Dieses Arduino-kompatible Sensorkit bietet eine reichhaltige Sammlung verschiedener, universell einsetzbarer Sensoren, die direkt mit Arduino-Boards verwendet werden können.
Kit-Inhalt
1x Joystick
1x Relay
1x Big Sound
1x Small Sound
1x Tracking
1x Avoidance
1x Flame
1x Linear Hall Sensor
1x Touch
1x Digital Temperature
1x Buzzer
1x Passive Buzzer
1x RGB LED
1x SMD RGB
1x Two Color (5 mm)
1x Mini Two Color (3 mm)
1x Reed Switch
1x Mini Reed Switch
1x Heartbeat
1x 7 Color Flash
1x Laser Emitter
1x PCB mounted push button
1x Shock, a rolling-ball type Tilt Switch
1x Rotary Encoders
1x Rolling ball Tilt Switch
1x Photoresistor
1x Temp and Humidity
1x Analog Hall
1x Hall Magnetic
1x DS18B20 Temp
1x Analog Temp
1x IR Emission
1x IR Receiver
1x Tap Module
1x Light Blocking
Hinweis: Das ursprünglich 37-teilige Sensorkit darf innerhalb der EU nicht verkauft werden. Die Quecksilber enthaltenden Module Mercury Tilt Switch und Light Cup sind deshalb nicht mehr Bestandteil dieses Kits.
Downloads
Manual
Das GT-7U GPS-Modul bietet mit seiner hohen Empfindlichkeit, seinem geringen Stromverbrauch, seiner Miniaturisierung und seiner extrem hohen Tracking-Empfindlichkeit einen erweiterten Abdeckungsbereich. In einem Bereich, in dem der herkömmliche GPS-Empfänger versagen würde, wie z. B. in einem engen Stadthimmel oder in dichtem Dschungel, kann GT-7U eine hochpräzise Positionierung erreichen. Aufgrund seiner kompakten Größe eignet er sich für Anwendungen in Fahrzeugen, Mobiltelefonen, Videokameras und anderen mobilen Ortungssystemen und ist eine ausgezeichnete Wahl für GPS-Anwendungen.
Spezifikationen
Arbeitsfrequenz
L1 (1575,42 ±10 MHz)
Betriebsspannung
3,3 bis 5,2 V
Betriebsstrom
Normalmodus: 50 mA
Energiesparmodus: 30 mA
Kommunikationsinterface
TTL-Serieller Anschluss, MicroUSB-Schnittstelle
Baudrate der seriellen Schnittstelle
9600 Bit/s
Kommunikationsformat
8N1
Schnittstellenlogikspannung
3,3 oder 5 V
Externe Antennenschnittstelle
IPX
Maße
2,2 x 2,1 x 0,5 cm
Gewicht
8,5 g
Über 180 Projekte mit Raspberry Pi, Pico W, Arduino und ESP32
Dieses Bundle enthält das Universal Maker Sensor Kit mit zahlreichen Sensoren, Aktoren, Displays und Motoren. Es eignet sich perfekt für Umweltüberwachung, Smart-Home-Projekte, Robotik und Gamecontroller.
Das neue Elektor-Buch beschreibt die Entwicklung zahlreicher Projekte mit dem Kit und den beliebten Entwicklungsboards Raspberry Pi, Raspberry Pi Pico W, Arduino Uno und der ESP32-Familie. Sie können jedes dieser Entwicklungsboards für Ihre Projekte auswählen und die bereitgestellten Programme entweder unverändert verwenden oder an Ihre Anwendungen anpassen.
Dieses Bundle enthält:
Neues Buch: Universal Maker Sensor Kit (Einzelpreis: 45 €)
Universal Maker Sensor Kit (für Raspberry Pi, Pico W, Arduino, ESP32) (Einzelpreis: 70 €)
Raspberry Pi Pico W (Einzelpreis: 8 €)
Buch: Universal Maker Sensor Kit
Lernen Sie, mehr als 35 Sensoren und Aktoren mit C++, Python und MicroPython zu verwenden
Dieses Buch enthält über 180 Projekte für alle vier wichtigen Entwicklungsboards (Arduino, Raspberry Pi, Pico W und ESP32). Je nach Entwicklungsboard sind Projekte in den Programmiersprachen C, Python oder MicroPython verfügbar.
Die Projekttitel, Kurzbeschreibungen, Schaltpläne und vollständigen Programmlisten sind zusammen mit ihren detaillierten Beschreibungen im Buch aufgeführt.
Universal Maker Sensor Kit (für Raspberry Pi, Pico W, Arduino, ESP32)
Entdecken Sie grenzenlose Kreativität mit dem Universal Maker Sensor Kit, das für Raspberry Pi, Pico W, Arduino und ESP32 entwickelt wurde. Dieses vielseitige Kit ist mit gängigen Entwicklungsplattformen kompatibel, darunter Arduino Uno R4 Minima/WiFi, Uno R3, Mega 2560, Raspberry Pi 5, 4, 3B+, 3B, Zero, Pico W und ESP32.
Mit über 35 Sensoren, Aktoren und Displays eignet es sich perfekt für Projekte von Umweltüberwachung und Smart-Home-Automatisierung bis hin zu Robotik und interaktivem Gaming. Schritt-für-Schritt-Tutorials in C/C++, Python und MicroPython führen Anfänger und erfahrene Maker gleichermaßen durch 169 spannende Projekte.
Features
Umfassende Kompatibilität: Vollständige Unterstützung für Arduino (Uno R3, Uno R4 Minima/WiFi, Mega 2560), Raspberry Pi (5, 4, 3B+, 3B, Zero, Pico W) und ESP32. Dies ermöglicht umfassende Flexibilität auf zahlreichen Entwicklungsplattformen. Enthält Anleitungen für 169 Projekte.
Umfassende Komponenten: Mehr als 35 Sensoren, Aktoren und Anzeigemodule für vielfältige Projekte wie Umweltüberwachung, Smart Home-Automatisierung, Robotik und interaktive Spielesteuerungen.
Ausführliche Tutorials: Klare Schritt-für-Schritt-Anleitungen für Arduino, Raspberry Pi, Pico W, ESP32 und alle enthaltenen Komponenten. Es stehen Tutorials in C/C++, Python und MicroPython zur Verfügung, die sowohl für Anfänger als auch für erfahrene Maker geeignet sind.
