Formfaktors entwickelt und ist aufgrund seiner kompakten Größe perfekt für die Einbettung in eigenständige Projekte geeignet. Wi-Fi und Bluetooth: Nutzen Sie die Leistung des im IoT-Bereich bekannten ESP32-S3-Mikrocontrollers mit vollständiger Arduino-Unterstützung für drahtlose und Bluetooth-Konnektivität. Arduino- und MicroPython-Unterstützung: Wechseln Sie mit ein paar einfachen Schritten nahtlos zwischen Arduino- und MicroPython-Programmierung. Arduino IoT Cloud-kompatibel: Erstellen Sie schnell und einfach IoT-Projekte mit nur wenigen Codezeilen. Das Setup kümmert sich um die Sicherheit und ermöglicht Ihnen die Überwachung und Steuerung Ihres Projekts von überall aus mit der Arduino IoT Cloud-App. HID-Unterstützung: Simulieren Sie HID-Geräte wie Tastaturen oder Mäuse über USB und eröffnen Sie so neue Möglichkeiten für die Interaktion mit Ihrem Computer. Technische Daten Mikrocontroller u-blox NORA-W106 (ESP32-S3) USB-Anschluss USB-C Pins Eingebaute LED-Pins 13 Eingebaute RGB-LED-Pins 14-16 Digitale I/O-Pins 14 Analoge Eingangs-Pins 8 PWM-Pins 5 Externe Interrupts Alle digitalen Pins Konnektivität Wi-Fi u-blox NORA-W106 (ESP32-S3) Bluetooth u-blox NORA-W106 (ESP32-S3) Kommunikation UART 2x I²C 1x, A4 (SDA), A5 (SCL) SPI D11 (COPI), D12 (CIPO), D13 (SCK). Verwendung eines beliebigen GPIO für Chip Select (CS) Stromversorgung I/O-Spannung 3,3 V Eingangsspannung (nominal) 6-21 V Quellstrom pro I/O-Pin 40 mA Sinkstrom pro I/O-Pin 28 mA Taktrate Prozessor Bis zu 240 MHz Speicher ROM 384 kB SRAM 512 kB Externer Flash 128 Mbit (16 MB) Abmessungen 18 x 45 mm Downloads Datasheet Schematics

    € 24,95

    Mitglieder € 22,46

  • Arduino Nano RP2040 Connect met Headers

    Arduino Arduino Nano RP2040 Connect mit Header

    Der Arduino Nano RP2040 Connect ist ein RP2040-basiertes Arduino-Board, das mit Wi-Fi (802.11b/g/n) und Bluetooth 4.2 ausgestattet ist. Neben der drahtlosen Konnektivität verfügt es über ein Mikrofon für Sound und Sprachaktivierung und einen 6-achsigen intelligenten Bewegungssensor mit KI-Fähigkeiten. Über 22 GPIO-Ports lassen z. B. Relais, Motoren und LEDs steuern sowie Schalter und andere Sensoren auslesen. Programmspeicher ist mit 16 MB Flash-Speicher reichlich vorhanden, mehr als genug Platz, um viele Webseiten oder andere Daten zu speichern. Technische Daten Mikrocontroller Raspberry Pi RP2040 USB-Anschluss Micro USB Pins Built-in LED-Pins 13 Digitale I/O-Pins 20 Analoge Input-Pins 8 PWM-Pins 20 (Except A6, A7) Externe Interrupts 20 (Except A6, A7) Konnektivität Wi-Fi Nina W102 uBlox Modul Bluetooth Nina W102 uBlox Modul Sicheres Element ATECC608A-MAHDA-T Crypto IC Sensoren IMU LSM6DSOXTR (6-achsig) Mikrofon MP34DT05 Kommunikation UART Yes I²C Yes SPI Yes Stromversorgung Schaltungsbestriebsspannung 3,3 V Eingangsspannung (VIN) 5-21 V DC-Strom pro I/O-Pin 4 mA Taktgeschwindigkeit Prozessor 133 MHz Speicher AT25SF128A-MHB-T 16 MB Flash IC Nina W102 uBlox Modul 448 KB ROM, 520 KB SRAM, 16 MB Flash Länge 45 x 18 mm Gewicht 6 g Downloads Schaltplan Pinout Datenblatt

    € 29,95

    Mitglieder € 26,96

  • Arduino Uno R4 Minima

    Arduino Arduino Uno R4 Minima

    Der Arduino Uno R4 wird vom 32-bit-ARM-Cortex-M4-Prozessor Renesas RA4M1 angetrieben, der eine deutliche Steigerung der Verarbeitungsleistung, des Speichers und der Funktionalität bietet. Die WiFi-Version wird zusätzlich zum RA4M1 mit einem ESP32-S3 WiFi-Modul geliefert, was die kreativen Möglichkeiten für Maker und Ingenieure erweitert. Der Uno R4 Minima ist eine kostengünstige Option für diejenigen, die die zusätzliche Funktionen nicht benötigen. Der Arduino Uno R4 läuft mit 48 MHz, was eine dreifache Steigerung gegenüber dem beliebten Uno R3 bedeutet. Außerdem wurde der SRAM von 2 kB auf 32 kB und der Flash-Speicher von 32 kB auf 256 kB erweitert, um komplexere Projekte zu unterstützen. Als Reaktion auf das Feedback der Community ist der USB-Anschluss jetzt USB-C, und die maximale Versorgungsspannung wurde auf 24 V angehoben und das thermische Design verbessert. Das Board verfügt über einen CAN-Bus und einen SPI-Port, so dass Anwender den Verdrahtungsaufwand reduzieren und durch den Anschluss mehrerer Shields parallele Aufgaben durchführen können. Ein 12-bit-Analog-DAC ist ebenfalls auf dem Board vorhanden. Der Arduino Uno R4 ist in 2 Versionen (Minima und WiFi) erhältlich und bietet die folgenden neuen Funktionen im Vergleich zum Uno R3: Arduino Uno R4 Minima Arduino Uno R4 WiFi USB-C-Anschluss USB-C-Anschluss RA4M1 von Renesas (Cortex-M4) RA4M1 von Renesas (Cortex-M4) HID-Gerät (emuliert eine Maus oder eine Tastatur) HID-Gerät (emuliert eine Maus oder eine Tastatur) Verbesserte Stromversorgung (bis zu 24 V über VIN) Verbesserte Stromversorgung (bis zu 24 V über VIN) CAN-Bus CAN-Bus DAC (12-bit) DAC (12-bit) Op amp Op amp   WiFi/Bluetooth LE   Vollständig adressierbare LED-Matrix (12x8)   Qwiic I²C-Anschluss   RTC (mit Unterstützung für eine Pufferbatterie)   Diagnose von Laufzeitfehlern Modellvergleich   Uno R3 Uno R4 Minima Uno R4 WiFi Mikrocontroller Microchip ATmega328P (8-bit AVR RISC) Renesas RA4M1 (32-bit ARM Cortex-M4) Renesas RA4M1 (32-bit ARM Cortex-M4) Betriebsspannung 5 V 5 V 5 V Eingangsspannung 6-20 V 6-24 V 6-24 V Digitale I/O-Pins 14 14 14 PWM Digitale I/O-Pins 6 6 6 Analoge Eingangs-Pins 6 6 6 Gleichstrom pro I/O-Pin 20 mA 8 mA 8 mA Taktgeschwindigkeit 16 MHz 48 Mhz 48 Mhz Flash-Speicher 32 KB 256 KB 256 KB SRAM 2 KB 32 KB 32 KB USB USB-B USB-C USB-C DAC (12-bit) – 1 1 SPI 1 2 2 I²C 1 2 2 CAN – 1 1 Op amp – 1 1 SWD – 1 1 RTC – – 1 Qwiic I²C-Anschluss – – 1 LED-Matrix – – 12x8 (96 rote LEDs) LED_BUILTIN 13 13 13 Abmessungen 68,6 x 53,4 mm 68,9 x 53,4 mm 68,9 x 53,4 mm Downloads Datasheet Schematics

