Grundlagen und Selbstbau
Weshalb nicht damit beginnen, Mikrocontroller-Module selbst zu entwickeln, zumindest aber sich in Gedanken mit solchen Aufgaben zu beschäftigen? Wie Mikrocontroller-Module aufgebaut sind und wozu sie verwendet werden, soll in 'Mikrocontroller-Module – Grundlagen und Selbstbau' dargestellt werden.
Das vorliegende Buch beleuchtet Mikrocontroller-Module, die vor allem zum Experimentieren, zum Lernen und zum Einarbeiten in die Entwicklung und Programmierung von Embedded Systems gedacht sind.
Die Entwurfsgrundsätze, Lösungsvorschläge und Projekte, die in diesem Buch beschrieben werden, sind aus zwei Ideen hervorgegangen: Erstens können neue Entwicklungen zwischen den weit verbreiteten kostengünstigen Mikrocontroller-Modulen und der industriellen Computer- und Steuerungstechnik ihren Platz finden und zweitens ist es eine Herausforderung an sich, solche Module zu entwickeln und einzusetzen.
In den ersten sieben Kapiteln dieses Buches werden die technischen Grundlagen diskutiert und anhand eigener Entwicklungen veranschaulicht. Das achte Kapitel gibt einen Überblick über diesen Modulbaukasten.
Alle Fotos aus dem Buch können hier vierfarbig heruntergeladen werden.
MDP-M01 ist ein Display-Steuermodul, das mit einem 2,8-Zoll-TFT-Display ausgestattet ist. Das Display kann um 90 Grad gedreht werden, was für Benutzer bequem ist, um Daten und Wellenformen anzuzeigen. MDP-M01 kann Online-Anzeige und -Steuerung mit MDP-P906 Mini-Digital-Netzteilmodulen und anderen Modulen des MDP-Systems über drahtlose 2,4-GHz-Kommunikation realisieren und bis zu 6 Sub-Module gleichzeitig steuern.
Technische Daten
Bildschirmgröße
2,8" TFT
Bildschirmauflösung
240 x 320
Leistung
Micro-USB-Stromeingang oder Stromversorgung vom Submodul über dediziertes Stromkabel
Eingabe
DC 5 V/0,3 A
Andere Funktionen
Kann bis zu 6 Submodule steuernUpgrade der Formware über Micro USB
Abmessungen
107 x 66 x 13,6 mm
Gewicht
133 g
Included
1x MDP-M01 Smart Digital-Monitor
1x Kabel (2,5 mm Klinke auf Micro USB)
Downloads
User Manual v3.4
Firmware v1.32
Funktionsweise, Aufbau und Handling eines Power Moduls
Das „Abc der Power Module“ beinhaltet im ersten Schritt die wesentlichen Grundlagen, die bei der Auswahl und dem Einsatz eines Power Moduls notwendig sind. Das Buch beschreibt technische Zusammenhänge und Kenngrößen betreffend der Power Module sowie Berechnungsgrundlagen und Messtechniken.
Inhalt
Grundlagen
Dieses Kapitel beschreibt die Notwendigkeit eines Gleichspannungswandlers und dessen grundlegende Funktionsweise. Darüber hinaus werden verschiedene Möglichkeiten zur Realisierung eines Spannungsreglers dargestellt sowie die wesentlichen Vorteile eines Power Moduls benannt.
Schaltungstopologien
Hier werden dem Leser die bei Power Modulen sehr häufig verwendeten Schaltungskonzepte, Abwärts- und Aufwärtstopologien, näher erläutert sowie über weitere Schaltungstopologien informiert.
Technik, Aufbau und Regelungstechnik
Vorgestellt wird der mechanische Aufbau eines Power Moduls, der einen wesentlichen Einfluss auf die EMV sowie das Wärmemanagement hat. Ferner sind diesem Kapitel Regelungs- und Schaltungstipps zu entnehmen.
Messverfahren
Aussagefähige Messergebnisse sind zur Beurteilung eines Power Moduls zwingend notwendig. In diesem Kapitel werden die entsprechenden Messpunkte und Messmethoden beschrieben.
Handhabung
Es werden die Punkte der Lagerung und den Umgang mit Power Modulen erläutert, ebenso wie deren Fertigungs- und Lötprozess.
Auswahl eines Power Moduls
Wichtige Parameter und Kriterien für die optimale Auswahl eines Power Moduls sind in dieser Rubrik nachzulesen.