Für alle Kenntnisstufen geeignet: Bietet strukturierte Projekte, die Benutzer nahtlos vom Anfänger zum Fortgeschrittenen in Elektronik und Programmierung führen und so Kreativität und technisches Know-how fördern.
Lieferumfang
Breadboard
Tastenmodul
Kapazitives Bodenfeuchtemodul
Flammensensormodul
Gas-/Rauchsensormodul (MQ2)
Gyroskop & Beschleunigungssensormodul (MPU6050)
Hall-Sensormodul
Infrarot-Geschwindigkeitssensormodul
IR-Hindernisvermeidungssensormodul
Joystickmodul
PCF8591 ADC/DAC-Wandlermodul
Fotowiderstandsmodul
PIR-Bewegungssensormodul (HC-SR501)
Potentiometermodul
Pulsoximeter- und Herzfrequenzsensormodul (MAX30102)
Regentropfenerkennungsmodul
Echtzeituhrmodul (DS1302)
Drehgebermodul
Temperatursensormodul (DS18B20)
Temperatur- und Feuchtigkeitssensormodul (DHT11)
Temperatur, Luftfeuchtigkeit und Drucksensor (BMP280)
Time-of-Flight-Mikro-LIDAR-Distanzsensor (VL53L0X)
Berührungssensormodul
Ultraschallsensormodul (HC-SR04)
Vibrationssensormodul (SW-420)
Wasserstandssensormodul
I²C LCD 1602
OLED-Displaymodul (SSD1306)
RGB-LED-Modul
Ampelmodul
5-V-Relaismodul
Kreiselpumpe
L9110-Motortreibermodul
Passives Summermodul
Servomotor (SG90)
TT-Motor
ESP8266 Modul
JDY-31 Bluetooth-Modul
Stromversorgungsmodul
Dokumentation
Online-Tutorial
Dieses RC522-RFID-Kit enthält ein 13,56-MHz-RF-Lesemodul, das einen RC522-IC und zwei S50-RFID-Karten verwendet, um Sie beim Erlernen und Hinzufügen des 13,56-MHz-RF-Übergangs zu Ihrem Projekt zu unterstützen. Der MF RC522 ist ein hochintegriertes Übertragungsmodul für die kontaktlose Kommunikation bei 13,56 MHz. Der RC522 unterstützt den ISO 14443A/MIFARE-Modus. Das Modul verwendet SPI zur Kommunikation mit Mikrocontrollern. In der Open-Hardware-Community gibt es bereits viele Projekte, die die RC522 - RFID-Kommunikation mit Arduino nutzen. Merkmale Betriebsstrom: 13-26 mA/DC 3,3 V Leerlaufstrom: 10-13 mA/DC 3,3 V Strom im Ruhezustand: Spitzenstrom: Betriebsfrequenz: 13,56 MHz Unterstützte Kartentypen: mifare1 S50, mifare1 S70, MIFARE Ultralight, Mifare Pro, MIFARE DESFire Umgebungsbedingungen Betriebstemperatur: -20-80 Grad Celsius Umgebungstemperatur bei Lagerung: -40-85 Grad Celsius Relative Luftfeuchtigkeit: relative Luftfeuchtigkeit 5% -95% Leserabstand: ≥50 mm/1.95' (Mifare 1) Modulgröße: 40×60 mm/1.57*2.34' Modul-Schnittstellen SPI Parameter Datenübertragungsrate: maximal 10 Mbit/s Lieferumfang 1x RFID-RC522 Modul 1x Standard S50 Blankokarte 1x S50-Spezialkarte (wie durch die Form des Schlüsselrings angezeigt) 1x Gerader Stift 1x Gebogener Stift Downloads Arduino Library MFRC522 Datasheet MFRC522_ANT Mifare S50
NFC ist in den letzten Jahren zu einer beliebten Technologie geworden. Fast alle High-End-Handys auf dem Markt unterstützen NFC.
Bei der Nahfeldkommunikation (NFC) handelt es sich um eine Reihe von Standards für Smartphones und ähnliche Geräte, die eine Funkverbindung untereinander herstellen, indem sie berührt oder in eine unmittelbare Nähe gebracht werden, in der Regel nicht mehr als ein paar Zentimeter.
Dieses Modul basiert auf NXP PN532. NXP PN532 ist sehr beliebt im NFC-Bereich. Makerfabs hat dieses Modul auf der Grundlage des offiziellen Dokuments entwickelt. Eine Bibliothek für dieses Modul ist verfügbar.
Merkmale
Kleine Abmessungen und einfach in Ihr Projekt einzubauen
Unterstützung von I²C, SPI und HSU (High-Speed UART), einfacher Wechsel zwischen diesen Modi
Unterstützt RFID-Lesen und -Schreiben, P2P-Kommunikation mit Peers, NFC mit Android-Handy
Bis zu 5~7 cm Leseabstand
On-board Level Shifter, Standard 5 V TTL für I²C und UART, 3.3 V TTL SPI
Arduino-kompatibel, Plugin und Play mit unserem Shield
RFID Leser/Schreiber unterstützt
Mifare 1k, 4k, Ultralight und DESFire Karten
ISO/IEC 14443-4-Karten wie CD97BX, CD light, Desfire, P5CN072 (SMX)
Innovision Jewel-Karten wie IRT5001-Karten
FeliCa-Karten wie RCS_860 und RCS_854
Downloads
Usage
NFC Library
HC-SR501 erkennt automatisch Licht für verschiedene Anwendungen (im Haus, Keller, Außenbereich, Lager, Garage usw.) für Lüftersteuerung, Alarm usw.
Merkmale
Automatische Infraroterkennung (LHI778-Sondendesign) Der Ausgang geht auf High, wenn Objekte in den Erfassungsbereich gelangen, und kehrt automatisch auf Low zurück, wenn das Objekt ihn verlässt
Optionale lichtempfindliche Steuerung
Optionale Temperaturkompensation
Triggermodus-Jumper
L: Nicht wiederholbar / Verzögerungsmodus: Der Sensor geht nach der Verzögerung auf Low, unabhängig von der Anwesenheit des Objekts.
H: Wiederholbar: Der Sensor bleibt hoch, solange während der Verzögerungszeit ein Objekt erkannt wird.