    € 19,95

    Mitglieder identisch

  • Arduino Giga R1 WiFi

    Arduino Arduino Giga R1 WiFi

    Das Arduino Giga R1 WiFi bringt die Leistung des STM32H7 in den gleichen Formfaktor wie die beliebten Mega und Due und ist das erste Mega-Board mit integrierter Wi-Fi- und Bluetooth-Konnektivität. Das Board bietet 76 digitale Ein-/Ausgänge (12 mit PWM-Fähigkeit), 14 analoge Eingänge und 2 analoge Ausgänge (DAC), die alle über Stiftleisten leicht zugänglich sind. Der STM32-Mikroprozessor mit Dual-Core Cortex-M7 und Cortex-M4 ermöglicht Ihnen zusammen mit dem integrierten Speicher und der Audiobuchse maschinelles Lernen und Signalverarbeitung. Mikrocontroller (STM32H747XI) Mit diesem Dual-Core-32-Bit-Mikrocontroller können Sie zwei Gehirne miteinander kommunizieren lassen (einen Cortex-M7 mit 480 MHz und einen Cortex-M4 mit 240 MHz). Sie können sogar Micropython auf dem einen und Arduino auf dem anderen ausführen. Drahtlose Kommunikation (Murata 1DX) Egal, ob Sie Wi-Fi oder Bluetooth bevorzugen, der Giga R1 WiFi hat alles, was Sie brauchen. Sie können sich sogar schnell mit der Arduino IoT Cloud erbinden und Ihr Projekt aus der Ferne verfolgen. Und wenn Sie sich Sorgen um die Sicherheit der Kommunikation machen, hat der ATECC608A alles unter Kontrolle. Hardware-Anschlüsse und Kommunikation In Anlehnung an den Arduino Mega und den Arduino Due verfügt der Giga R1 WiFi über 4x UARTs (Hardware Serial Ports), 3x I²C-Ports (1 mehr als bei den Vorgängern), 2x SPI-Ports (1 mehr als bei den Vorgängern), 1x FDCAN. GPIOs und zusätzliche Pins Aufgrund des gleichen Formfaktor wie Mega und Due ist es sehr einfach, Ihre benutzerdefinierten Shields an das Giga R1 WiFi anzupassen (denken Sie daran, dass dieses Board mit 3,3 V arbeitet!). Außerdem wurden wurden zusätzliche Header, so dass die Gesamtzahl der GPIO-Pins jetzt 76 beträgt, und zwei neue Pins hinzugefügt: ein VRTC, an das man eine Batterie anschließen kann, um das RTC laufen zu lassen, während das Board ausgeschaltet ist, und einen OFF-Pin, mit dem man das Board abschalten kann. Anschlüsse Das Giga R1 WiFi verfügt über zusätzliche Anschlüsse, die die Erstellung Ihres Projekts ohne zusätzliche Hardware erleichtern. Dieses Board hat: USB-A-Anschluss, geeignet zum Hosten von USB-Sticks, anderen Massenspeichergeräten und HID-Geräten wie Tastatur oder Maus. 3,5-mm-Eingangs-/Ausgangsbuchse verbunden mit DAC0, DAC1 und A7. USB-C zur Stromversorgung und Programmierung des Boards sowie zur Simulation eines HID-Geräts wie Maus oder Tastatur. Jtag-Anschluss, 2x5 1,27 mm. 20-poliger Arducam-Kameraanschluss. Unterstützung für höhere Spannung: Im Vergleich zu seinen Vorgängern, die bis zu 12 V unterstützen, kann das Giga R1 WiFi einen Bereich von 6 bis 24 V verarbeiten. Technische Daten Mikrocontroller STM32H747XI Dual Cortex-M7+M4 32-bit low power ARM MCU (Datasheet) Funkmodul Murata 1DX Dual WiFi 802.11b/g/n 65 Mbps und Bluetooth (Datasheet) Sicheres Element ATECC608A-MAHDA-T (Datasheet) USB USB-C Programmierung Anschluss / HID USB-A Host (Freigabe mit PA_15) Pins Digitale I/O-Pins 76 Analoge Eingangspins 12 DAC 2 (DAC0/DAC1) PWM pins 12 Misc VRT & OFF Pin Kommunikation UART 4x I²C 3x SPI 2x CAN Ja (erfordert einen externen Transceiver) Anschlüsse Kamera I²C + D54-D67 Display D1N, D0N, D1P, D0P, CKN, CKP + D68-D75 Audio Jack DAC0, DAC1, A7 Stromversorgung Betriebsspannung 3,3 V Eingangsspannung (VIN) 6-24 V DC-Strom pro I/O-Pin 8 mA Taktrate Cortex-M7 480 MHz Cortex-M4 240 MHz Speicher STM32H747XI 2 MB Flash, 1 MB RAM Abmessungen 53 x 101 mm Downloads Datasheet Schematics Pinout

    € 89,95

    Mitglieder € 80,96

  • Arduino Nano ESP32

    Arduino Arduino Nano ESP32

    Der Arduino Nano ESP32 (mit und ohne Header) ist ein Nano-Formfaktor-Board, das auf dem ESP32-S3 (eingebettet im NORA-W106-10B von u-blox) basiert. Es ist das erste Arduino-Board, das vollständig auf einem ESP32 basiert. Es bietet Wi-Fi, Bluetooth LE, Debugging über natives USB in der Arduino-IDE sowie einen geringen Stromverbrauch. Der Nano ESP32 ist kompatibel mit der Arduino IoT Cloud und unterstützt MicroPython. Es ist ein ideales Board für den Einstieg in die IoT-Entwicklung. Features Geringer Platzbedarf: Dieses Board wurde unter Berücksichtigung des bekannten Nano-Formfaktors entwickelt und ist aufgrund seiner kompakten Größe perfekt für die Einbettung in eigenständige Projekte geeignet. Wi-Fi und Bluetooth: Nutzen Sie die Leistung des im IoT-Bereich bekannten ESP32-S3-Mikrocontrollers mit vollständiger Arduino-Unterstützung für drahtlose und Bluetooth-Konnektivität. Arduino- und MicroPython-Unterstützung: Wechseln Sie mit ein paar einfachen Schritten nahtlos zwischen Arduino- und MicroPython-Programmierung. Arduino IoT Cloud-kompatibel: Erstellen Sie schnell und einfach IoT-Projekte mit nur wenigen Codezeilen. Das Setup kümmert sich um die Sicherheit und ermöglicht Ihnen die Überwachung und Steuerung Ihres Projekts von überall aus mit der Arduino IoT Cloud-App. HID-Unterstützung: Simulieren Sie HID-Geräte wie Tastaturen oder Mäuse über USB und eröffnen Sie so neue Möglichkeiten für die Interaktion mit Ihrem Computer. Technische Daten Mikrocontroller u-blox NORA-W106 (ESP32-S3) USB-Anschluss USB-C Pins Eingebaute LED-Pins 13 Eingebaute RGB-LED-Pins 14-16 Digitale I/O-Pins 14 Analoge Eingangs-Pins 8 PWM-Pins 5 Externe Interrupts Alle digitalen Pins Konnektivität Wi-Fi u-blox NORA-W106 (ESP32-S3) Bluetooth u-blox NORA-W106 (ESP32-S3) Kommunikation UART 2x I²C 1x, A4 (SDA), A5 (SCL) SPI D11 (COPI), D12 (CIPO), D13 (SCK). Verwendung eines beliebigen GPIO für Chip Select (CS) Stromversorgung I/O-Spannung 3,3 V Eingangsspannung (nominal) 6-21 V Quellstrom pro I/O-Pin 40 mA Sinkstrom pro I/O-Pin 28 mA Taktrate Prozessor Bis zu 240 MHz Speicher ROM 384 kB SRAM 512 kB Externer Flash 128 Mbit (16 MB) Abmessungen 18 x 45 mm Downloads Datasheet Schematics