Die Flexibilität des Artemis-Moduls beginnt mit dem Arduino-Kern von SparkFun. Sie können das Artemis-Modul genauso programmieren und verwenden wie einen Uno oder jeden anderen Arduino. Der Zeitpunkt des ersten Blinkens ist nur 5 Minuten entfernt! Wir haben den Kern von Grund auf neu entwickelt, um ihn schnell und so leicht wie möglich zu machen.
Nächste Aufgabe ist das Modul selbst. Mit einer Größe von 10 mm x 15 mm verfügt das Artemis-Modul über alle unterstützenden Schaltungen, die Sie benötigen, um den fantastischen Ambiq Apollo3-Prozessor in Ihrem nächsten Projekt einzusetzen. Wir sind stolz darauf, sagen zu können, dass das SparkFun Artemis-Modul das erste Open-Source-Hardware-Modul ist, bei dem die Design-Dateien frei und einfach verfügbar sind. Wir haben das Modul sorgfältig entworfen, so dass die Implementierung von Artemis in Ihr Design mit kostengünstigen 2-Lagen-Leiterplatten und 8mil Leiterbahnabstand erfolgen kann.
Das Artemis-Modul wird in den USA in der SparkFun-Produktionsstätte in Boulder hergestellt und ist für Consumer-Produkte konzipiert. Damit unterscheidet sich das Artemis-Modul deutlich von seinen Arduino-Brüdern. Sind Sie bereit, Ihr Produkt zu skalieren? Das Artemis wächst mit Ihnen über den Uno-Footprint und die Arduino-IDE hinaus. Zusätzlich verfügt der Artemis über einen erweiterten HAL (Hardware Abstraction Layer), der es dem Anwender ermöglicht, die moderne Cortex-M4F-Architektur bis an ihre Grenzen zu treiben.
Das SparkFun Artemis Modul ist vollständig FCC/IC/CE-zertifiziert und ist in vollen Tape-and-Reel-Stückzahlen erhältlich. Mit 1M Flash und 384k RAM haben Sie viel Platz für Ihren Code. Das Artemis-Modul läuft mit 48MHz mit einem 96MHz Turbo-Modus verfügbar und mit Bluetooth zu booten!
A Guide to Powerful Programming for Embedded Systems
You must be a well-rounded professional to excel in the ever-evolving, rapidly developing embedded design and programming industry. Simply put, when it comes to electronics design and programming, the more topics you can master, the more you’ll flourish at your workplace and at your personal workbench. This shouldn’t be a surprise, as the line between the skills of a hardware engineer and software engineer is blurring. The former should have a good grasp of programming in order to build efficient systems. The latter should understand the details of the design (whether it’s a physical or virtual application) for which he or she is writing code. Thus, to be successful, a modern professional electronics engineer must have a solid grasp of both hardware design and programming.
Assembly Language Essentials is a matter-of-fact guide to Assembly that will introduce you to the most fundamental programming language of a processor. Unlike other resources about Assembly that focus exclusively on specific processors and platforms, this book uses the architecture of a fictional processor with its own hardware and instruction set. This enables you to consider the importance of Assembly language without having to deal with predetermined hardware or architectural restrictions.
You’ll immediately find this thorough introduction to Assembly to be a valuable resource, whether you know nothing about the language or you have used it before. The only prerequisite is that you have a working knowledge of at least one higher-level programming language, such as C or Java.
Assembly Language Essentials is an indispensible resource for electronics engineering professionals, academics, and advanced students looking to enhance their programming skills. The book provides the following, and more:
An introduction to Assembly language and its functionality
Significant definitions associated with Assembly language, as well as essential terminology pertaining to higher-level programming languages and computer architecture
Important algorithms that may be built into high-level languages, but must be done the “hard way” in Assembly language — multiplication, division, and polynomial evaluation
A presentation of Interrupt Service Routines with examples
A free, downloadable Assembler program for experimenting with Assembly
Dieser mehrachsige Roboter bringt Leistung und Größe perfekt in Einklang.
Features
5 Achsen
Nutzlast: 5 kg
Reichweite: 700 mm
Wiederholgenauigkeit: 0,1 mm
Maximale Geschwindigkeit 1000 mm/s
Anwendungen
Maschinenwartung
Bin Picking
Mobile Plattform
Laborautomatisierung
Roboterforschung
Langlebige kollaborative Roboter für Ihre Automatisierung
Harmonische Antriebe und Servomotoren in Industriequalität garantieren einen ununterbrochenen Betrieb rund um die Uhr.