Großer Betriebsspannungsbereich
Mikro-Verstärkerleistung
Hohes Ausgangssignal: Einfaches Andocken an die verschiedenen Schaltungstypen.
Infrarot-Technologie (LHI778-Sondendesign)
Hohe Empfindlichkeit | hohe Zuverlässigkeit
Besonders für batteriebetriebene Produkte weit verbreitet
Spezifikationen
Stromspannung
4,8 V – 20 V
Strom (Leerlauf)
<50 µA
Logikausgang
3,3V / 0V
Verzögerungszeit
0,3 s – 200 s, benutzerdefiniert bis zu 10 Min
Sperrzeit
2,5 s (Standard)
Auslösen
wiederholen: L = deaktivieren, H = aktivieren
Erfassungsbereich
<120°, innerhalb von 7 m
Temperatur
– 15 ~ +70 °C
Abmessungen
32x24mm Schraube-Schraube 28 mm, M2
Linsendurchmesser: 23 mm
Enviro+ wurde für die Umweltüberwachung entwickelt und ermöglicht die Messung von Luftqualität (Schadgase und Partikel*), Temperatur, Druck, Luftfeuchtigkeit, Licht und Lärmpegel.
Enviro+ ist eine erschwingliche Alternative zu Umweltmessstationen, die Zehntausende von Pfund kosten können. Das Beste daran ist, dass es klein und leicht zu hacken ist und dass Sie Ihre Daten zu Citizen-Science-Bemühungen zur Überwachung der Luftqualität über Projekte wie Luftdaten beitragen können.
Features
BME280 Temperatur-, Druck- und Feuchtigkeitssensor (Datenblatt)
LTR-559 Licht- und Näherungssensor (Datenblatt)
MICS6814 analoger Gassensor (Datenblatt)
ADS1015 Analog-Digital-Wandler (ADC) (Datenblatt)
MEMS-Mikrofon (Datenblatt)
0,96" Farb-LCD (160 × 80)
pHAT-Format-Tafel
Fertig montiert
Kompatibel mit allen Raspberry Pi-Modellen mit 40-poliger Stiftleiste
Pinout
Python-Bibliothek
Bürgerwissenschaftliche Überwachung der Luftqualität
Dieses Board wurde in Zusammenarbeit mit der Universität Sheffield entwickelt, mit dem Ziel, dass Sie Echtzeit-Luftqualitätsdaten aus Ihrem lokalen Bereich zu offenen Datenprojekten wie Luftdaten beitragen können.
Geräte wie Enviro+ ermöglichen feinkörnige, detaillierte Datensätze, anhand derer wir Veränderungen der Luftqualität im Laufe der Zeit und in verschiedenen Stadtgebieten erkennen können. Je mehr Geräte Daten beisteuern, desto besser wird die Qualität des Datensatzes.
Die Qualität des Datensatzes wird mit jedem weiteren Gerät verbessert.
Feinstaub (PM) besteht aus winzigen Partikeln unterschiedlicher Größe und Art, wie Staub, Pollen, Schimmelsporen, Rauchpartikel, organische Partikel und Metallionen und vieles mehr. Feinstaub ist ein Großteil dessen, was wir als Luftverschmutzung empfinden.
Mit dem analogen Gassensor können qualitative Messungen von Veränderungen der Gaskonzentrationen vorgenommen werden, so dass man grob sagen kann, ob die drei Gasgruppen in ihrer Häufigkeit zu- oder abnehmen. Ohne Laborbedingungen oder Kalibrierung kann man zum Beispiel nicht sagen: "Die Konzentration von Kohlenmonoxid beträgt n Teile pro Million".
Temperatur, Luftdruck und Luftfeuchtigkeit können sich ebenfalls auf die Partikelkonzentration (und die Messwerte des Gassensors) auswirken, so dass der BME280-Sensor von Enviro+ wirklich wichtig ist, um die anderen Daten zu verstehen, die Enviro+ ausgibt.
Sie können Enviro+ auch in IoT-Anwendungen einsetzen. Durch die Verbindung mit Alexa können Sie Informationen über die Temperatur und die Luftfeuchtigkeit erhalten, indem Sie einfach danach fragen, oder es gibt auch die Möglichkeit, eine Trigger-Aktion mit IFTTT einzurichten, die Ihre Philips Hue-Lichter einschaltet, wenn die Lichtstärke unter einen bestimmten Wert fällt usw.
Software
Mit der Python-Bibliothek können Sie alle Teile deines Enviro+ steuern. Es gibt eine Sammlung von Beispielen für jedes der einzelnen Teile, ein Gesamtbeispiel, das Ihnen die Daten der Sensoren von Enviro+ auf visuelle Weise zeigt.
Der LDS02 wird mit 2x AAA-Batterien betrieben und ist für den Langzeitgebrauch konzipiert. Diese beiden Batterien können etwa 16.000 bis 70.000 Uplink-Pakete bereitstellen. Sobald die Batterien leer sind, kann der Benutzer das Gehäuse einfach öffnen und sie durch zwei handelsübliche AAA-Batterien ersetzen.
Es sendet Daten regelmäßig jeden Tag sowie für jede einzelne Öffnungs-/Schließaktion. Außerdem zählt es die Türöffnungszeiten und berechnet die letzte Türöffnungsdauer. Der Benutzer kann den Uplink auch für jedes Öffnungs-/Schließungsereignis deaktivieren. Stattdessen kann das Gerät jedes Öffnungsereignis und jeden Uplink regelmäßig zählen. Es verfügt auch über die Funktion „Offen-Alarm“. Der Benutzer kann diese Funktion so einstellen, dass das Gerät einen Alarm sendet, wenn die Tür eine bestimmte Zeit lang offen war. Jeder LDS02 ist mit einem Satz eindeutiger Schlüssel für die LoRaWAN-Registrierung vorinstalliert. Registrieren Sie diese Schlüssel beim LoRaWAN-Server und er stellt nach dem Einschalten automatisch eine Verbindung her.