    € 23,95

    Mitglieder € 21,56

  • Offizielles Arduino USB-C Kabel (2-in-1)

    Arduino Offizielles Arduino USB-C Kabel (2-in-1)

    Jetzt können Sie Ihre Arduino-Boards mit dem offiziellen Arduino-USB-Kabel verbinden. Über einen USB-C-auf-USB-C-Anschluss mit USB-A-Adapter können Sie mit diesem Daten-USB-Kabel Ihre Arduino-Boards ganz einfach mit Ihrem Programmiergerät verbinden. Das Arduino-USB-Kabel verfügt über einen geflochtenen Nylonmantel in den typischen Arduino-Farben Weiß und Blaugrün. Die Anschlüsse verfügen über ein Aluminiumgehäuse, das Ihr Kabel vor Beschädigungen schützt und gleichzeitig cool aussieht. Länge: 100 cm Alugehäuse mit Logo Geflochtener Nylonmantel in Weiß und Blaugrün

    € 12,95

    Mitglieder € 11,66

  • Arduino Nano

    Arduino Arduino Nano

    Technische Daten Mikrocontroller ATmega328 Betriebsspannung (Logikpegel) 5 V Eingangsspannung (empfohlen) 7-12 V Eingangsspannung (Grenzwerte) 6-20 V Digitale E/A-Pins 14 (davon 6 mit PWM-Ausgang) Analogeingangs-Pins 8 DC-Strom pro I/O-Pin 40 mA Flash-Speicher 16 KB (ATmega168) oder 32 KB (ATmega328), davon 2 KB für den Bootloader SRAM 1 KB (ATmega168) oder 2 KB (ATmega328) EEPROM 512 bytes (ATmega168) oder 1 KB (ATmega328) Taktfrequenz 16 MHz Abmessungen 18 x 45 mm Stromversorgung Der Arduino Nano kann über den Mini-B-USB-Anschluss, eine ungeregelte externe 6-20-V-Stromversorgung (Pin 30) oder eine geregelte externe 5-V-Stromversorgung (Pin 27) mit Strom versorgt werden. Die Stromquelle wird automatisch auf die höchste Spannungsquelle eingestellt. Speicher Der ATmega168 verfügt über 16 KB Flash-Speicher zum Speichern von Code (davon 2 KB für den Bootloader), 1 KB SRAM und 512 Byte EEPROM Der ATmega328 verfügt über 32 KB Flash-Speicher zum Speichern von Code (2 KB werden auch für den Bootloader verwendet), 2 KB SRAM und 1 KB EEPROM. Input und Output Jeder der 14 digitalen Pins des Nano kann mit den Funktionen pinMode(), digitalWrite(), und digitalRead() als Eingang oder Ausgang verwendet werden. Jeder Pin kann maximal 40 mA liefern oder empfangen und hat einen internen Pull-up-Widerstand (standardmäßig ausgeschaltet) von 20-50 kOhm. Kommunikation Der Arduino Nano verfügt über eine Reihe von Möglichkeiten zur Kommunikation mit einem Computer, einem anderen Arduino oder anderen Mikrocontrollern. Der ATmega168 und ATmega328 bieten eine serielle UART-TTL-Kommunikation (5 V), die an den digitalen Pins 0 (RX) und 1 (TX) verfügbar ist. Ein FTDI FT232RL auf dem Board leitet diese serielle Kommunikation über USB weiter, und die FTDI-Treiber (in der Arduino-Software enthalten) stellen der Software auf dem Computer einen virtuellen Com-Port zur Verfügung. Die Arduino-Software enthält einen seriellen Monitor, mit dem einfache Textdaten zum und vom Arduino-Board gesendet werden können. Die RX- und TX-LEDs auf dem Board blinken, wenn Daten über den FTDI-Chip und die USB-Verbindung zum Computer übertragen werden (jedoch nicht bei serieller Kommunikation über die Pins 0 und 1). Eine SoftwareSerial-Bibliothek ermöglicht die serielle Kommunikation über jeden der digitalen Pins des Nano. Programmierung Der Arduino Nano kann mit der Arduino-Software (Download) programmiert werden. Der ATmega168 oder ATmega328 auf dem Arduino Nano verfügt über einen Bootloader, mit dem Sie neuen Code ohne ein externes Hardware-Programmiergerät hochladen können. Er kommuniziert mit dem ursprünglichen STK500-Protokoll (Referenz, C-Header-Dateien). Sie können den Bootloader auch umgehen und den Mikrocontroller über den ICSP-Header (In-Circuit Serial Programming) programmieren, indem Sie Arduino ISP oder ein ähnliches Programm verwenden; Einzelheiten finden Sie in dieser Anleitung. Automatischer (Software-)Reset Anstatt den Reset-Knopf vor einem Upload physisch zu betätigen, ist der Arduino Nano so konzipiert, dass er durch eine auf einem angeschlossenen Computer laufende Software zurückgesetzt werden kann. Eine der Hardware-Flusskontrollleitungen (DTR) desFT232RL ist über einen 100 nF-Kondensator mit der Reset-Leitung des ATmega168 oder ATmega328 verbunden. Wenn diese Leitung aktiviert wird (low), fällt die Reset-Leitung lange genug ab, um den Chip zurückzusetzen. Die Arduino-Software nutzt diese Fähigkeit, um das Hochladen von Code durch einfaches Drücken der Upload-Taste in der Arduino-Umgebung zu ermöglichen. Dies bedeutet, dass der Bootloader ein kürzeres Timeout haben kann, da das Absenken von DTR gut mit dem Beginn des Uploads koordiniert werden kann.