Hergestellt aus Kohlefaser, 15 kg Gewicht ermöglichen einen einfacheren Einsatz.
Flexible Bereitstellung mit sicherer Funktion
Handprogrammierung, leicht, platzsparend und einfach für mehrere Anwendungen einsetzbar, ohne Ihr Produktionslayout zu ändern. Perfekt für wiederkehrende Aufgaben.
Kollisionserkennung ist für alle unsere Cobots verfügbar. Ihre Sicherheit hat immer oberste Priorität.
Grafische Oberfläche für einsteigerfreundliche Programmierung
Kompatibel mit verschiedenen Betriebssystemen, einschließlich macOS und Windows.
Webbasierte Technologie, kompatibel mit allen gängigen Browsern.
Drag & Drop, um Ihren Code in wenigen Minuten zu erstellen.
Leistungsstarkes und Open-Source-SDK immer zur Hand
Das voll funktionsfähige Open-Source-Python/C++-SDK bietet eine flexiblere Programmierung.
ROS/ROS2-Pakete sind einsatzbereit.
Beispielcodes helfen Ihnen, den Roboterarm reibungslos einzusetzen.
Technische Daten
UFactory 850
xArm 5
xArm 6
xArm 7
Nutzlast
5 kg
3 kg
5 kg
3,5 kg
Reichweite
850 mm
700 mm
700 mm
700 mm
Freiheitsgrade
6
5
6
7
Wiederholbarkeit
±0,02 mm
±0,1 mm
±0,1 mm
±0,1 mm
Maximale Geschwindigkeit
1 m/s
1 m/s
1 m/s
1 m/s
Gewicht (nur Roboterarm)
20 kg
11,2 kg
12,2 kg
13,7 kg
Maximale Geschwindigkeit
180°/s
180°/s
180°/s
180°/s
Joint 1
±360°
±360°
±360°
±360°
Joint 2
-132°~132°
-118°~120°
-118°~120°
-118°~120°
Joint 3
-242°~3.5°
-225°~11°
-225°~11°
±360°
Joint 4
±360°
-97°~180°
±360°
-11°~225°
Joint 5
-124°~124°
±360°
-97°~180°
±360°
Joint 6
±360°
±360°
-97°~180°
Joint 7
±360°
Hardware
Umgebungstemperaturbereich
0-50°C
Stromverbrauch
Min. 8,4 W, typisch 200 W, max. 400 W
Eingangsstromversorgung
24 V DC, 16,5 A
Fußabdruck
Ø 126 mm
Materialien
Aluminium, Kohlefaser
Basis-Connector-Typ
M5x5
Reinraum der ISO-Klasse
5
Robotermontage
Alle
Endeffektor-Kommunikationsprotokoll
Modbus RTU(rs485)
Endeffektor-E/A
2x DI/2x DO/2x AI/1x RS485
Kommunikationsmodus
Ethernet
Lieferumfang
1x xArm 5 Roboterarm
1x AC-Steuerbox
1x Roboterarm-Stromkabel
1x Roboterarm-Endeffektor-Adapterkabel
1x Roboterarm-Signalkabel
1x Steuerbox-Stromkabel
1x Netzwerkkabel
1x Montagewerkzeug
1x Kurzanleitung
Aus dem Inhalt
Neues von den Röhrenherstellern
Dem Klang auf der Spur
Wirkung und Anwendung von Gettermaterialien für Vakuum-Röhren
Klanghersteller und Klang beeinflussende Elemente im NF-Verstärker
Eintakt-A-Endstufe mit EL 156 in Trioden- und Pentodenschaltung
Kopfhörerverstärker mit Ausgangübertrager
Mehr Sound
My first Super
Netzfilter
Messfilter
Messergebnisse relativ, absolut und interpretiert
Welche Röhre klingt besser?
Moderne HiFi-Technik und DIN 45 500
Röhrenverstärker, Energieverbrauch und Recycling
Röhrendaten mit Sockelschaltungen
Ein verbesserter Backensatz, der dem direkten Kontakt mit einem Lötkolben standhält
Stickvise Hochtemperatur-PTFE-Schraubstockbacken halten versehentlichem Kontakt mit einem Lötkolben stand und schmelzen nicht. Dies ist ein großartiges Upgrade für Ihren Stickvise.