Merkmale
LoRaWAN v1.0.3 Klasse A
SX1262 LoRa-Kern
Durch Öffnen/Schließen-Erkennung
2 x AAA LR03-Batterien
Durch Öffnungs-/Schließungsstatistiken
AT-Befehle zum Ändern von Parametern
Uplink in regelmäßigen Abständen und Aktion zum Öffnen/Schließen
Offener Daueralarm
Downlink zum Ändern der Konfiguration
Anwendungen
Drahtlose Alarm- und Sicherheitssysteme
Haus- und Gebäudeautomation
Industrielle Überwachung und Steuerung
Features
360 Grad omnidirektionale Scanmessung des Entfernungsbereichs
Kleine Entfernungsfehler, stabile Leistung und hohe Genauigkeit
Schutzklasse IP65
Starke Resistenz gegen Umgebungslichtinterferenzen
Industriequalität bürstenloser Motorantrieb für stabile Leistung
Laserleistung entspricht den Sicherheitsstandards der Laserklasse I
Anpassungsfähige Scan-Frequenz von 5-12 Hz (Anpassung unterstützt)
Fotomagnetische Fusionstechnologie zur drahtlosen Kommunikation und drahtlosen Stromversorgung
Entfernungsfrequenz von bis zu 20 kHz (Anpassung unterstützt)
Anwendungen
Roboter-Navigation und Hindernisvermeidung
Industrielle Automatisierung
Roboter-ROS-Unterricht und Forschung
Regionale Sicherheit
Intelligenter Transport
Umweltscanning und 3D-Rekonstruktion
Kommerzielle Roboter / Robotersauger
Downloads
Datenblatt
Benutzerhandbuch
Entwicklungsanleitung
SDK
TOOL
ROS
Merkmale
NFC-Chipmaterial: PET + Ätzantenne
Chip: NTAG216 (kompatibel mit allen NFC-Telefonen)
Frequenz: 13,56 MHz (Hochfrequenz)
Lesezeit: 1 - 2 ms
Speicherkapazität: 888 Byte
Lese- und Schreibvorgänge: > 100.000 Mal
Leseabstand: 0 - 5 mm
Datenaufbewahrung: > 10 Jahre
NFC-Chipgröße: Durchmesser 30 mm
Berührungslos, keine Reibung, geringe Ausfallrate, geringe Wartungskosten
Leserate, Verifizierungsgeschwindigkeit, die effektiv Zeit sparen und die Effizienz verbessern kann
Wasserdicht, staubdicht, vibrationshemmend
Keine Stromversorgung mit Antenne, eingebetteter Verschlüsselungssteuerungslogik und Kommunikationslogikschaltung
Inbegriffen
1x NFC-Sticker (6-Farben-Set)
Beim offiziellen Sense HAT der Raspberry Pi Foundation handelt es sich um ein Add-on-Board für Raspberry Pi (4, 3, 2, B+ und A+).
Das Sense HAT verfügt über die folgenden Sensoren:
8x8 RGB-LED-Matrix-Display
Accelerometer
Gyroskop
Magnetometer
Luftdruck-Sensor
Temperatur-Sensor
Luftfeuchtigkeits-Sensor
Joystick mit 5 Tastern
Der FNIRSI WD-02 Wandscanner ist eine verbesserte Version der Vorgängerversion WD-01 mit einem besseren hochauflösenden TFT-Display und einer neuen Benutzeroberfläche mit zusätzlichen Sprachen. Die 3-stufige Empfindlichkeitseinstellung erhöht die Messgenauigkeit. Es kann zur Erkennung von Stahlstangen, Metallträgern, Metallrohren, Holz und Drähten in Wänden, Decken und Böden verwendet werden. Es stehen drei Erkennungsmodi zur Verfügung: Metall-, Holz- und Stromerkennung.
Features
Die geringe Größe dieses Werkzeugs ist sehr praktisch für den täglichen Gebrauch, Sie können es auch während der Verwendung leicht halten.
Mit diesem Wanddetektor/-scanner können Sie Kanten und Mittelmetalle, Bolzen, Balken, Rohre und stromführende Wechselstromkabel hinter Wänden, Böden und Decken schnell lokalisieren. Der Messbereich beträgt ≤38 mm für Holz, ≤40 mm für Wechselstromkabel, ≤100 mm für Metallrohre und ≤120 mm für Bewehrungsstäbe.
Das HPC-Erkennungsmodul bietet eine bessere Anti-Interferenz-Fähigkeit und eine schnellere Rechengeschwindigkeit.
Der Bildschirm zeigt die Zieltiefe, das Erreichen des Erkennungszentrums und das Material an. Die Anzeigeleuchte leuchtet je nach Zielentfernung gelb oder rot und das grüne Licht bedeutet „Kein Ziel“. Es piept auch, wenn ein Ziel erkannt wird. Bei Erreichen der Mitte werden fortlaufend Warnungen ausgegeben.
Dieses Werkzeug kann häufig für Heimdekoration, Wanddekoration, Installation von Haushaltsgeräten, Straßeninstandhaltung usw. verwendet werden.
Das Design der zentralen Positionierungslöcher ermöglicht es Ihnen, die Bohrposition nach der Erkennung direkt zu markieren und präzises Bohren zu erreichen.
Technische Daten
Maximale Erkennungstiefe
Metalle
120 mm
Nichteisenmetalle (Kupfer)
100 mm
Wechselstromkabel
50 mm
Einzellitziger Kupferdraht
40 mm
Holz
Präzisionsmodus 20 mmTiefenmodus: 38 mm
Automatisches Klingeln
Nach 5 Minuten Inaktivität
Stromversorgung
300 mAh wiederaufladbarer Lithium-Akku, USB-C-Aufladung
Abmessungen
138 x 68 x 22 mm
Gewicht
122 g
Lieferumfang
FNIRSI WD-02 Wanddetektor/-scanner
USB-Kabel
Aufbewahrungstasche
Manual
Downloads
Manual
LWL01 wird mit einer CR2032-Knopfbatterie betrieben und kann bei guter LoRaWAN-Netzwerkabdeckung bis zu 12.000 Uplink-Pakete übertragen (basierend auf SF 7, 14 dB). Bei schlechter LoRaWAN-Netzwerkabdeckung können ~ 1.300 Uplink-Pakete übertragen werden (basierend auf SF 10, 18,5 B). Das Designziel für eine Batterie beträgt bis zu 2 Jahre. Der Benutzer kann die CR2032-Batterie zur Wiederverwendung einfach austauschen.
Der LWL01 sendet regelmäßig Daten jeden Tag sowie bei Wasserleckereignissen. Außerdem werden die Zeiten von Wasserleckereignissen gezählt und die Dauer des letzten Wasserlecks berechnet.