    € 22,95

    Mitglieder € 20,66

  • Arduino Pro Portenta H7

    Arduino Arduino Pro Portenta H7

    Portenta H7 führt gleichzeitig High-Level-Code zusammen mit Echtzeit-Tasks aus. Das Design umfasst zwei Prozessoren, die Aufgaben parallel ausführen können. Zum Beispiel ist es möglich, Arduino-kompilierten Code zusammen mit MicroPython auszuführen und beide Kerne miteinander kommunizieren zu lassen. Mit Portenta können sie auf zwei Arten arbeiten, es kann entweder wie jedes andere Embedded-Mikrocontroller-Board oder als Hauptprozessor eines Embedded-Computers verwendet werden. Mit Hilfe des Portenta Carrier-Boards, können sie Ihren H7 in einen eNUC-Computer verwandeln und alle physischen H7-Schnittstellen freilegen. Portenta kann problemlos Prozesse ausführen, die mit TensorFlow Lite erstellt wurden. Sie könnten auf einen der Kerne einen Computer-Vision-Algorithmus laufen lassen, während auf dem Anderen Low-Level-Operationen wie die Steuerung eines Motors laufen oder die Bereitstellung einer Benutzeroberfläche realisiert werden könnte. Verwenden Sie Portenta, wenn Leistung entscheidend ist. Mögliche Einsatzgebiete im Bereich von: High-End-Industriemaschinen Laborausstattung Computer Vision oder Bilderkennung SPS Industrietaugliche Benutzeroberflächen Robotik-Steuerung Spezialanwendungen Hochgeschwindigkeits-Anwendungen (ms) Zwei parallele Kerne Der Hauptprozessor von H7 ist der Dual-Core-STM32H747 mit einem Cortex M7 mit 480 MHz und einem Cortex-M4 mit 240 MHz. Die beiden Kerne kommunizieren über einen Remote Procedure Call-Mechanismus, der das nahtlose Aufrufen von Funktionen auf dem anderen Prozessor ermöglicht. Beide Prozessoren teilen sich alle In-Chip-Peripherie und ermöglichen somit: Arduino-Programme (Sketches) zusätzlich zum ARM Mbed OS Native Mbed-Anwendungen MicroPython / JavaScript über einen Interpreter TensorFlow Lite Grafikbeschleuniger Eines der wohl aufregendsten Features des Portenta H7 ist die Möglichkeit, einen externen Monitor anzuschließen, um einen eigenen dedizierten Embedded-Computer mit Benutzeroberfläche zu bauen. Möglich wird dies durch die On-Chip-GPU des STM32H747-Prozessors, den Chrom-ART Accelerator. Neben der GPU enthält der Chip einen dedizierten JPEG-Encoder und Decoder. Ein neuer Standard für Pinbelegungen Die Portenta-Familie bringt zwei 80-polige High-Density Steckverbinder an der Unterseite der Platine an. Damit erhöht sich die Skalierbarkeit für eine Vielzahl von Anwendungen, indem Sie einfach Ihr Portenta-Board auf das für Ihre Anforderungen geeignete aufrüsten. Verbindungsmöglichkeiten Das integrierte Wireless-Modul ermöglicht die gleichzeitige Anwendung von WiFi- und Bluetooth-Verbindungen. Die WiFi-Schnittstelle kann als Access Point, als Station oder als Dual-Mode-Simultan-AP/STA betrieben werden und kann eine Übertragungsrate von bis zu 65 Mbit/s verarbeiten. Die Bluetooth-Schnittstelle unterstützt Bluetooth Classic und BLE. Es ist auch möglich, eine Reihe verschiedener kabelgebundener Schnittstellen wie UART, SPI, Ethernet oder I²C verfügbar zu machen, sowohl über einige der MKR-Steckverbinder als auch über das neue industrielle 80-polige Arduino-Steckverbinderpaar. USB-C-Mehrzweckstecker Der Programmieranschluss des Boards ist ein USB-C-Anschluss, der auch zur Stromversorgung des Boards, als USB-Hub, zum Anschließen eines DisplayPort-Monitors oder zur Stromversorgung von OTG-angeschlossenen Geräten verwendet werden kann. Technische Daten Arduino Portenta H7 basiert auf dem Mikrocontroller STM32H747, Serie X Mikrocontroller STM32H747XI dual Cortex-M7+M4 32-bit low power ARM MCU (Datenblatt) Radio-Modul Murata 1DX dual WiFi 802.11b/g/n 65 Mbps und Bluetooth (Bluetooth Low Energy. 5 via Cordio stack, Bluetooth Low Energy 4.2 via Arduino Stack) (Datenblatt) Sicheres Element (Standard) NXP SE0502 (Datenblatt) Stromversorgung (USB/VIN) 5 V Unterstützte Akku Li-Po Single Cell, 3,7 V, 700 mAh Minimum (integrierter Auflader) Betriebsspannung 3,3 V Displayverbindung MIPI DSI Host & MIPI D-PHY als Schnittstelle zu großen Displays mit geringer Pinanzahl GPU Chrom-ART Grafik-Hardware-Beschleuniger Timer 22x Timer und Watchdogs UART 4x Ports (2 mit Flow control) Ethernet PHY 10 / 100 Mbps (nur über Expansionsport) SD-Karte Schnittstelle für SD-Kartenanschluss (nur über Erweiterungsport) Betriebstemperatur -40 °C bis +85 °C MKR-Header Verwenden Sie einen der vorhandenen industriellen MKR-Schilder. Steckverbinder mit hoher Dichte Zwei 80-Pin-Anschlüsse legen alle Peripheriegeräte des Boards für andere Geräte frei Camera-Interface 8-bit, bis 80 MHz ADC 3x ADCs mit 16-bit max. Auflösung (bis zu 36 Kanäle, bis zu 3,6 MSPS) DAC 2x 12-bit DAC (1 MHz) USB-C Host / Device, DisplayPort out, High / Full Speed, Stromzufuhr Downloads Datasheet Schematics Pinout

    € 129,95

    Mitglieder € 116,96

  • Arduino Uno Mini (Limited Editie)

    Arduino Arduino Uno Mini (Limited Edition)

    Arduino feiert das Uno-Board mit einer miniaturisierten Limited Edition Das beliebteste Entwicklungsboard der Welt ist mini geworden. Alles in dieser Version des Arduino Uno ist einzigartig. Schwarz und Gold, Verarbeitung, elegantes Design und Verpackung, alles auf höchstem Niveau. Ein kleines Juwel, um die Arduino-Community und das, was wir all die Jahre zusammen getan haben, zu feiern. Jeder Artikel ist einzigartig und auf der Leiterplatte nummeriert und enthält einen handsignierten Brief der Gründer. Es ist eine limitierte Auflage, also greifen Sie zu, solange der Vorrat reicht! Für treue Arduino Uno Fans Arduino Uno Mini Limited Edition ist ein Sammlerstück für treue Arduino-Fans: Bastler, Studenten, Maker, Neugestalter, Träumer, Hoffnungsträger, Fans, Ingenieure, Designer, Fragesteller, Konditoren, Problemlöser, Puzzler, Spieler, Debattierer, Entwickler, Unternehmer, Architekten, Zukunftsgestalter, Musiker, Wissenschaftler... 10 Millionen Projekte basierend auf (offiziellen) Uno-Boards, die zu dieser unglaublichen Geschichte beigetragen haben. Technische Daten Das Arduino Uno Mini (Limited Edition) ist ein Mikrocontroller-Board, das auf dem ATmega328P basiert. Es verfügt über 14 digitale Ein-/Ausgänge (6 davon können als PWM-Ausgänge verwendet werden), 6 analoge Eingänge, einen 16 MHz-Keramikresonator, einen USB-C-Anschluss und eine Reset-Taste. Es enthält alles, was zur Unterstützung des Mikrocontrollers benötigt wird. Schließen Sie es einfach mit einem USB-Kabel an einen Computer an, verwenden Sie ein Netzteil oder schließen Sie einen Akku an, um loszulegen. Mikrocontroller ATmega328P USB-Anschluss USB-C Eingebaute LED-Pins 13 Digitale I/O-Pins 14 Analoge Eingangs-Pins 6 PWM-Pins 6 UART Ja I²C Ja SPI Ja Schaltungsbetriebsspannung 5 V Eingangsspannung (Limit) 6-12 V Batterieanschluss Nein Gleichstrom pro I/O-Pin 20 mA Gleichstrom für 3,3 V Pin 50 mA Hauptprozessor ATmega328P (16 MHz) USB-serieller Prozessor ATmega16U2 (16 MHz) Speicher ATmega328P 2 KB SRAM, 32 KB Flash, 1 KB EEPROM Gewicht 8,05 g Abmessungen 26,70 x 34,20 mm Downloads Datasheet