Features
Hergestellt aus PTFE mit extrem hohem Schmelzpunkt
Widersteht gelegentlichem Kontakt mit einem Lötkolben
Dies sind nur die Backenplatten, ein Stickvise ist nicht im Lieferumfang enthalten
Technische Daten
Material
Aluminium
Abmessungen
73 x 53 x 3 mm
Gewicht
21 g
Spezifikationen
CM4-Buchse
Geeignet für alle Varianten des Compute Module 4
Vernetzung
Gigabit-Ethernet-RJ45-Anschluss M.2 M KEY, unterstützt Kommunikationsmodule oder NVME SSD
Verbinder
Raspberry Pi 40-PIN GPIO-Header
USB
2x USB 2.0 Typ A 2x USB 2.0 über FFC-Stecker
Anzeige
MIPI DSI-Display-Anschluss (15-poliger 1,0-mm-FPC-Anschluss)
Kamera
2x MIPI CSI-2 Kameraanschluss (15-poliger 1,0 mm FPC-Anschluss)
Video
2x HDMI-Anschluss (einschließlich eines Anschlusses über FFC-Anschluss), unterstützt 4K-Ausgabe mit 30 Bildern pro Sekunde
RTC
NACH
Lagerung
MicroSD-Kartensockel für Compute Module 4 Lite-Varianten (ohne eMMC).
Lüfterkopf
Keine Lüftersteuerung, 5 V
Leistungsaufnahme
5 V
Maße
85x56mm
Inbegriffen
1x CM4-IO-BASE-A
1x SSD-Befestigungsschraube
Downloads
Wiki
Inhalt:
Praxis
Geisterhände – RC5-Empfang und 3,3-V-Triac-Ansteuerung mit ARM Cortex-M3
Als Vermählte grüßen … – Trägerboard für mbed-ARM-Zentraleinheit und Arduino Shields
Cortex-M: Spionage-Port sucht Anschluss – Neuer Debug-Anschluss bei aktuellen ARM Cortex-M Mikrocontrollern
Yes we CAN CAN – Dual-CAN-Port für das R8C/13-Board
ARM-Thermometer – USB-basierte Temperaturüberwachung mit Kaltstellen-Kompensation
Know-how
Nie mehr Ladehemmung – USB als Akku-Ladeport
Power up – Stromversorgung per Ethernet bis 90 W
Reise ins Innere der ARM-MCU – ARM On-Chip Debug-Schnittstellen: Möglichkeiten und Grenzen
Info
Marktübersicht – Android-Applikationen für Elektroniker
Aktuell – Companion-Chips, Eva-Kits, MCUs und Software
Noch einfacher – RS-232-DB-9 wird USB-DB-9
Wenn nichts mehr geht – Hot-Swap-I²C-Bus-Puffer mit großer Low-Pegel-Toleranz
Treibende Kraft – Energieeffiziente Motorsteuerungen skalierbar entwickeln
Weitere Hefte aus dieser Reihe:
Mikrocontroller 7 (PDF)
Mikrocontroller 5 (PDF)
Mikrocontroller 4 (PDF)
Mikrocontroller 3 (PDF)
Mikrocontroller 2 (PDF)
Mikrocontroller 1 (PDF)
Merkmale
NFC-Chipmaterial: PET + Ätzantenne
Chip: NTAG216 (kompatibel mit allen NFC-Telefonen)
Frequenz: 13,56 MHz (Hochfrequenz)
Lesezeit: 1 - 2 ms
Speicherkapazität: 888 Byte
Lese- und Schreibvorgänge: > 100.000 Mal
Leseabstand: 0 - 5 mm
Datenaufbewahrung: > 10 Jahre
NFC-Chipgröße: Durchmesser 30 mm
Berührungslos, keine Reibung, geringe Ausfallrate, geringe Wartungskosten
Leserate, Verifizierungsgeschwindigkeit, die effektiv Zeit sparen und die Effizienz verbessern kann
Wasserdicht, staubdicht, vibrationshemmend
Keine Stromversorgung mit Antenne, eingebetteter Verschlüsselungssteuerungslogik und Kommunikationslogikschaltung
Inbegriffen
1x NFC-Sticker (6-Farben-Set)