Jeder LWL01 ist mit einem Satz eindeutiger Schlüssel für die LoRaWAN-Registrierung vorinstalliert. Registrieren Sie diese Schlüssel beim lokalen LoRaWAN-Server und er stellt nach dem Einschalten automatisch eine Verbindung her.
Merkmale
LoRaWAN v1.0.3 Klasse A
SX1262 LoRa-Kern
Wasserleckerkennung
CR2032-Batteriebetrieben
AT-Befehle zum Ändern von Parametern
Uplink in regelmäßigen Abständen und Wasserleck-Ereignis
Downlink zum Ändern der Konfiguration
Anwendungen
Drahtlose Alarm- und Sicherheitssysteme
Haus- und Gebäudeautomation
Industrielle Überwachung und Steuerung
Diese außergewöhnliche GPS/GNSS-Antenne ist sowohl für den GPS- als auch für den GLONASS-Empfang ausgelegt. Dank der magnetischen Halterung kann sie einfach auf einer Metallunterlage wie einer Bodenplatte oder einem Autodach montiert werden. Die Antenne ist mit einem 3 m langen Kabel und einem Standard-SMA-Stecker ausgestattet.MerkmaleAbmessungen: 50x38x17mmGewicht: 75g inklusive 3m KabelFrequenzbereich: 1575 - 1610MHzGPS Mittenfrequenz: 1575.42MHzGLONASS Mittenfrequenz: 1602MHzLNA Spannung: 3 bis 5VDCLNA-Verstärkung: 28dBLNA-Strom: 10 mAAnschlussstecker: SMAImpedanz: 50 ΩRechtsseitige PolarisierungKabellänge: 3 Meter
Das FNIRSI IR40 ist ein kompaktes, hochpräzises und schnelles Entfernungsmessgerät mit Bluetooth-Integration, wiederaufladbarem Akku, USB-C-Ladeanschluss und App-Anbindung.
Features
Zeichnet sich durch eine hohe Präzision von ±2 mm, einen Messbereich von bis zu 40 m und ein hautfreundliches Gefühl von 8 cm aus. Mit einem intelligenten Algorithmus wird die Entfernungsmessung im Handumdrehen durchgeführt.
Verfügt über vielseitige Funktionen, darunter Einzelmessung, Mehrfachmessung, Flächenmessung, Volumenmessung, Pythagoras, zweiter Pythagoras, Front- und Rereferenz und Einheitenumschaltung.
Ist mit einem ROHM-Beschleunigungssensor ausgestattet, ermöglicht das automatische Umdrehen.
Eingebauter 400-mAh-Akku, kann über einen USB-C-Ladeanschluss schnell aufgeladen werden. Bei voller Ladung können bis zu 3.000 kontinuierliche Messungen durchgeführt werden.
Es unterstützt Android- und iOS-Systeme sowie Link APP, um Funktionen wie Datensynchronisierung/Remarks, Längen-/Flächen-/Volumenberechnung, Grundrisszeichnung, Echtzeitaufzeichnung usw. zu realisieren.
Technische Daten
Messbereich
0,05~40 m
Messgenauigkeit
±2 mm
Lasertyp
620-670 nm
Messzeit
0,1~3s
Auflösung
1 mm
Einheiten
m/ft/in
Abmessungen
79 x 34,5 x 19 mm
Lieferumfang
FNIRSI IR40 Entfernungsmesser
USB-Kabel
Manual
Downloads
Manual
Android App
iOS App
Basierend auf den SparkFun GPS-RTK2-Designs legt das SparkFun GPS-RTK-SMA die Messlatte für hochpräzises GPS höher und ist das neueste in einer Reihe von leistungsstarken RTK-Boards mit dem ZED-F9P-Modul von u-blox. Das ZED-F9P ist ein Spitzenmodul für hochgenaue GNSS- und GPS-Ortungslösungen, einschließlich RTK mit einer dreidimensionalen Genauigkeit von 10 mm. Mit dieser Karte werden Sie in der Lage sein, die X-, Y- und Z-Position Ihres (oder eines beliebigen Objekts) innerhalb der Breite Ihres Fingernagels zu bestimmen! Das ZED-F9P ist einzigartig, da es sowohl als Rover als auch als Basisstation eingesetzt werden kann. Durch die Verwendung unseres praktischen Qwiic-Systems ist kein Löten erforderlich, um ihn mit dem Rest Ihres Systems zu verbinden. Dennoch haben wir die Pins im 0,1"-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Wir haben eine wiederaufladbare Backup-Batterie eingebaut, um die letzte Modulkonfiguration und die Satellitendaten für bis zu zwei Wochen verfügbar zu halten. Diese Batterie hilft beim "Warmstart" des Moduls und verkürzt die Zeit bis zur ersten Reparatur drastisch. Das Modul verfügt über einen "Survey-in"-Modus, der es ermöglicht, das Modul als Basisstation zu verwenden und RTCM 3.x-Korrekturdaten zu erzeugen. Basierend auf Ihrem Feedback haben wir den u.FL-Stecker ausgetauscht und einen SMA-Stecker in diese Version des Boards eingebaut.
Die Anzahl der Konfigurationsmöglichkeiten des ZED-F9P ist unglaublich! Geofencing, variable I2C-Adresse, variable Update-Raten, sogar die hochpräzise RTK-Lösung kann auf 20Hz erhöht werden. Der GPS-RTK2 hat sogar fünf Kommunikationsanschlüsse, die alle gleichzeitig aktiv sind: USB-C (der sich als COM-Port enumeriert), UART1 (mit 3,3V TTL), UART2 für den RTCM-Empfang (mit 3,3V TTL), I2C (über die beiden Qwiic-Anschlüsse oder herausgebrochene Pins) und SPI.
SparkFun hat außerdem eine umfangreiche Arduino-Bibliothek für u-blox-Module geschrieben, um das GPS-RTK-SMA einfach über unser Qwiic Connect System auszulesen und zu steuern. Lassen Sie NMEA hinter sich! Verwenden Sie eine viel leichtere binäre Schnittstelle und gönnen Sie Ihrem Mikrocontroller (und seinem einen seriellen Port) eine Pause. Die SparkFun Arduino-Bibliothek zeigt, wie man Breitengrad, Längengrad, sogar Kurs und Geschwindigkeit über I2C auslesen kann, ohne dass ständige serielle Abfragen nötig sind.