    € 54,95

    Mitglieder € 49,46

  • Arduino Uno SMD Rev3

    Arduino Arduino Uno Rev3 SMD

    Der Arduino Uno unterscheidet sich von allen vorangegangenen Boards dadurch, dass er nicht den FTDI USB-zu-Seriell-Treiberchip verwendet. Zusätzliche Funktionen der R3-Version sind: Atmega16U2 statt 8U2 als USB-zu-Seriell-Wandler. 1.0 Pinout: SDA- und SCL-Pins für TWI-Kommunikation in der Nähe des AREF-Pins und zwei weitere neue Pins in der Nähe des RESET-Pins, der IOREF, der es den Shields ermöglicht, sich an die vom Board gelieferte Spannung anzupassen und der zweite ist ein nicht angeschlossener Pin, der für zukünftige Zwecke reserviert ist. stärkere RESET-Schaltung. Mikrocontroller ATmega328P Betriebsspannung 5 V Eingangsspannung 7 V - 12 V Digitale E/A-Pins 14 PWM Pins 6 Analoge Eingangsstifte 8 DC Strom pro I/O Pin 20 mA DC Strom für 3,3 V Pin 50 mA Flash-Speicher 32 KB (ATmega328P) davon 0,5 KB vom Bootloader genutzt SRAM 2 KB EEPROM 1 KB Clock Speed 16 MHz LED_Builtin 13 Länge 68,6 mm Breite 53,4 mm Gewicht 25 g

    € 22,95

    Mitglieder identisch

  • Arduino Uno WiFi Rev2

    Arduino Arduino Uno WiFi Rev2

    Fügen Sie dieses Board einem Gerät hinzu und Sie können es mit einem WiFi-Netzwerk verbinden, indem Sie seinen sicheren ECC608 Krypto-Chip-Beschleuniger verwenden. Der Arduino Uno WiFi ist funktionell der gleiche wie der Arduino Uno Rev3, aber mit dem Zusatz von WiFi / Bluetooth und einigen anderen Verbesserungen. Es enthält den brandneuen ATmega4809 8-Bit-Mikrocontroller von Microchip und hat eine Onboard-IMU (Inertial Measurement Unit) LSM6DS3TR. Das Wi-Fi-Modul ist ein eigenständiges SoC mit integriertem TCP/IP-Protokollstack, das den Zugang zu einem Wi-Fi-Netzwerk ermöglicht oder als Access Point fungiert.  Das Arduino UNO WiFi Rev.2 hat 14 digitale Ein-/Ausgangs-Pins - 5, die als PWM-Ausgänge verwendet werden können - 6 analoge Eingänge, einen USB-Anschluss, eine Stromversorgungsbuchse, einen ICSP-Header und einen Reset-Knopf. Er enthält alles, was zur Unterstützung des Mikrocontrollers benötigt wird. Schließen Sie ihn einfach mit einem USB-Kabel an einen Computer an oder versorgen Sie ihn mit einem Netzadapter oder einer Batterie, um loszulegen. Betriebsspannung 5 V Eingangsspannung 7 V - 12 V Digitale E/A 14 Analoge Eingangs-Pins 6 Analoge Eingangsstifte 6 DC Strom pro I/O Pin 20 mA DC Strom für 3.3 V Pin 50 mA Flash-Speicher 48 KB SRAM 6.144 Bytes EEPROM 256 Bytes Taktfrequenz 16 MHz Funkmodul u-blox NINA-W102 Sicherheitselement ATECC608A Inertialmessgerät LSM6DS3TR LED_Builtin 25 Länge 101.52 mm Breite 53.3 mm Gewicht 37 g

    € 59,95

    Mitglieder € 53,96

  • Arduino Ethernet Shield 2

    Arduino Arduino Ethernet Shield 2

    Wie immer bei Arduino ist jedes Element der Plattform – Hardware, Software und Dokumentation – frei verfügbar und Open Source. Das bedeutet, dass Sie genau lernen können, wie es hergestellt wird, und das Design als Ausgangspunkt für Ihre eigenen Schaltkreise verwenden können. Hunderttausende Arduino-Boards beflügeln bereits täglich die Kreativität von Menschen auf der ganzen Welt. Das Arduino Ethernet Shield 2 ermöglicht die Verbindung eines Arduino Boards mit dem Internet. Es basiert auf dem Wiznet W5500 Ethernet-Chip. Der Wiznet W5500 bietet einen Netzwerk-(IP-)Stack, der sowohl für TCP als auch UDP geeignet ist. Es unterstützt bis zu acht gleichzeitige Socket-Verbindungen. Verwenden Sie die Ethernet-Bibliothek, um Skizzen zu schreiben, die das Shield mit dem Internet verbinden. Das Ethernet Shield 2 wird über lange Wire-Wrap-Stiftleisten, die durch das Shield verlaufen, mit einem Arduino-Board verbunden. Dadurch bleibt das Pin-Layout erhalten und es kann ein weiteres Shield darauf gestapelt werden. Die neueste Revision der Platine zeigt die Pinbelegung 1.0 in Rev. 3 der Arduino UNO-Platine. Das Ethernet Shield 2 verfügt über einen Standard-RJ-45-Anschluss mit integriertem Leitungstransformator und ermöglicht Power over Ethernet. An Bord ist ein Micro-SD-Kartensteckplatz, über den Dateien für die Nutzung über das Netzwerk gespeichert werden können. Es ist mit Arduino Uno und Mega kompatibel (unter Verwendung der Ethernet-Bibliothek). Der integrierte Micro-SD-Kartenleser ist über die SD-Bibliothek zugänglich. Bei der Arbeit mit dieser Bibliothek liegt SS an Pin 4. Die ursprüngliche Version des Shield enthielt einen SD-Kartensteckplatz in voller Größe; Dies wird nicht unterstützt. Das Shield enthält außerdem einen Reset-Controller, um sicherzustellen, dass das W5500-Ethernet-Modul beim Start ordnungsgemäß zurückgesetzt wird. Frühere Versionen des Shield waren nicht mit dem Mega kompatibel und mussten nach dem Hochfahren manuell zurückgesetzt werden.