Features
Gleichzeitiger Empfang von GPS, GLONASS, Galileo und BeiDou
Empfang der Bänder L1C/A und L2C
Spannung: 5 V oder 3,3 V, aber alle Logik ist 3,3 V
Strom: 68 mA - 130 mA (variiert mit Konstellationen und Tracking-Status)
Zeit bis zum ersten Fix: 25 s (kalt), 2 s (heiß)
Max Navigation Rate:
PVT (Basisortung über UBX-Binärprotokoll) - 25 Hz
RTK - 20 Hz
Raw - 25 Hz
Horizontale Positionsgenauigkeit:
2,5 m ohne RTK
0,010 m mit RTK
Max. Höhe: 50 km
Max Geschwindigkeit: 500 m/s
Gewicht: 6,8 g
Abmessungen: 43,5 mm x 43,2 mm
2 x Qwiic-Stecker
Der im LSN50v2-D20 verwendete Temperatursensor ist DS18B20, der -55°C bis 125°C mit einer Genauigkeit von ±0,5°C (max. ±2,0°C) messen kann. Das Sensorkabel besteht aus Silicagel, und die Verbindung zwischen der Metallsonde und dem Kabel ist doppelt komprimiert, um wasserdicht, feuchtigkeitsfest und rostfrei für den Langzeitgebrauch zu sein.
Das LSN50v2-D20 unterstützt eine Temperaturalarmfunktion, der Benutzer kann einen Temperaturalarm zur sofortigen Benachrichtigung einstellen.
Es wird von einer 8500-mAh-Li-SOCI2-Batterie gespeist und ist für eine Langzeitnutzung von bis zu 10 Jahren ausgelegt.
Jeder LSN50v2-D20 ist mit einem Satz eindeutiger Schlüssel für die LoRaWAN-Registrierung vorinstalliert, registrieren Sie diese Schlüssel beim lokalen LoRaWAN-Server und er stellt nach dem Einschalten automatisch eine Verbindung her.
Funktionen
LoRaWAN v1.0.3 Klasse A
Extrem niedriger Stromverbrauch
Externe DS18B20-Sonde (Standard 2 Meter)
Messbereich -55°C ~ 125°C
Temperaturalarm
AT-Befehle zum Ändern von Parametern
Uplink regelmäßig eingeschaltet oder Unterbrechung
Downlink zum Ändern der Konfiguration
Anwendungen
Drahtlose Alarm- und Sicherheitssysteme
Haus- und Gebäudeautomation
Automatisierte Zählerablesung
Industrielle Überwachung und Steuerung
Bewässerungssysteme mit großer Reichweite
Erstellen Sie mit diesem Kit Ihre ersten IoT-Geräte durch die nahtlose Integration von Hardware und Software, ohne sich in komplexe Theorien zu vertiefen.
Plug and Make Kit ist der einfachste Weg, mit Arduino zu beginnen. Es enthält alles, was Sie für Ihre allerersten sieben Projekte benötigen – sowie viele weitere, die unsere Community teilt und die Sie selbst erfinden können!
Wetterbericht: Lassen Sie sich nie wieder vom Regen überraschen, mit einer visuellen Erinnerung, bei Bedarf einen Regenschirm mitzunehmen
Sanduhr: Wer braucht schon eine Eieruhr? Passen Sie Ihre eigene digitale Sanduhr an
Eco Watch: Stellen Sie sicher, dass Ihre Pflanzen bei perfekter Temperatur und Luftfeuchtigkeit gedeihen
Gamecontroller: Steigen Sie mit Ihrem eigenen HID-Gamepad (Human Interface Device) auf ein höheres Level
Sonic Synth: Kommen Sie Ihrem Beruf als Rockstar, DJ oder Toningenieur einen Schritt näher!
Intelligente Lichter: Sorgen Sie mit Ihrer eigenen intelligenten Lampe für Stimmung
Berührungslose Lampe: Steuern Sie Lichter mit einer einfachen Geste
Jede Idee ist Inspiration für eine unterhaltsame Aktivität, die Ihnen nicht nur die Grundlagen der Heimwerkerelektronik vermittelt, sondern Ihnen auch ein großartiges Erfolgserlebnis vermittelt. Sie können auch Technologie machen!
Mit den innovativen Modulino-Knoten verbinden Sie diese einfach nacheinander über den integrierten Qwiic-Anschluss des Arduino Uno R4 WiFi. Durch die Verwendung einer der Arduino-Cloud-Vorlagen können Sie Ihr Konzept schnell in ein voll funktionsfähiges Projekt umwandeln.
Features
Keine zusätzlichen Werkzeuge erforderlich, alles, was Sie brauchen, um Ihre Reise zu beginnen, ist im Kit enthalten.
Kein Steckbrett und kein Löten erforderlich.
Erstellen Sie in weniger als 45 Minuten ein voll funktionsfähiges IoT-Projekt und verstehen Sie dessen Funktionsweise.
Beginnen Sie mit dem Projekt, das Sie interessanter finden. Sie definieren Ihren eigenen Lernpfad.
Lernen Sie weiter und arbeiten Sie an Ihren Projekten von jedem angeschlossenen Computer aus mithilfe des Online-Arduino-Ökosystems.
Modulino
Modulino sind Sensoren und Aktoren, die einfach über den integrierten Qwiic-Anschluss des Uno R4 WiFi verbunden werden. Für komplexere Projekte können Sie mehrere anschließen und müssen sich nie fragen, welche Seite wo hingehört, da der Stecker polarisiert ist.
Modulino Knopf: für superfeine Werteinstellungen
Modulino Pixel: 8 LEDs, die hell leuchten, dimmen oder die Farbe ändern
Modulino Abstand: ein Flugzeit-Näherungssensor zur präzisen Messung von Entfernungen
Modulino Bewegung: zur perfekten Erfassung von Bewegungen wie Nicken, Rollen oder Neigen
Modulino Summer: zum Erzeugen eigener Alarmtöne oder einfacher Melodien
Modulino Thermo: ein Sensor für Temperatur- und Feuchtigkeitsdaten
Modulino Button: 3 Button für die schnelle Projektnavigation
Technische Daten
Board inklusive
Arduino Uno R4 WiFi
Modulino-Knoten
Kommunikation
I²C (über Qwiic-Anschluss)
Betriebsspannung
3,3 V
Modulino-Knoten enthalten
Modulino Bewegung
LSM6DSOXTR
0x6A (0x6B)
Modulino Abstand
VL53L4CDV0DH/1
0x29
Modulino Thermo
HS3003
0x44
Modulino Knopf
PEC11J (STM32C011F4 für I²C-Kommunikation)
0x76 (Adresse kann per Software geändert werden)
Modulino Summer
PKLCS1212E4001-R1 (STM32C011F4 für I²C-Kommunikation)
0x3C (Adresse kann per Software geändert werden)
Modulino Pixel
8 LC8822-2020 (STM32C011F4 für I²C-Kommunikation)
0x6C (Adresse kann per Software geändert werden)
Modulino Button
3 Drucktasten plus 3 gelbe LEDs (STM32C011F4 für I²C-Kommunikation)
0x7C (Adresse kann per Software geändert werden)
Lieferumfang
1x Arduino Uno R4 WiFi
1x Modulino-Basis
7x Modulino-Sensoren
1x USB-C-Kabel
7x Qwiic-Kabel
24x Schrauben M3 (10 mm)
20x Muttern M3
4x Metallabstandshalter
Downloads
Datasheet
Schematics
Dieser Mini-Radarroboter ist ein aufregender, programmierbarer DIY-Bausatz, der Kreativität, Technologie und praktisches Lernen vereint. Das Kit ist perfekt für Technikbegeisterte, Maker und Studenten, die Robotik und Programmierung mit Arduino oder ESP8266 erkunden möchten.
Ausgestattet mit einem 2,8" TFT-Bildschirm bietet es visuelles Echtzeit-Feedback durch die Erkennung von Objekten mit seinen Ultraschallsensoren. Ziele im Umkreis von 1 m werden als rote Punkte angezeigt, während Objekte bis zu 4,5 m in digitaler Form auf dem Bildschirm angezeigt werden.
Technische Daten
Hauptsteuereinheit
ESP8266 Mikrocontroller + Erweiterungsplatine
Material
Hergestellt aus hochwertigem Acryl, das Langlebigkeit und ein elegantes, modernes Aussehen gewährleistet
Betriebsspannung
5 V/2 A
Betriebstemperatur
–40 bis 85 °C
Abmessungen
145 x 95 x 90 mm
Installation
Kein Löten und keine Programmierung erforderlich
Lieferumfang
1x Servomotor
1x Ultraschallwandler-Modul
1x Mikrocontroller-Platine
1x 2,8" Display-Modul
1x USB-Netzteil
1x USB-Kabel
Mechanische Elemente aus Acryl
Alle notwendigen Kabel, Schrauben, Muttern und Abstandshalter
Überwachung von Bodenfeuchtigkeit, Temperatur und relativer Luftfeuchtigkeit mit dem Plant Monitor. Dieses Board ist kompatibel mit dem BBC micro:bit, Raspberry Pi und den meisten Mikrocontroller-Boards.
Alligator-/Krokodilklemmenringe
Fertig gelötete Header-Pins für einen Mikrocontroller Ihrer Wahl
Einfach zu verwendende serielle UART-Schnittstelle
Zusätzlicher Analogausgang nur für Feuchtigkeit
Eingebaute RGB-LED
Downloads
Datasheet
Instructions
Es beinhaltet insgesamt 40 verschiedene Sensoren. Sie können die Sensoren entweder fest verlöten oder auf ein Breadboard stecken, um an verschiedenen Schaltungen oder Experimenten zu arbeiten.
Das Set ist kompatibel zu Einplatinen-Computern (Arduino, Raspberry Pi, Banana Pi, Cubieboard, Cubietruck, Beaglebone, pcDuino) und Mikrocontrollern (ATmega, AVR, MicroChip PIC, STM32 usw.).
Die sehr umfangreiche Anleitung inklusive Programmiercodes (Raspberry Pi und Arduino) steht zum Download auf https://sensorkit.joy-it.net/de/ in Deutsch, Französisch und Englisch zur Verfügung und umfasst mehr als 200 Seiten.
Umfangreiches Sensor-Set mit 40 Sensoren inklusive Analog- und Spannungswandler
Hochwertige, zuverlässige Sensoren
Universell einsetzbar
Enthaltene Sensoren
KY-001 Temperatur-Sensor-Modul
KY-002 Erschütterungs-Schalter-Modul
KY-003 Hall Magnetfeld-Sensor-Modul
KY-004 Taster-Modul
KY-005 Infrarot-Transmitter-Modul
KY-006 Passives Piezo-Buzzer-Modul
KY-009 RGB-LED-SMD-Modul
KY-010 Lichtschranken-Modul
KY-011 2-Farben (Rot+Grün) 5mm LED-Modul
KY-012 Aktives Piezo-Buzzer-Modul
KY-013 Temperatur-Sensor-Modul
KY-015 Kombi-SensorTemperatur+Feuchtigkeit
KY-016 RGB 5mm LED-Modul
KY-017 Neigungsschalter Modul
KY-018 Fotowiderstand-Modul
KY-019 5V Relais-Modul
KY-020 Neigungs-Schalter-Modul
KY-021 Mini Magnet-Reed-Modul
KY-022 Infrarot-Receiver-Modul
KY-023 Joystick-Modul (XY-Achsen)
KY-024 Linear magnetic Hall-Sensor
KY-025 Reed-Modul
KY-026 Flamen-Sensor-Modul
KY-027 Magic Light Cup Modul
KY-028 Temperatur-Sensor-Modul (Thermistor)
KY-029 2-Farben (Rot+Grün) 3mm LED-Modul
KY-031 Klopf-Sensor-Modul
KY-032 Hindernis-Detektor-Modul
KY-033 Tracking-Sensor-Modul
KY-034 7 Farben LED Flash-Modul
KY-035 Bihor Magnet-Sensor-Modul
KY-036 Metall-Touchsensor-Modul
KY-037 Mikrofon-Sensor-Modul (hohe Empfindlichkeit)
KY-038 Mikrofon-Sound-Sensor-Modul
KY-039 Herzschlag-Sensor-Modul
KY-040 Kodierter Drehschalter (Rotary Encoder)
KY-050 Ultraschallabstandssensor
KY-051 Voltage Translator / Level Shifter
KY-052 Drucksensor / Temperatursensor (BMP180)
KY-053 Analog Digital Converter
Der BME680 ist der neue, kompakte Umgebungssensor mit integrierter Sensorik für Luftfeuchtigkeit, Druck, Temperatur und Luftqualität. Die digitalen Schnittstellen I²C und SPI ermöglichen zudem ein einfaches und schnelles Auslesen der Messwerte. Technische Daten Digitale Schnittstellen I²C, SPI Betriebsspannung 3-5 V Kompatibel mit Arduino, Raspberry Pi Abmessungen 30 x 14 x 10 mm Gewicht 10 g Luftfeuchtigkeitssensor Reaktionsgeschwindigkeit 8s Toleranz ± 3% Hysterese ≤ 1,5% Drucksensor Druckbereich 300-1100 hPa Relative Genauigkeit ± 0,12 hPa Absolute Genauigkeit ± 1 hPa Temperatursensor Arbeitsbereich -40°C - 85°C Vollständige Genauigkeit 0°C - 65°C Luftgütesensor Reaktionsgeschwindigkeit 1s Downloads Datenblatt Handbuch
Das Pico-10DOF-IMU ist ein IMU-Sensor-Erweiterungsmodul, das speziell für Raspberry Pi Pico entwickelt wurde. Es enthält Sensoren wie Gyroskop, Beschleunigungsmesser, Magnetometer und Barozeptor und nutzt den I²C-Bus für die Kommunikation. In Kombination mit dem Raspberry Pi Pico können damit Umgebungsdaten wie Temperatur und Luftdruck erfasst oder ganz einfach ein Roboter gebaut werden, der Bewegungen, Gesten und Ausrichtung erkennt.