    € 34,95

    Mitglieder € 31,46

  • Arduino Giga Display Shield

    Arduino Arduino Giga Display Shield

    Das Giga Display Shield ist eine Touchscreen-Lösung, mit der Sie mühelos grafische Schnittstellen in Ihren Projekten bereitstellen können. Durch die Nutzung des neuen Stiftleistenanschlusses in der Mitte des Giga R1 WiFi bietet dieses Shield eine nahtlose Integration und erweiterte Funktionen. Mit dem Giga Display Shield erhalten Sie Zugriff auf eine Reihe von Funktionen, darunter ein digitales Mikrofon, eine 6-Achsen-IMU und einen Arducam-Anschluss. Diese zusätzlichen Funktionen ermöglichen es Ihnen, die anderen 54 verfügbaren Pins vollständig zu nutzen, was die Erstellung von Handheld-Geräten oder Dashboards zur Steuerung Ihres Projekts unglaublich bequem macht. Technische Daten Display KD040WVFID026-01-C025A Größe 3,97” Auflösung 480x800 RGB Farbe 16,7 Mio. Touch-Modus Fünf Punkte und Gesten Schnittstelle I²C Sensoren IMU BMI270 Mikrofon MP34DT06JTR Downloads Datasheet Schematics

    € 84,95

    Mitglieder € 76,46

  • Arduino Mega 2560 Rev3

    Arduino Arduino Mega 2560 Rev3

    Es enthält alles, was Sie zum Betrieb des Mikrocontrollers benötigen. Schließen Sie es einfach mit einem USB-Kabel am Computer an oder speisen Sie es mit einem AC/DC-Adapter oder einer Batterie, um loszulegen. Das Mega 2560 Board ist kompatibel mit den meisten Shields, die für den Uno und die früheren Boards Duemilanove oder Diecimila entwickelt wurden. Betriebsspannung 5 V Eingangsspannung 7 V - 12 V Digitaler E/A 54 Analoge Eingangs-Pins 16 Gleichstrom pro I/O-Pin 20 mA Gleichstrom für 3,3-V-Pin 50 mA Flash-Speicher 256 KB davon 8 KB vom Bootloader genutzt SRAM 8 KB EEPROM 4 KB Taktfrequenz 16MHz LED_Builtin 13 Länge 101.52 mm Breite 53.3 mm Gewicht 37 g Weitere Informationen finden Sie in der Getting Started Guide von Arduino.

    € 44,95

    Mitglieder € 40,46

  • Arduino Leonardo met headers

    Arduino Arduino Leonardo with Headers

    1 Review

    Der Leonardo unterscheidet sich von allen vorherigen Boards dadurch, dass der ATmega32u4 über eine integrierte USB-Kommunikation verfügt, sodass kein zweiter Prozessor erforderlich ist. Dadurch kann der Leonardo auf einem angeschlossenen Computer zusätzlich zu einem virtuellen (CDC) seriellen/COM-Anschluss als Maus und Tastatur erscheinen. Mikrocontroller ATMega4809 Arbeitsstress 5 V Eingangsspannung 7V - 12V Analoge Eingangspins 12 PWM-Pins 7 DC-I/O-Pin 20 DC-Ausgangsstrom pro I/O-Pin 20mA DC-Ausgangsstrom für 3,3-V-Pin 50mA Flash-Speicher 32 KB, davon werden 4 KB vom Bootloader verwendet SRAM 2,5 KB EEPROM 1 KB Taktfrequenz 16 MHz Länge 68,6 mm Breite 53,3 mm Gewicht 20 Gramm

    € 21,95

    Mitglieder € 19,76

  • Arduino Micro with Headers

    Arduino Arduino Micro mit Headern

    Der Micro enthält alles, was zur Unterstützung des Mikrocontrollers erforderlich ist; Schließen Sie es einfach über ein Micro-USB-Kabel an einen Computer an, um loszulegen. Es verfügt über einen Formfaktor, der eine einfache Platzierung auf einem Steckbrett ermöglicht. Das Micro-Board ähnelt dem Arduino Leonardo dahingehend, dass der ATmega32U4 über eine integrierte USB-Kommunikation verfügt, sodass kein zweiter Prozessor erforderlich ist. Dadurch kann der Micro für einen angeschlossenen Computer zusätzlich zu einem virtuellen (CDC) seriellen/COM-Anschluss als Maus und Tastatur erscheinen. Mikrocontroller ATmega32U4 Betriebsspannung 5 V Eingangsspannung 7V - 12V Analoge Eingangspins 12 PWM-Stifte 7 DC-I/O-Pin 20 Gleichstrom pro I/O-Pin 20mA Gleichstrom für 3,3-V-Pin 50mA Flash-Speicher 32 KB, davon werden 4 KB vom Bootloader verwendet SRAM 2,5 KB EEPROM 1 KB Taktfrequenz 16 MHz LED_Builtin 13 Länge 45mm Breite 18mm Gewicht 13 g

    € 24,95

    Mitglieder € 22,46

  •  -24% Arduino Studenten Kit

    Arduino Arduino Student Kit

    Das Arduino Student Kit ist ein hands-on, Schritt-für-Schritt Fernlernwerkzeug für Schüler ab 11 Jahren: Lerne die Grundlagen der Elektronik, Programmierung und Codierung von Zuhause aus. Keine Vorkenntnisse oder Erfahrungen sind nötig, da das Kit dich durch alle Schritte führt. Lehrkräfte können ihre Klassen mit Hilfe der Kits auch von Fernunterricht aus unterrichten und Eltern können das Kit als homeschooling Werkzeug verwenden, damit ihr Kind in eigenem Tempo lernen kann. Jeder wird durch geführte Lektionen und offene Experimente Selbstvertrauen in der Programmierung und Elektronik gewinnen.Lerne die Grundlagen der Programmierung, Codierung und Elektronik, einschließlich Strom, Spannung und digitaler Logik. Keine Vorkenntnisse oder Erfahrungen sind nötig, da das Kit dich durch alle Schritte führt.Du bekommst alle notwendigen Hardware- und Softwarekomponenten für eine Person, sodass es ideal für Fernunterricht, homeschooling und Selbstlernen ist. Es gibt Schritt-für-Schritt Lektionen, Übungen und für ein vollständiges und gründliches Erlebnis gibt es auch zusätzliche Inhalte wie Erfindungshighlights, Konzepte und interessante Fakten über Elektronik, Technologie und Programmierung.Lektionen und Projekte können je nach individuellen Fähigkeiten angepasst werden, sodass Schüler von Zuhause aus auf ihrem eigenen Niveau lernen können. Das Kit kann auch in verschiedene Fächer wie Physik, Chemie und sogar Geschichte integriert werden. Tatsächlich gibt es genug Inhalt für ein gesamtes Semester.Wie Lehrkräfte das Kit für den Fernunterricht verwenden könnenDie Online-Plattform enthält alle Inhalte, die man für den Fernunterricht benötigt: exklusive Lerninhalte, Tipps für den Fernunterricht, neun 90-minütige Lektionen und zwei offene Projekte. Jede Lektion baut auf der vorherigen auf und bietet eine weitere Gelegenheit, um die bereits gelernten Fähigkeiten und Konzepte anzuwenden. Schüler erhalten auch ein Logbuch, das sie bei der Arbeit an den Lektionen ausfüllen.Der Anfang jeder Lektion bietet eine Übersicht, geschätzte Fertigstellungszeiten und Lernziele. Während jeder Lektion gibt es Tipps und Informationen, die das Lernerlebnis erleichtern werden. Wichtige Antworten und Erweiterungsideen werden ebenfalls bereitgestellt.Wie das Kit Eltern hilft, ihre Kinder zu Hause zu unterrichtenDies ist Ihr praktisches, schrittweises Fernlernwerkzeug, mit dem Ihr Kind die Grundlagen der Programmierung, des Codierens und der Elektronik zu Hause lernen kann. Als Eltern benötigen Sie keine Vorkenntnisse oder Erfahrungen, da Sie schrittweise angeleitet werden. Das Kit ist direkt in den Lehrplan eingebunden, so dass Sie sicher sein können, dass Ihre Kinder das lernen, was sie sollten, und es bietet die Möglichkeit, dass sie selbstbewusst in Programmierung und Elektronik werden. Sie helfen ihnen auch dabei, wichtige Fähigkeiten wie kritisches Denken und Problemlösung zu erlernen.Selbstlernen mit dem Arduino Student KitSchüler können dieses Kit nutzen, um sich die Grundlagen der Elektronik, Programmierung und Codierung selbst beizubringen. Da alle Lektionen schrittweise Anweisungen folgen, ist es einfach für sie, sich durchzuarbeiten und selbstständig zu lernen. Sie können in ihrem eigenen Tempo arbeiten, Spaß an allen realen Projekten haben und ihr Selbstvertrauen dabei steigern. Sie benötigen keine Vorwissen, da alles klar erklärt wird, die Codierung vorgeschrieben ist und es ein Vokabular von Konzepten gibt, auf das sie sich beziehen können.Das Arduino Student Kit wird mit mehreren Teilen und Komponenten geliefert, die während des Kurses zum Bau von Schaltungen verwendet werden.Im Kit enthaltenZugangscode zu exklusivem Online-Inhalt, einschließlich Lernanleitungen, schrittweisen Lektionen und zusätzlichem Material wie Ressourcen, Erfindungsschwerpunkten und einem digitalen Logbuch mit Lösungen.1x Arduino Uno1x USB-Kabel1x Board-Montagebasis1x Multimeter1x 9 V Batterieclip1x 9 V Batterie20x LEDs (5x rot, 5x grün, 5x gelb und 5x blau)5x Widerstände 560 Ω5x Widerstände 220 Ω1x Breadboard 400 Punkte1x Widerstand 1 kΩ1x Widerstand 10 kΩ1x kleiner Servomotor2x Potentiometer 10 kΩ2x Knopf-Potentiometer2x Kondensatoren 100 uF Solid-Core-Jumper-Drähte5x Drucktasten1x Fototransistor2x Widerstände 4,7 kΩ1x Jumper-Draht schwarz1x Jumper-Draht rot1x Temperatursensor1x Piezo1x Jumper-Draht weiblich zu männlich rot1x Jumper-Draht weiblich zu männlich schwarz3x Muttern und Bolzen