Merkmale
Standard-Raspberry-Pi-Pico-Header, unterstützt die Raspberry-Pi-Pico-Serie
Integriertes ICM20948 (3-Achsen-Gyroskop, 3-Achsen-Beschleunigungsmesser und 3-Achsen-Magnetometer) zur Erkennung von Bewegungsgesten, Ausrichtung und Magnetfeld
Integrierter Luftdrucksensor LPS22HB zur Messung des atmosphärischen Drucks der Umgebung
Kommt mit Entwicklungsressourcen und Handbuch (Raspberry Pi Pico C/C++ und MicroPython-Beispiele)
Spezifikationen
Betriebsspannung
5 V
Beschleunigungsmesser
Auflösung: 16 Bit Messbereich (konfigurierbar): ±2, ±4, ±8, ±16g Betriebsstrom: 68,9 uA
Gyroskop
Auflösung: 16 Bit Messbereich (konfigurierbar): ±250, ±500, ±1000, ±2000°/Sek Betriebsstrom: 1,23 mA
Magnetometer
Auflösung: 16 Bit Messbereich: ±4900µT Betriebsstrom: 90uA
Barozeptor Messbereich: 260 ~ 1260 hPa Messgenauigkeit (normale Temperatur): ±0,025 hPa Messgeschwindigkeit: 1Hz - 75Hz
Zusätzlich unterstützt dieser u-blox-Empfänger I2C (u-blox nennt dies Display Data Channel), was ihn perfekt für die Qwiic-Kompatibilität macht, so dass wir unsere kostbaren UART-Ports nicht verbrauchen müssen. Da wir unser praktisches Qwiic-System verwenden, ist kein Löten erforderlich, um es mit dem Rest des Systems zu verbinden. Dennoch haben wir die Pins im 0,1'-Abstand herausgebrochen, falls Sie lieber ein Breadboard verwenden möchten.
Das NEO-M9N-Modul erkennt Jamming- und Spoofing-Ereignisse und kann diese an den Host melden, so dass das System auf solche Ereignisse reagieren kann. Im NEO-M9N-Modul ist ein SAW-Filter (Surface Acoustic Wave) in Kombination mit einem LNA (Low Noise Amplifier) im HF-Pfad integriert, der einen normalen Betrieb auch bei starken HF-Störungen ermöglicht.
U-blox-basierte GPS-Produkte sind mit dem beliebten, aber dichten Windows-Programm namens u-centre konfigurierbar. Viele verschiedene Funktionen können auf dem NEO-M9N konfiguriert werden: Baudraten, Aktualisierungsraten, Geofencing, Spoofing-Erkennung, externe Interrupts, SBAS/D-GPS, etc. All dies kann innerhalb der SparkFun Arduino Library vorgenommen werden!
Das SparkFun NEO-M9N GPS Breakout ist außerdem mit einem On-Board-Akku ausgestattet, der die RTC des NEO-M9N mit Strom versorgt. Dadurch wird die Zeit bis zum ersten Fix von einem Kaltstart (~24s) auf einen Warmstart (~2s) reduziert. Die Batterie hält die RTC und die GNSS-Orbitdaten auch ohne Stromzufuhr für eine lange Zeit aufrecht.
Features
Integrierter U.FL-Anschluss zur Verwendung mit einer Antenne Ihrer Wahl
92-Kanal GNSS-Empfänger
1,5 m horizontale Genauigkeit
25 Hz maximale Aktualisierungsrate (4 gleichzeitige GNSS)
Time-To-First-Fix:
Kalt: 24 s
Heiß: 2 s
Max. Höhe: 80.000 m
Max G: ≤ 4
Max Geschwindigkeit: 500 m/s
Geschwindigkeitsgenauigkeit: 0,05 m/s
Kursgenauigkeit: 0,3 Grad
Zeitimpulsgenauigkeit: 30 ns
3,3 VCC und E/A
Stromverbrauch: ~31 mA Tracking GPS+GLONASS
Software-konfigurierbar
Geofencing
Kilometerzähler
Spoofing-Erkennung
Externer Interrupt
Pin-Steuerung
Low Power Modus
Viele andere!
Unterstützt NMEA-, UBX- und RTCM-Protokolle über UART- oder I2C-Schnittstellen
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Building a GPS System
Datasheet (NEO-M9N)
Product Summary
Integration Manual
u-blox Protocol Specification
NEO-M9M Documents & Resources
u-center Software
SparkFun u-blox GNSS Arduino Library
GitHub Hardware Repo