    € 104,95€ 79,95

    Mitglieder identisch

  • Arduino Portenta Vision Shield (Ethernet)

    Arduino Arduino Pro Portenta Vision Shield (Ethernet)

    Funktionalitäten 324x324 Pixel Kamerasensor: Benutzen Sie einen der Kerne von Portenta und verwenden Sie das OpenMV für den Arduino-Editor um Bilderkennungsalgorithmen auszuführen 100 Mbps Ethernet-Anschluss: Verbinden Sie Ihre Portenta H7 mit dem kabelgebundenen Internet 2 Onboard-Mikrofone zur Richtungsschallerkennung: Schall in Echtzeit erfassen und analysieren JTAG-Konnektor: Führen Sie Low-Level-Debugging Ihres Portenta-Boards oder spezielle Firmware-Updates mit einem externen Programmiergerät durch SD-Card-Anschluss: Speichern Sie Ihre erfassten Daten auf der Karte oder lesen Sie Konfigurationsdateien aus Das Vision Shield wurde als Erweiterung der Arduino Portenta-Familie entwickelt. Die Portenta-Boards verfügen über Multicore-32-Bit-ARM-Cortex-Prozessoren®™ und laufen mit Hunderten von Megahertz, haben Megabytes Programmspeicher und verfügen über ausreichend RAM. Portenta-Boards sind mit WiFi und Bluetooth ausgestattet. Embedded Computer Bilderkennung leicht gemacht Arduino hat sich mit OpenMV zusammengetan, um Ihnen eine kostenlose Lizenz für die OpenMV IDE Entwicklungsumgebung anzubieten. Ein einfacher Weg in die Bilderkennungsentwicklung mit MicroPython als Programmiersprache. Laden Sie den OpenMV für Arduino Editor von unserer professionellen Tutorial-Seite herunter und blättern Sie durch diverse Beispiele, die wir für Sie in der OpenMV IDE vorbereitet haben. Unternehmen auf der ganzen Welt entwickeln ihre kommerziellen Produkte bereits auf der Grundlage dieses einfachen, aber leistungsstarken Ansatzes zur Erkennung, Filterung und Klassifizierung von Bildern, QR-Codes und anderem. Debuggen mit professionellen Tools Verbinden Sie Ihre Portenta H7 über den JTAG-Anschluss mit einem professionellen Debugger. Nutzen Sie professionelle Software-Tools wie die von Lauterbach oder Segger auf Ihrem Board, um Ihren Code Schritt für Schritt zu debuggen. Das Vision Shield zeigt die erforderlichen Pins an, um einfach Ihr externes JTAG Interface anschließen zu können. Kamera Himax HM-01B0 Kameramodul Auflösung 320 x 320 aktive Pixel Auflösung mit Unterstützung für QVGA Bildsensor Hochempfindliche 3,6-μ-BrightSense™-Pixeltechnologie Mikrofon 2 x MP34DT05 Länge 66 mm Breite 25 mm Gewicht 11 gr Weitere Informationen finden Sie hier in den Tutorials von Arduino.

    € 69,95

    Mitglieder € 62,96

  • GSM Antenna for Arduino MKR Boards

    Arduino GSM-Antenne für Arduino MKR-Boards

    Diese Antenne funktioniert auch mit Arduino MKR FOX 1200 / Ardunio MKR GSM 1400 / Arduino MKR WAN 1300. Anschluss der Antenne: U.FL GSM 433/868/915 MHz

    € 7,95

    Mitglieder € 7,16

  • Arduino OPLA IoT Starter Kit

    Arduino Arduino OPLA IoT Starter Kit

    Ferngesteuerte Leuchten - ändern Sie Farbe, Lichtmodi und schalten Sie diese über Ihr Handy ein oder aus Persönliche Wetterstation - Aufzeichnung und Überwachung der lokalen Wetterbedingungen Haussicherheitsalarm - Bewegungen erkennen und Warnungen auslösen Sonnensystem Tracker - Daten von Planeten und Monden im Sonnensystem abrufen Bestandskontrolle - Warenein- und -ausgänge verfolgen Smart Garden - überwachen und steuern Sie die Bedingungen für Ihre Pflanzen Thermostat-Steuerung - intelligente Steuerung für Heiz- und Kühlsysteme Thinking About You - senden Sie Nachrichten zwischen der Oplà und der Arduino IoT Cloud Für fortgeschrittene Benutzer bietet der Bausatz die Möglichkeit ihre eigenen vernetzten Geräte und IoT-Anwendungen mit Hilfe der offenen programmierbaren Plattform zu erstellen. Dadurch können Sie Ihre Systeme vollständig kontrollieren. Die Oplà-Einheit fungiert als physische Schnittstelle zur Arduino IoT Cloud und bietet Ihnen über die Arduino IoT Remote-App die vollständige Kontrolle. Konfigurieren und verwalten Sie alle Einstellungen über die Arduino IoT Cloud mit einfach zu erstellenden Dashboards, die Echtzeit-Messwerte von Ihren intelligenten Geräten zu Hause oder am Arbeitsplatz anzeigen. Das Anpassen von Einstellungen, das Ein- und Ausschalten von Geräten, das Bewässern von Pflanzen usw. kann unterwegs mit der Arduino IoT Remote App gesteuert werden. Außerdem können Sie ihre Einstellungen vollständig automatisieren, d.h. zurück lehnen und genießen! Lieferumfang MKR IoT Carrier wurde für diesen Bausatz entwickelt, einschließlich: Rundes OLED-Display Fünf kapazitive Touch-Tasten On-Board-Sensoren (Temperatur, Feuchtigkeit, Druck und Licht) Zwei 24 V Relais SD-Kartenleser Plug-and-Play-Steckverbinder für verschiedene Sensoren RGBC, Gestik und Nähe IMU 18650 Li-Ion Akkuhalter (Batterie nicht im Lieferumfang enthalten) Fünf RGB-LEDs Arduino MKR WiFi 1010 Kunststoffgehäuse Micro-USB-Kabel Feuchtigkeitssensor PIR-Sensor Plug-and-Play-Kabel für alle Sensoren Projekte Ferngesteuerte Leuchten Persönliche Wetterstation Haussicherheitsalarm Sonnensystem Tracker Bestandskontrolle Smart Garden Thermostat-Steuerung Thinking About You

    € 124,95

    Mitglieder € 112,46

  • Arduino Sensor Kit Base

    Arduino Arduino-Sensor-Kit-Basis

    Grove ist ein Open-Source-, modularisiertes und gebrauchsfertiges Toolset und verfolgt einen Baukastenansatz für den Zusammenbau von Elektronik. Dieses Kit enthält ein Basisschild, an das die verschiedenen Grove-Module entweder einzeln oder in verschiedenen Kombinationen miteinander verbunden werden können, um unterhaltsame und spannende Projekte zu erstellen. Alle Module nutzen einen Grove-Stecker, der jede der Komponenten in wenigen Sekunden mit einem Base Shield verbindet. Das Base Shield kann dann auf einem Arduino UNO-Board montiert und mit der Arduino IDE programmiert werden. Anleitungen zum Anschluss und zur Programmierung der verschiedenen Module sind ebenfalls in diesem Kit enthalten. Dieses in Zusammenarbeit mit Seeed Studio entwickelte Kit bietet der Arduino-Community die Möglichkeit, Projekte mit minimalem Aufwand sowohl bei der Verkabelung als auch bei der Codierung zu erstellen. Dieses Kit dient als Brücke zur Welt von Grove und bietet Makern eine flexible Möglichkeit, ihre Projekte mit anderen komplexen Grove-Modulen zu erweitern. Das Kit beinhaltet den Zugang zu a Online-Plattform mit allen Anweisungen zum Anschließen, Skizzieren und Spielen mit den verschiedenen Grove-Modulen. Bitte beachten Sie : Dieses Kit enthält nicht das Arduino Uno-Board. Inbegriffen 1 Basisschild, das auf ein Arduino UNO-Board passt. Es ist mit 16 groben Anschlüssen ausgestattet, die, wenn sie auf dem UNO platziert werden, die Funktionalität verschiedener Pins bieten. Es enthält: 7x digitale Anschlüsse 4x analoge Anschlüsse 4x I2C-Anschlüsse 1x UART-Anschluss Die 10 enthaltenen Grove-Module können entweder über die digitalen, analogen oder I2C-Anschlüsse auf dem Schirm mit dem Basisschild verbunden werden. Werfen wir einen kurzen Blick darauf: Die LED – eine einfache LED, die ein- oder ausgeschaltet oder gedimmt werden kann. Der Knopf – Druckknopf kann sich entweder im HIGH- oder LOW-Zustand befinden. Das Potentiometer – ein variabler Widerstand, der den Widerstand durch Drehen des Knopfes erhöht oder verringert. Der Summer – ein Piezo-Lautsprecher, der zur Erzeugung binärer Töne verwendet wird. Der Lichtsensor – ein Fotowiderstand, der die Lichtintensität misst. Der Schallsensor – ein kleines Mikrofon, das Schallschwingungen misst. Der Luftdrucksensor – liest den Luftdruck mithilfe des I2C-Protokolls. Der Temperatursensor – misst gleichzeitig Temperatur und Luftfeuchtigkeit. Der Beschleunigungsmesser – ein Orientierungssensor, der zur Erkennung von Bewegungen dient. Der OLED-Bildschirm – ein Bildschirm, auf dem Werte oder Nachrichten gedruckt werden können. 6 grobe Kabel sorgen dafür, dass Sie die Module einfach und ohne Löten mit dem Grundschild verbinden können. Der Arduino-Sensor-Kit-Bibliothek ist ein Wrapper, der Links zu anderen Bibliotheken enthält, die sich auf bestimmte Module beziehen, z. B. Beschleunigungsmesser, Luftdrucksensor, Temperatursensor und OLED-Display. Diese Bibliothek bietet benutzerfreundliche APIs, die Ihnen dabei helfen, ein klares mentales Modell der Konzepte zu erstellen, die Sie verwenden werden.

    € 44,95

    Mitglieder € 40,46

  • Arduino Due met headers

    Arduino Arduino Due mit Headern

    Das Board enthält alles, was zur Unterstützung des Mikrocontrollers benötigt wird; schließen Sie es einfach mit einem Micro-USB-Kabel an einen Computer an oder versorgen Sie es mit einem AC/DC-Adapter oder einer Batterie, um loszulegen. Das Due ist mit allen Arduino Shields kompatibel, die mit 3,3V arbeiten und mit der Arduino 1.0 Pinbelegung konform sind. Der Due folgt der 1.0 Pinbelegung: TWI: Die SDA- und SCL-Pins liegen in der Nähe des AREF-Pins. IOREF: ermöglicht es einem angeschlossenen Shield mit der richtigen Konfiguration, sich an die vom Board bereitgestellte Spannung anzupassen. Dies ermöglicht die Kompatibilität des Shields mit einem 3,3V-Board wie dem Due und AVR-basierten Boards, die mit 5V arbeiten. Ein nicht angeschlossener Pin, reserviert für zukünftige Verwendung. Betriebsspannung 3.3 V Eingangsspannung 7 V - 12 V Digitaler E/A 54 Analoge Eingangs-Pins 12 Analoge Ausgangsstifte 2 (DAC) Gesamt-DC-Ausgangsstrom auf allen E/A-Leitungen 130 mA Gleichstrom pro E/A-Pin 20 mA DC Strom für 3.3 V Pin 800 mA DC Strom für 5 V Pin 800 mA Flash-Speicher 512 KB verfügbar für alle Benutzeranwendungen SRAM 96 KB Taktfrequenz 84 MHz Länge 101.52 mm Breite 53.3 mm Gewicht 36 g Bitte beachten Sie: Im Gegensatz zu den meisten Arduino-Boards läuft das Arduino Due-Board mit 3,3 V. Die maximale Spannung, die die E/A-Pins tolerieren können, beträgt 3,3 V. Applying voltages higher than 3.3V to any I/O pin could damage the board.

    € 44,95

    Mitglieder € 40,46

Login

Passwort vergessen?

Sie haben noch kein Konto?
Konto erstellen